Fear of COVID-19 Effect on Stock Markets: A Proposal for an Algorithmic Trading System Based on Fear
Abstract
:1. Introduction
2. Theoretical Framework
3. Data
4. Methodology
5. Results
- If the result of the equation was positive, the system opens a long position in the future of the index at the opening;
- If the result of the equation was negative, the system opens a short position in the future of the index;
- At the end of the market session, the positions that were open were closed.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, C.L.; McAleer, M.; Wong, W.K. Risk and financial management of COVID-19 in business, economics and finance. J. Risk Financ. Manag. 2020, 13, 102. [Google Scholar] [CrossRef]
- Laing, T. The economic impact of the Coronavirus 2019 (COVID-2019): Implications for the mining industry. Extr. Ind. Soc. 2020, 7, 580–582. [Google Scholar] [CrossRef]
- Bai, L.; Wei, Y.; Wei, G.; Li, X.; Zhang, S. Infectious disease pandemic and permanent volatility of international stock markets: A long-term perspective. Financ. Res. Lett. 2021, 40, 101709. [Google Scholar] [CrossRef]
- Reuters. IMF Sees Cost of COVID Pandemic Rising beyond $12.5 Trillion Estimate. Available online: https://www.reuters.com/business/imf-sees-cost-covid-pandemic-rising-beyond-125-trillion-estimate-2022-01-20/ (accessed on 20 January 2022).
- Yao, X.; Li, J.; Shang, Z.; Le, W.; Li, J. Impacts of COVID-19 on financial markets: From the perspective of financial stress. Appl. Econ. Lett. 2021, 30, 669–673. [Google Scholar] [CrossRef]
- Phan, D.H.B.; Narayan, P.K. Country responses and the reaction of the stock market to COVID-19—A preliminary exposition. Emerg. Mark. Financ. Trade 2020, 56, 2138–2150. [Google Scholar] [CrossRef]
- Aslam, F.; Mohti, W.; Ferreira, P. Evidence of intraday multifractality in european stock markets during the recent coronavirus (COVID-19) outbreak. Int. J. Financ. Stud. 2020, 8, 31. [Google Scholar] [CrossRef]
- Liu, H.; Manzoor, A.; Wang, C.; Zhang, L.; Manzoor, Z. The COVID-19 outbreak and affected countries stock markets response. Int. J. Environ. Res. Public Health 2020, 17, 2800. [Google Scholar] [CrossRef] [Green Version]
- Lyócsa, Š.; Baumöhl, E.; Výrost, T.; Molnár, P. Fear of the coronavirus and the stock markets. Financ. Res. Lett. 2020, 36, 101735. [Google Scholar] [CrossRef]
- Subramaniam, S.; Chakraborty, M. COVID-19 fear index: Does it matter for stock market returns? Rev. Behav. Financ. 2021, 13, 40–50. [Google Scholar] [CrossRef]
- Costola, M.; Iacopini, M.; Santagiustina, C. Public Concern and the Financial Markets during the COVID-19 outbreak. SSRN 2020, 3591193. [Google Scholar] [CrossRef]
- Nowosad, A.; Turanli, Ü.; Lorenc, K. The coronavirus SARS-CoV-2 and its impact on the world. In The Socioeconomic Impact of COVID-19 on Eastern European Countries; Wisła, R., Dykas, P., Eds.; Routledge: New York, NY, USA, 2022; pp. 1–19. [Google Scholar]
- Liu, K. The effects of COVID-19 on Chinese stock markets: An EGARCH approach. Econ. Political Stud. 2020, 9, 148–165. [Google Scholar] [CrossRef]
- Smales, L.A. Investor attention and the response of US stock market sectors to the COVID-19 crisis. Rev. Behav. Financ. 2020, 13, 20–39. [Google Scholar] [CrossRef]
- Papadamou, S.; Fassas, A.; Kenourgios, D.; Dimitriou, D. Direct and Indirect Effects of COVID-19 Pandemic on Implied Stock Market Volatility: Evidence from Panel Data Analysis; MPRA Paper 100020; University Library of Munich: Munich, Germany, 2020; Available online: https://mpra.ub.uni-muenchen.de/100020/1/MPRA_paper_100020.pdf (accessed on 10 October 2021).
