# On the Microscopic Perspective of Black Branes Thermodynamic Geometry

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Thermodynamic Geometry

## 3. Black Holes in String Theory

#### 3.1. Extremal Black Holes

#### 3.2. Non-Extremal Black Holes

## 4. Multi-centered Black Branes: ${D}_{6}{D}_{4}{D}_{2}{D}_{0}$ system

## 5. Fractionation of Branes: Small Black Holes

## 6. Mathur’s Fuzzball Proposal and Subensemble Theory: Fuzzy Rings

#### 6.1. The Fuzzball Proposal

#### 6.2. Subensemble Theory

## 7. Bubbling Black Brane Solutions: Black Brane Foams

#### 7.1. A Toy Model: Single GH-center

#### 7.2. Black Brane Foams

## 8. Discussion and Conclusions

## Acknowledgments

## References

- Strominger, A.; Vafa, C. Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B
**1996**, 379, 99–104. [Google Scholar] [CrossRef] - Callan, C.G.; Maldacena, J.M. D-brane approach to black hole quantum mechanics. Nucl. Phys. B
**1996**, 472, 591–610. [Google Scholar] [CrossRef] - Maldacena, J.M. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys.
**1998**, 2, 231–252. [Google Scholar] [CrossRef] - Bellucci, S.; Ivanov, E.; Krivonos, S. AdS/CFT equivalence transformation. Phys. Rev. D
**2002**, 66, 086001. [Google Scholar] [CrossRef] - Bellucci, S.; Galajinsky, A.; Ivanov, E.; Krivonos, S. AdS
_{2}/CFT_{1}, canonical transformations and superconformal mechanics. Phys. Lett. B**2003**, 555, 99–106. [Google Scholar] [CrossRef] - Ferrara, S.; Kallosh, R.; Strominger, A. N=2 extremal black holes. Phys. Rev. D
**1995**, 52, R5412–R5416. [Google Scholar] [CrossRef] - Strominger, A. Macroscopic entropy of N = 2 extremal black holes. Phys. Lett. B
**1996**, 383, 39–43. [Google Scholar] [CrossRef] - Ferrara, S.; Kallosh, R. N=2 extremal black holes. Phys. Rev. D
**1996**, 54, 1514–1524. [Google Scholar] [CrossRef] - Ferrara, S.; Gibbons, G.W.; Kallosh, R. N=2 extremal black holes. Nucl. Phys. B
**1997**, 500, 75–93. [Google Scholar] [CrossRef] - Bellucci, S.; Ferrara, S.; Marrani, A. Supersymmetric Mechanics, Vol. 2 The Attractor Mechanism and Space Time Singularities; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–225. [Google Scholar]
- Bellucci, S.; Ferrara, S.; Marrani, A. Extremal black hole and flux vacua attractors. Lect. Notes Phys.
**2008**, 755, 1–77. [Google Scholar] - Bellucci, S.; Ferrara, S.; Gunaydin, M.; Marrani, A. SAM lectures on extremal black holes in d=4 extended supergravity. arXiv, 2009; 0905.3739. [Google Scholar]
- Bellucci, S.; Ferrara, S.; Marrani, A. Attractor horizon geometries of extremal black holes. In Proceedings of the XVII SIGRAV Conference, Turin, Italy, 4-7 September 2006.
- Bellucci, S.; Ferrara, S.; Marrani, A.; Shcherbakov, A. Quantum lift of non-BPS flat directions. Phys. Lett. B
**2009**, 672, 77–81. [Google Scholar] [CrossRef] - Bellucci, S.; Ferrara, S.; Shcherbakov, A.; Yeranyan, A. Black hole entropy, flat directions and higher derivatives. arXiv, 2009; 0906.4910. [Google Scholar]
- Bellucci, S.; Ferrara, S.; Marrani, A. Attractors in black. Fortsch. Phys.
**2008**, 56, 761–785. [Google Scholar] [CrossRef] - Bellucci, S.; Shcherbakov, A.; Yeranyan, A. Black hole entropy, flat directions and higher derivatives. Lect. Notes Phys.
**2008**, 755, 115–191. [Google Scholar] [CrossRef] - Cardoso, G.L.; de Wit, B.; Kappeli, J.; Mohaupt, T. Asymptotic degeneracy of dyonic N = 4 string states and black hole entropy. JHEP
**2004**, 2004JHEP12, JHEP122004075. [Google Scholar] [CrossRef] - Denef, F.; Moore, G.W. How many black holes fit on the head of a pin? Gen. Rel. Grav.
**2007**, 39, 1539–1544. [Google Scholar] [CrossRef] - Denef, F.; Moore, G.W. Split states, entropy enigmas, holes and halos. arXiv, 2007; 0702146v2. [Google Scholar]
- Andrianopoli, L.; D’Auria, R.; Ferrara, S. Flat symplectic bundles of N-extended supergravities, central charges and black-hole entropy. arXiv, 1997; 9707203v1. [Google Scholar]