- Chen, Y.; Zhang, Y.; Xu, Z.; Wang, X.; Lu, J.; Hu, W. Avian Influenza A (H7N9) and related Internet search query data in China. Sci. Rep. 2019, 9, 10434. [Google Scholar] [CrossRef] [Green Version]
- Salisu, A.A.; Vo, X.V. Predicting stock returns in the presence of COVID-19 pandemic: The role of health news. Int. Rev. Financ. Anal. 2020, 71, 101546. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Shi, Z.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Stroe, A.Z.; Stuparu, A.F.; Axelerad, S.D.; Axelerad, D.D.; Moraru, A. Neuropsychological symptoms related to the COVID-19 pandemic experienced by the general population and particularly by the healthcare personnel. J. Mind Med. Sci. 2021, 8, 197–208. [Google Scholar] [CrossRef]
- Murshed, S.M. Capitalism and COVID-19: Crisis at the Crossroads. Peace Econ. Peace Sci. Public Policy 2020, 26, 20200026. [Google Scholar] [CrossRef]
- Mehlum, H.; Torvik, R. The macroeconomics of COVID-19: A two-sector interpretation. Rev. Keynes. Econ. 2021, 9, 165–174. [Google Scholar] [CrossRef]
- Yeganeh, H. Emerging social and business trends associated with the Covid-19 pandemic. Crit. Perspect. Int. Bus. 2021, 17, 188–209. [Google Scholar] [CrossRef]
- Norouzi, M.; Hashemi, M.; Pouri, Z. The Question of Global Society in Post-Corona Time: Towards a Paradigm Shift. Int. J. Community Well-Being 2021, 4, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Bavoso, V. Hail the new private debt machine: Private equity, leveraged loans, and collateralised loan obligations. Law Financ. Mark. Rev. 2020, 14, 141–150. [Google Scholar] [CrossRef]
- Al-Awadhi, A.M.; Alsaifi, K.; Al-Awadhi, A.; Alhammadi, S. Death and contagious infectious diseases: Impact of the COVID-19 virus on stock market returns. J. Behav. Exp. Financ. 2020, 27, 100326. [Google Scholar] [CrossRef]
- Guidolin, M.; Rinaldi, F. Ambiguity in Asset Pricing and Portfolio Choice: A Review of the Literature. Theory Decis. 2013, 74, 183–217. [Google Scholar] [CrossRef] [Green Version]
- Nicomedes, C.J.C.; Avila, R.M.A. An analysis on the panic during COVID-19 pandemic through an online form. J. Affect. Disord. 2020, 276, 14–22. [Google Scholar] [CrossRef]
- Loewenstein, G.F.; Weber, E.U.; Hsee, C.K.; Welch, N. Risk as feelings. Psychol. Bull. 2001, 127, 267. [Google Scholar] [CrossRef] [PubMed]
- Daniel, K.; Hirshleifer, D.; Subrahmanyam, A. Investor psychology and security market under-and overreactions. J. Financ. 1998, 53, 1839–1885. [Google Scholar] [CrossRef] [Green Version]
- Bansal, T. Behavioral finance and COVID-19: Cognitive errors that determine the financial future. SSRN Electron. J. 2020, 3595749. [Google Scholar] [CrossRef]
- Mann, F.D.; Krueger, R.F.; Vohs, K.D. Personal economic anxiety in response to COVID-19. Personal. Individ. Differ. 2020, 167, 110233. [Google Scholar] [CrossRef]
- Zaremba, A.; Kizys, R.; Aharon, D.Y.; Demir, E. Infected markets: Novel coronavirus, government interventions, and stock return volatility around the globe. Financ. Res. Lett. 2020, 35, 101597. [Google Scholar] [CrossRef]
- Erdem, O. Freedom and stock market performance during COVID-19 outbreak. Financ. Res. Lett. 2020, 36, 101671. [Google Scholar] [CrossRef]
- Salisu, A.A.; Sikiru, A.A.; Vo, X.V. Pandemics and the emerging stock markets. Borsa Istanb. Rev. 2020, 20, 540–548. [Google Scholar] [CrossRef]
- Yousfi, M.; Zaied, Y.B.; Cheikh, N.B.; Lahouel, B.B.; Bouzgarrou, H. Effects of the COVID-19 pandemic on the US stock market and uncertainty: A comparative assessment between the first and second waves. Technol. Forecast. Soc. Chang. 2021, 167, 120710. [Google Scholar] [CrossRef]
- Rizvi, S.K.A.; Yarovaya, L.; Mirza, N.; Naqvi, B. The impact of COVID-19 on the Valuations of non-financial European firms. Heliyon 2022, 8, e09486. [Google Scholar] [CrossRef] [PubMed]
- Young, M.E.; King, N.; Harper, S.; Humphreys, K.R. The influence of popular media on perceptions of personal and population risk in possible disease outbreaks. Health Risk Soc. 2013, 15, 103–114. [Google Scholar] [CrossRef]
- Béjaoui, A.; Mgadmi, N.; Moussa, W.; Sadraoui, T. A short-and long-term analysis of the nexus between Bitcoin, social media and Covid-19 outbreak. Heliyon 2021, 7, e07539. [Google Scholar] [CrossRef]
- Cohen, L.J.; Marcus, A.J.; Rezaee, Z.; Tehranian, H. Waiting for guidance: Disclosure noise, verification delay, and the value-relevance of good-news versus bad-news management earnings forecasts. Glob. Financ. J. 2018, 37, 79–99. [Google Scholar] [CrossRef]
- Akıncı, Ö.; Chahrour, R. Good news is bad news: Leverage cycles and sudden stops. J. Int. Econ. 2018, 114, 362–375. [Google Scholar] [CrossRef] [Green Version]
- Narayan, P.K. Can stale oil price news predict stock returns? Energy Econ. 2019, 83, 430–444. [Google Scholar] [CrossRef]
- Choi, H.; Varian, H. Predicting the present with Google Trends. Econ. Rec. 2012, 88, 2–9. [Google Scholar] [CrossRef]
- Moat, H.S.; Preis, T.; Olivola, C.Y.; Liu, C.; Chater, N. Using big data to predict collective behavior in the real world. Behav. Brain Sci. 2014, 37, 92–93. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, C.P.; Schinckus, C.; Nguyen, T.V.H. Google search and stock returns in emerging markets. Borsa Istanb. Rev. 2019, 19, 288–296. [Google Scholar] [CrossRef]
- Bordino, I.; Battiston, S.; Caldarelli, G.; Cristelli, M.; Ukkonen, A.; Weber, I. Web search queries can predict stock market volumes. PLoS ONE 2012, 7, e40014. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Fuehres, H.; Gloor, P.A. Predicting stock market indicators through twitter “I hope it is not as bad as I fear”. Procedia-Soc. Behav. Sci. 2011, 26, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Kristoufek, L. BitCoin meets Google Trends and Wikipedia: Quantifying the relationship between phenomena of the Internet era. Sci. Rep. 2013, 3, 3415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cergol, B.; Omladič, M. What can Wikipedia and Google tell us about stock prices under different market regimes? Ars Math. Contemp. 2015, 9, 301–320. [Google Scholar] [CrossRef]
- Hervé, F.; Zouaoui, M.; Belvaux, B. Noise traders and smart money: Evidence from online searches. Econ. Model. 2019, 83, 141–149. [Google Scholar] [CrossRef]
- Oh, C.; Sheng, O. Investigating predictive power of stock micro blog sentiment in forecasting future stock price directional movement. In Proceedings of the Annual International Conference on Information Systems (ICIS), Shanghai, China, 4–7 December 2011; Available online: https://aisel.aisnet.org/icis2011/proceedings/knowledge/17 (accessed on 30 September 2020).