- Dabholkar, A.; Denef, F.; Moore, G.W.; Pioline, B. Precision counting of small black holes. JHEP
**2005**, 2005JHEP10, JHEP102005096. [Google Scholar] [CrossRef] - Dabholkar, A.; Denef, F.; Moore, G.W.; Pioline, B. Exact and asymptotic degeneracies of small black holes. JHEP
**2005**, 2005JHEP10, JHEP102005021. [Google Scholar] [CrossRef] - Sen, A. Stretching the horizon of a higher dimensional small black hole. JHEP
**2005**, 2005JHEP10, JHEP102005073. [Google Scholar] [CrossRef] - Dabholkar, A. Exact counting of black hole microstates. Phys. Rev. Lett.
**2005**, 94, 241301. [Google Scholar] [CrossRef] - Sen, A. How does a fundamental string stretch its horizon? JHEP
**2005**, 2005JHEP10, JHEP102005059. [Google Scholar] [CrossRef] - Sen, A. Black holes and the spectrum of half-BPS states in N = 4 supersymmetric string theory. Adv. Theor. Math. Phys.
**2005**, 9, 527–558. [Google Scholar] [CrossRef] - Wald, R.M. Black hole entropy in the Noether charge. Phys. Rev. D
**1993**, 48, R3427–R3431. [Google Scholar] [CrossRef] - Jacobson, T.; Kang, G.; Myers, R.C. Black hole entropy in higher curvature gravity. arXiv, 1995; 95020091. [Google Scholar]
- Jacobson, T.; Myers, R.C. Black hole entropy and higher curvature interactions. Phys. Rev. Lett.
**1993**, 70, 3684–3687. [Google Scholar] [CrossRef] [PubMed] - Gaiotto, D.; Strominger, A.; Yin, X. Superconformal black hole quantum mechanics. JHEP
**2005**, 2005JHEP10, JHEP102005017. [Google Scholar] [CrossRef] - Lunin, O.; Mathur, S.D. AdS/CFT duality and the black hole information paradox. Nucl. Phys. B
**2002**, 623, 342–394. [Google Scholar] [CrossRef] - Skenderis, K.; Taylor, M. The fuzzball proposal for black holes. Phys. Rept.
**2008**, 467, 117–171. [Google Scholar] [CrossRef] - Taylor, M. General 2 charge geometries. JHEP
**2006**, 2006JHEP03, JHEP032006009. [Google Scholar] [CrossRef] - Kanitscheider, I.; Skenderis, K.; Taylor, M. Fuzzballs with internal excitations. JHEP
**2007**, 2007JHEP06, JHEP062007056. [Google Scholar] [CrossRef] - Skenderis, K.; Taylor, M. Fuzzball solutions for black holes and D1-braneCD5-brane microstates. Phys. Rev. Lett.
**2007**, 98, 071601. [Google Scholar] [CrossRef] [PubMed] - Kanitscheider, I.; Skenderis, K.; Taylor, M. Holographic anatomy of fuzzballs. JHEP
**2007**, 2007JHEP04, JHEP042007023. [Google Scholar] [CrossRef] - Lunin, O.; Mathur, S.D. Statistical interpretation of Bekenstein entropy for systems with a stretched horizon. Phys. Rev. Lett.
**2002**, 88, 211303. [Google Scholar] [CrossRef] [PubMed] - Mathur, S.D. Black hole size and phase space volumes. arXiv, 2007; 0706.3884v1. [Google Scholar]
- Gauntlett, J.P.; Gutowski, J.B.; Hull, C.M.; Pakis, S.; Reall, H.S. All supersymmetric solutions of minimal supergravity in five dimensions. Class. Quant. Grav.