- Bollen, J.; Mao, H.; Zeng, X. Twitter mood predicts the stock market. J. Comput. Sci. 2011, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Preis, T.; Moat, H.S.; Stanley, H.E. Quantifying trading behavior in financial markets using Google Trends. Sci. Rep. 2013, 3, 1684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bijl, L.; Kringhaug, G.; Molnár, P.; Sandvik, E. Google searches and stock returns. Int. Rev. Financ. Anal. 2016, 45, 150–156. [Google Scholar] [CrossRef]
- Curme, C.; Preis, T.; Stanley, H.E.; Moat, H.S. Quantifying the semantics of search behavior before stock market moves. Proc. Natl. Acad. Sci. USA 2014, 111, 11600–11605. [Google Scholar] [CrossRef] [Green Version]
- Heiberger, R.H. Collective attention and stock prices: Evidence from Google trends data on standard and poor’s 100. PLoS ONE 2015, 10, e0135311. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Zhao, Y.; Tang, L.; Yang, Z. Online big data-driven oil consumption forecasting with Google trends. Int. J. Forecast. 2019, 35, 213–223. [Google Scholar] [CrossRef]
- Moat, H.S.; Curme, C.; Avakian, A.; Kenett, D.Y.; Stanley, H.E.; Preis, T. Quantifying Wikipedia usage patterns before stock market moves. Sci. Rep. 2013, 3, 1801. [Google Scholar] [CrossRef] [Green Version]
- Weng, B.; Lu, L.; Wang, X.; Megahed, F.M.; Martinez, W. Predicting short-term stock prices using ensemble methods and online data sources. Expert Syst. Appl. 2018, 112, 258–273. [Google Scholar] [CrossRef]
- Gómez, R.; Prado, C.; de la Orden, M.C. Algorithmic Trading Systems Based on Google Trends. In Proceedings of the 2nd International Conference on Advanced Research Methods and Analytics (CARMA), Valencia, Spain, 12–13 July 2018; Domenech, J., Vicente, M.R., Blázquez, D., Eds.; Editorial Universitat Politècnica de València: Valencia, Spain, 2018. [Google Scholar] [CrossRef] [Green Version]
- Dickerson, A. Algorithmic Trading of Bitcoin Using Wikipedia and Google Search Volume. SSRN 2018, 3177738. [Google Scholar] [CrossRef]
- ElBahrawy, A.; Alessandretti, L.; Baronchelli, A. Wikipedia and cryptocurrencies: Interplay between collective attention and market performance. Front. Blockchain 2019, 2, 12. [Google Scholar] [CrossRef]
- Chen, C.; Liu, L.; Zhao, N. Fear sentiment, uncertainty, and bitcoin price dynamics: The case of COVID-19. Emerg. Mark. Financ. Trade 2020, 56, 2298–2309. [Google Scholar] [CrossRef]
- Paule-Vianez, J.; Orden-Cruz, C.; Escamilla-Solano, S. Influence of COVID-induced fear on sovereign bond yield. Econ. Res.-Ekon. Istraz. 2022, 35, 2173–2190. [Google Scholar] [CrossRef]
- Szmuda, T.; Ali, S.; Hetzger, T.V.; Rosvall, P.; Słoniewski, P. Are online searches for the novel coronavirus (COVID-19) related to media or epidemiology? A cross-sectional study. Int. J. Infect. Dis. 2020, 97, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Mestyán, M.; Yasseri, T.; Kertész, J. Early prediction of movie box office success based on Wikipedia activity big data. PLoS ONE 2013, 8, e71226. [Google Scholar] [CrossRef] [PubMed]
- Cepoi, C.O. Asymmetric dependence between stock market returns and news during COVID19 financial turmoil. Financ. Res. Lett. 2020, 36, 101658. [Google Scholar] [CrossRef]
- Gherghina, Ș.C.; Armeanu, D.Ș.; Joldeș, C.C. Stock market reactions to COVID-19 pandemic outbreak: Quantitative evidence from ARDL bounds tests and Granger causality analysis. Int. J. Environ. Res. Public Health 2020, 17, 6729. [Google Scholar] [CrossRef] [PubMed]
- Salisu, A.A.; Akanni, L.; Raheem, I. The COVID-19 global fear index and the predictability of commodity price returns. J. Behav. Exp. Financ. 2020, 27, 100383. [Google Scholar] [CrossRef] [PubMed]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar] [CrossRef]
- Enders, W. Cointegration and Error-Correction Models: Applied Econometrics Time Series, 2nd ed.; Wiley: New York, NY, USA, 2004. [Google Scholar]
- Montero, R. Variables no estacionarias and cointegración. In Documentos de Trabajo en Economía Aplicada; Universidad de Granada: Granada, Spain, 2013. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data, 2nd ed.; MIT Press: Cambridge, UK, 2011. [Google Scholar]
- Hausman, J.A. Specification tests in econometrics. Econom. J. Econom. Soc. 1978, 46, 1251–1271. [Google Scholar] [CrossRef] [Green Version]
Country | Stock Index |
---|---|
Belgium | BEL 20 |
France | CAC 40 |
Germany | DAX 30 |
Greece | Athens General Composite |
Italy | FTSE MIB |
Netherlands | AEX |
Poland | WIG 20 |
Portugal | PSI 20 |
Romania | BET |
Spain | IBEX 35 |
Sweden | OMX S30 |
Turkey | BIST 100 |
United Kingdom | FTSE 100 |
Variable | Mean | Median | Minimum | Maximum | S.D. | C.V |
---|---|---|---|---|---|---|
−0.00087 | 0.00038 | −0.16924 | 0.10976 | 0.02148 | 24.633 | |
−0.00048 | 0.00017 | −0.08052 | 0.04523 | 0.00948 | 19.701 | |
15.770 | 10.000 | 0.00000 | 100.00 | 17.491 | 1.1091 | |
1.235 × 105 | 28,731 | 807.00 | 9.826 × 105 | 1.849 × 105 | 1.4975 | |
Gold | 0.00130 | 0.00150 | −0.04680 | 0.05770 | 0.01427 | 10.952 |
VIX | 0.00764 | −0.01100 | −0.23370 | 0.47950 | 0.10498 | 13.734 |
TV | 0.06996 | −0.00483 | −0.91481 | 9.8198 | 0.50676 | 7.2440 |
Variable | Gold | VIX | TV | ||||
---|---|---|---|---|---|---|---|
1.0000 | 0.9994 | −0.1608 | −0.1493 | 0.1804 | −0.5147 | −0.0734 | |
1.0000 | −0.1750 | −0.1576 | 0.1810 | −0.5204 | −0.0760 | ||
1.0000 | 0.4548 | −0.1165 | 0.0934 | −0.0083 | |||
1.0000 | −0.0579 | 0.2054 | 0.0070 | ||||
Gold | 1.0000 | −0.0479 | 0.0059 | ||||
VIX | 1.0000 | 0.1381 | |||||
TV | 1.0000 |
Variable | ||||||||
---|---|---|---|---|---|---|---|---|
Coef. | S.D. | z | p Value | Coef. | S.D. | z | p Value | |
Const | −0.00039 | 0.00037 | −1.057 | 0.291 | −0.00036 | 0.00038 | −0.945 | 0.345 |
−0.00070 | 7.42 × 10−5 | −9.477 | 0.000 *** | |||||
−0.00017 | 0.00044 | −0.372 | 0.710 | |||||
Goldt | 0.20292 | 0.02569 | 7.900 | 0.0002 *** | 0.23496 | 0.02593 | 9.060 | 0.000 *** |
VIXt | −0.09860 | 0.00354 | −27.89 | 0.000 *** | −0.10357 | 0.00356 | −29.06 | 0.000 *** |
TVt | 0.00056 | 0.00073 | 0.768 | 0.442 | −0.00019 | 0.00074 | −0.252 | 0.801 |
Durbin Watson test | 2.21464 | 2.14170 | ||||||
Hausman test | 0.55286 (0.968) | 0.44024 (0.979) | ||||||
Obs. | 2405 | 2405 |
Variable | ||||||||
---|---|---|---|---|---|---|---|---|
Coef. | S.D. | z | p Value | Coef. | S.D. | z | p Value | |
Const | −0.00026 | 0.00016 | −1.622 | 0.105 | −0.00025 | 0.00017 | −1.490 | 0.136 |
−0.00032 | 3.26 × 10−5 | −9.717 | 0.000 *** | |||||
−7.95 × 10−5 | 0.00020 | −0.408 | 0.683 | |||||
Goldt | 0.08951 | 0.01128 | 7.937 | 0.000 *** | 0.10393 | 0.01140 | 9.120 | 0.000 *** |
VIXt | −0.04396 | 0.00155 | −28.33 | 0.000 *** | −0.04620 | 0.00157 | −29.50 | 0.000 *** |