**2003**, 20, 4587–4634. [Google Scholar] [CrossRef] - Gutowski, J.B.; Reall, H.S. General supersymmetric AdS5 black holes. JHEP
**2004**, 2004JHEP04, JHEP042004048. [Google Scholar] [CrossRef] - Bena, I.; Warner, N.P. One ring to rule them all and in the darkness bind them? Adv. Theor. Math. Phys.
**2005**, 9, 667–701. [Google Scholar] [CrossRef] - Gauntlett, J.P.; Gutowski, J.B. General Concentric Black Rings. Phys. Rev. D
**2005**, 71, 045002. [Google Scholar] [CrossRef] - Bena, I.; Wang, C.W.; Warner, N.P. Foaming three-charge black holes. Phys. Rev. D
**2007**, 75, 124026. [Google Scholar] [CrossRef] - Bena, I.; Warner, N.P. Bubbling Supertubes and Foaming Black Holes. Phys. Rev. D
**2006**, 74, 066001. [Google Scholar] [CrossRef] - Bena, I.; Wang, C.W.; Warner, N.P. Mergers and typical black hole microstates. JHEP
**2006**, 2006JHEP11, JHEP112004042. [Google Scholar] [CrossRef] - Maldacena, J.M. PhD Thesis: Black Holes in String Theory; Princeton University: Princeton, NJ, USA, 1996; pp. 1–80. [Google Scholar]
- Maldacena, J.M.; Strominger, A.; Witten, E. Black hole entropy in M-theory. JHEP
**1997**, 1997JHEP12, JHEP121997002. [Google Scholar] [CrossRef] - Elvang, H.; Emparan, R.; Mateos, D.; Reall, H.S. Supersymmetric black rings and three-charge supertubes. Phys. Rev. D
**2005**, 71, 024033. [Google Scholar] [CrossRef] - Emparan, R.; Reall, H.S. A rotating black ring in five dimensions. Phys. Rev. Lett.
**2002**, 88, 101101. [Google Scholar] [CrossRef] [PubMed] - Aharony, O.; Gubser, S.S.; Maldacena, J.M.; Ooguri, H.; Oz, Y. Large N field theories, string theory and gravity. Phys. Rept.
**2000**, 323, 183–386. [Google Scholar] [CrossRef] - Moore, G. Introduction to Modular Functions and Their Application to 2D CFT. In Proceedings of Spring School on Superstring Theory and Related Topics (ICTP), Trieste, Italy, 2008.
- Gaberdiel, M.R.; Gukov, S.; Keller, C.A.; Moore, G.W.; Ooguri, H. Extremal N=(2,2) 2D conformal field theories and constraints of modularity. arXiv, 2008; 0805.4216v1. [Google Scholar]
- Sen, A. Entropy function and AdS(2)/CFT(1) correspondence. JHEP
**2008**, 2008JHEP11, JHEP112008075. [Google Scholar] - Gupta, K.R.; Sen, A. Ads(3)/CFT(2) to Ads(2)/CFT(1). JHEP
**2009**, 2009JHEP04, JHEP042009034. [Google Scholar] - Gaiotto, D.; Yin, X. Genus two partition functions of extremal conformal field theories. JHEP
**2007**, 2007JHEP08, JHEP082007029. [Google Scholar] [CrossRef] - Weinhold, F. Metric geometry of equilibrium thermodynamics. J. Chem. Phys.
**1975**, 63, 2479–2484. [Google Scholar] [CrossRef] - Weinhold, F. Metric geometry of equilibrium thermodynamics. II, Scaling, homogeneity, and generalized GibbsDuhem relations. ibid J. Chem. Phys
**1975**, 63, 2484–2488. [Google Scholar] [CrossRef] - Bellucci, S.; Chandra, V.; Tiwari, B.N. On the thermodynamic geometry of hot QCD. arXiv, 2008; 0812.3792v1. [Google Scholar]
- Bellucci, S.; Tiwari, B.N. State-space Correlations and Stabilities. arXiv, 2009; 0910.5309v1. [Google Scholar]
- Bellucci, S.; Tiwari, B.N. An exact fluctuating 1/2-BPS configuration. JHEP
**2010**, 2010JHEP05, JHEP052010023. [Google Scholar] [CrossRef] - Ruppeiner, G. Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys.
**1995**, 67, 605–659. [Google Scholar] [CrossRef] - Ruppeiner, G. Thermodynamics: A Riemannian geometric model. Phys. Rev. A
**1979**, 20, 1608–1613. [Google Scholar] [CrossRef] - Ruppeiner, G. Thermodynamic critical fluctuation theory? Phys. Rev. Lett.