TVt | 0.00022 | 0.00032 | 0.68 | 0.495 | −0.00012 | 0.00032 | −0.362 | 0.717 |
Durbin Watson Test | 2.21466 | 2.13938 | ||||||
Hausman test | 0.57083 (0.966) | 0.49329 (0.974) | ||||||
Obs. | 2405 | 2405 |
Variable | ||||||||
---|---|---|---|---|---|---|---|---|
Coef. | z (p Value) | Coef. | z (p Value) | Coef. | z (p Value) | Coef. | z (p Value) | |
Const | −0.0009 | −2.01 ** (0.044) | −0.0008 | −1.84 * (0.066) | −0.0005 | −2.52 ** (0.012) | −0.0005 | −2.34 ** (0.019) |
−0.0008 | −8.69 *** (0.000) | −0.0003 | −8.75 *** (0.000) | |||||
−0.0004 | −0.75 (0.452) | −0.0002 | −0.71 (0.477) | |||||
Goldt−1 | 0.0901 | 2.96 *** (0.003) | 0.1247 | 4.07 *** (0.000) | 0.0390 | 2.90*** (0.004) | 0.0544 | 4.02 *** (0.000) |
VIXt−1 | −0.0154 | −3.68 *** (0.000) | −0.0207 | −4.93 *** (0.000) | −0.0069 | −3.72 (0.000) | −0.0092 | −4.97 *** (0.000) |
TVt−1 | 0.0005 | 0.58 (0.564) | −0.0003 | −0.3 (0.719) | 0.0003 | 0.67 (0.502) | −0.0001 | −0.27 (0.785) |
Durbin Watson test | 2.31524 | 2.22535 | 2.31838 | 2.22512 | ||||
Hausman test | 0.4119 (0.982) | 0.3318 (0.988) | 0.4487 (0.978) | 0.3868 (0.98355) | ||||
Obs. | 2392 | 2392 | 2392 | 2392 |
Indicator | AEX | CAC 40 | DAX 30 | IBEX 35 | FTSE MIB |
---|---|---|---|---|---|
Net P&L | 2957.63 € | 1322.56 € | 49,566.16 € | 6140.00 € | 4327.10 € |
Gross P&L | 3740.00 € | 1830.00 € | 52,837.50 € | 7040.00 € | 5220.00 € |
Profit factor | 1.13 | 1.13 | 2.04 | 1.47 | 1.19 |
Sharpe ratio | 0.55 | 0.54 | 2.97 | 1.49 | 0.83 |
Annual ROI | 8.03% | 8.97% | 58.92% | 33.32% | 11.74% |
Analyzed sessions | 181 | 190 | 189 | 190 | 181 |
Sessions in market | 47 | 46 | 58 | 45 | 53 |
Success rate | 57.45% | 63.04% | 65.52% | 62.22% | 56.60% |
30 days volatility | 135.45% | 60.22% | 30.52% | 74.90% | 98.95% |
1 year volatility | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
5 years volatility | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
Suggested capital | 50,000.00 € | 20,000.00 € | 115,000.00 € | 25,000.00 € | 50,000.00 € |
Required capital | 3600.00 € | 2000.00 € | 13,800.00 € | 2700.00 € | 2800.00 € |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paule-Vianez, J.; Orden-Cruz, C.; Gómez-Martínez, R.; Escamilla-Solano, S. Fear of COVID-19 Effect on Stock Markets: A Proposal for an Algorithmic Trading System Based on Fear. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 1142-1156. https://doi.org/10.3390/jtaer18020058
Paule-Vianez J, Orden-Cruz C, Gómez-Martínez R, Escamilla-Solano S. Fear of COVID-19 Effect on Stock Markets: A Proposal for an Algorithmic Trading System Based on Fear. Journal of Theoretical and Applied Electronic Commerce Research. 2023; 18(2):1142-1156. https://doi.org/10.3390/jtaer18020058
Chicago/Turabian StylePaule-Vianez, Jessica, Carmen Orden-Cruz, Raúl Gómez-Martínez, and Sandra Escamilla-Solano. 2023. "Fear of COVID-19 Effect on Stock Markets: A Proposal for an Algorithmic Trading System Based on Fear" Journal of Theoretical and Applied Electronic Commerce Research 18, no. 2: 1142-1156. https://doi.org/10.3390/jtaer18020058
APA StylePaule-Vianez, J., Orden-Cruz, C., Gómez-Martínez, R., & Escamilla-Solano, S. (2023). Fear of COVID-19 Effect on Stock Markets: A Proposal for an Algorithmic Trading System Based on Fear. Journal of Theoretical and Applied Electronic Commerce Research, 18(2), 1142-1156. https://doi.org/10.3390/jtaer18020058