**1983**, 50, 287–290. [Google Scholar] [CrossRef] - Ruppeiner, G. New thermodynamic fluctuation theory using path integrals. Phys. Rev. A
**1983**, 27, 1116–1133. [Google Scholar] [CrossRef] - Ruppeiner, G. Thermodynamic curvature of the multicomponent ideal gas. Phys. Rev. A
**1990**, 41, 2200–2202. [Google Scholar] [CrossRef] [PubMed] - Shen, J.; Cai, R.G.; Wang, B.; Su, R.K. Thermodynamic geometry and critical behavior of black holes. Int. J. Mod. Phys. A
**2007**, 22, 11–27. [Google Scholar] [CrossRef] - Aman, J.E.; Bengtsson, I.; dokrajt, N. Flat information geometries in black hole thermodynamics. Gen. Rel. Grav.
**2006**, 38, 1305–1315. [Google Scholar] [CrossRef] - Aman, J.E.; Bengtsson, I.; dokrajt, N. Geometry of black hole thermodynamics. Gen. Rel. Grav.
**2003**, 35, 1733–1743. [Google Scholar] [CrossRef] - Aman, J.E.; Pidokrajt, N. Geometry of higher-dimensional black hole thermodynamics. Phys. Rev. D
**2006**, 73, 024017. [Google Scholar] [CrossRef] - Sarkar, T.; Sengupta, G.; Tiwari, B.N. On the thermodynamic geometry of BTZ black holes. JHEP
**2006**, 2006JHEP11, JHEP112006015. [Google Scholar] [CrossRef] - Balasubramanian, V.; De Boer, J.; Jejjala, V.; Simon, J. The Library of babel: On the origin of gravitational thermodynamics. JHEP
**2005**, 2005JHEP12, JHEP122005006. [Google Scholar] [CrossRef] - Bekenstein, D. Information in the holographic universe. Sci. Am.
**2003**, 289, 58–65. [Google Scholar] [CrossRef] [PubMed] - Susskind, L. Some speculations about black hole entropy in string theory. arXiv, 1993; 9309145v2. [Google Scholar]
- Russo, J.G.; Susskind, L. Asymptotic level density in heterotic string theory and rotating black holes. Nucl. Phys. B
**1995**, 437, 611–626. [Google Scholar] [CrossRef] - Sen, A. Black hole solutions in heterotic string theory on a torus. Nucl. Phys. B
**1995**, 440, 421–440. [Google Scholar] [CrossRef] - Sen, A. Extremal black holes and elementary string states. Mod. Phys. Lett. A
**1995**, 10, 2081–2094. [Google Scholar] [CrossRef] - Dabholkar, A. Exact counting of black hole microstates. Phys. Rev. Lett.
**2005**, 94, 241301. [Google Scholar] [CrossRef] - Vafa, C. Instantons on D-branes. Nucl. Phys. B
**1996**, 463, 435–442. [Google Scholar] [CrossRef] - de Wit, B.; Saueressig, F. Off-shell N=2 tensor supermultiplets. JHEP
**2006**, 2006JHEP09, JHEP092006062. [Google Scholar] - Cardoso, G.L.; de Wit, B.; Mahapatra, S. Black hole entropy functions and attractor equations. JHEP
**2007**, 2007JHEP03, JHEP032007085. [Google Scholar] [CrossRef] - Tiwari, B.N. Sur les corrections de la géométrie thermodynamique des trous noirs. arXiv, 2008; 0801.4087v1 [hep-th]. [Google Scholar]
- Tiwari, B.N. On generalized uncertainty principle. arXiv, 2008; 0801.3402v1. [Google Scholar]
- Sarkar, T.; Sengupta, G.; Tiwari, B.N. Thermodynamic geometry and extremal black holes in string theory. JHEP
**2008**, 2008JHEP10, JHEP102008076. [Google Scholar] [CrossRef] - Horowitz, G.; Maldacena, J.M.; Strominger, A. Nonextremal black hole microstates and U-duality. Phys. Lett. B
**1996**, 383, 151–159. [Google Scholar] [CrossRef] - Horowitz, G.T.; Lowe, D.A.; Maldacena, J.M. Statistical entropy of nonextremal four-dimensional black holes and U-duality. Phys. Rev. Lett.
**1996**, 77, 430–433. [Google Scholar] [CrossRef] [PubMed] - Johnson, C.V.; Khuri, R.R.; Myers, R.C. Entropy of 4D extremal black holes. Phys. Lett. B
**1996**, 378, 78–86. [Google Scholar] [CrossRef] - Denef, F. Supergravity flows and D-brane stability. JHEP
**2000**, 2000JHEP08, JHEP082000050. [Google Scholar] [CrossRef] - Cardoso, G.L.; de Wit, B.; Käppeli, J.; Mohaupt, T. Stationary BPS solutions in N=2 supergravity with R
^{2}-Interactions. JHEP**2000**, 2000JHEP12, JHEP122000019. [Google Scholar] [CrossRef] - Bates, B.; Denef, F. Exact solutions for supersymmetric stationary black hole composites. RUNHETC
**2003**, 10, 1–13. [Google Scholar] [CrossRef] - Horowitz, G.T.; Hubeny, V.E. Note on small black holes in AdS
_{p}× S^{q}. JHEP**2000**, 2000JHEP06, JHEP062000031. [Google Scholar] [CrossRef] - Zhou, J.G. Super 0-brane and GS superstring actions on AdS
_{2}× S^{2}. Nucl. Phys. B**1999**, 559, 92–102. [Google Scholar] [CrossRef] - Mohaupt, T. Black hole entropy, special geometry and strings. Fortsch. Phys.
**2001**, 49, 3–161. [Google Scholar] [CrossRef] - Mohaupt, T. Black Holes in Supergravity and String Theory. Class. Quant. Grav.
**2000**, 17, 3429–3482. [Google Scholar] [CrossRef] - Dabholkar, A.; Harvey, J.A. Nonrenormalization of the superstring tension. Phys. Rev. Lett.
**1989**, 63, 478–481. [Google Scholar] [CrossRef] [PubMed] - Dabholkar, A.; Gauntlett, J.P.; Harvey, J.A.; Waldram, D. Strings as solitons and black holes as strings. Nucl. Phys. B
**1996**, 474, 85–121. [Google Scholar] [CrossRef] - Dabholkar, A.; Iizuka, N.; Iqubal, A.; Shigemori, M. Precision microstate counting of small black rings. Phys. Rev. Lett.
**2006**, 96, 071601. [Google Scholar] [CrossRef] [PubMed] - Dabholkar, A.; Kallosh, R.; Maloney, A. Stringy cloak for a classical singularity. JHEP
**2004**, 2004JHEP12, JHEP122004059. [Google Scholar] [CrossRef] - Cardosow, G.L. Black Holes, Entropy and String Theory. In Proceedings of RTN Meeting, Corfu, Greece, September 2005.
- Ooguri, H.; Strominger, A.; Vafa, C. Black hole attractors and the topological string. Phys. Rev. D
**2004**, 70, 106007. [Google Scholar] [CrossRef] - Mathur, S.D. The fuzzball proposal for black holes: an elementary review. Fortsch. Phys.
**2005**, 53, 793–827. [Google Scholar] [CrossRef] - Lunin, O.; Mathur, S.D. AdS/CFT duality and the black hole information paradox. Nucl. Phys. B
**2002**, 623, 342–394. [Google Scholar] [CrossRef] - Lunin, O.; Mathur, S.D. Statistical interpretation of Bekenstein entropy for systems with a stretched horizon. Phys. Rev. Lett.
**2002**, 88, 211303. [Google Scholar] [CrossRef] [PubMed] - Giusto, S.; Mathur, S.D. Fuzzball geometries and higher derivative corrections for extremal holes. Nucl. Phys. B
**2006**, 738, 48–75. [Google Scholar] [CrossRef] - Lin, H.; Lunin, O.; Maldacena, J. Bubbling AdS space and 1/2 BPS geometries. JHEP
**2004**, 2004JHEP10, JHEP102004025. [Google Scholar] [CrossRef] - Bena, I.; Warner, N.P. Bubbling supertubes and foaming black holes. Phys. Rev. D
**2006**, 74, 066001. [Google Scholar] [CrossRef] - Bena, I.; Kraus, P. R
^{2}-Corrections to black ring entropy. arXiv, 2005; 0506015v2. [Google Scholar] - Bena, I.; Kraus, P. Microscopic Description of Black Rings in AdS/CFT. JHEP
**2004**, 2004JHEP12, JHEP122004070. [Google Scholar] [CrossRef]

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license http://creativecommons.org/licenses/by/3.0/.

## Share and Cite

**MDPI and ACS Style**

Bellucci, S.; Tiwari, B.N.
On the Microscopic Perspective of Black Branes Thermodynamic Geometry. *Entropy* **2010**, *12*, 2097-2143.
https://doi.org/10.3390/e12102097

**AMA Style**

Bellucci S, Tiwari BN.
On the Microscopic Perspective of Black Branes Thermodynamic Geometry. *Entropy*. 2010; 12(10):2097-2143.
https://doi.org/10.3390/e12102097

**Chicago/Turabian Style**

Bellucci, Stefano, and Bhupendra Nath Tiwari.
2010. "On the Microscopic Perspective of Black Branes Thermodynamic Geometry" *Entropy* 12, no. 10: 2097-2143.
https://doi.org/10.3390/e12102097