Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = zircon inclusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 27668 KB  
Article
Magmatic to Subsolidus Evolution of the Variscan Kastoria Pluton (NW Greece): Constraints from Mineral Chemistry and Textures
by Ioanna Gerontidou, Antonios Koroneos, Lambrini Papadopoulou, Alexandros Chatzipetros, Matteo Masotta and Stefanos Karampelas
Minerals 2026, 16(1), 83; https://doi.org/10.3390/min16010083 - 15 Jan 2026
Viewed by 167
Abstract
This study focuses on the mineralogy and mineral chemistry of the accessory minerals occurring in the Kastoria pluton situated in NW Greece, which intrudes the Pelagonian nappe having crystallized during the Late Paleozoic (~300 Ma). The pluton consists of porphyritic granite (GR) that [...] Read more.
This study focuses on the mineralogy and mineral chemistry of the accessory minerals occurring in the Kastoria pluton situated in NW Greece, which intrudes the Pelagonian nappe having crystallized during the Late Paleozoic (~300 Ma). The pluton consists of porphyritic granite (GR) that hosts mafic microgranular enclaves (MME) of monzonitic composition. Both lithologies contain quartz, microcline, plagioclase, biotite, secondary white mica, hornblende, and actinolite along with accessory minerals including titanite, epidote, allanite, apatite, zircon, and magnetite. Compared to the granite, the enclaves are richer in biotite, amphibole, and plagioclase but poorer in quartz and microcline. Mineral chemistry indicates a calc–alkaline affinity, consistent with the observed magmatic trends. Crystallization pressure, estimated at 3 kbar from Al in a hornblende barometer, suggests emplacement at mid-crustal levels. During the Alpine deformation, the pluton underwent low-grade greenschist to amphibolite-facies metamorphism, which partially overprinted the primary mineral assemblages. Magmatic titanite and allanite crystals are well preserved, showing only recrystallization features. Metamorphism produced tiny titanite needles and epidote replacing primary minerals (plagioclase, amphibole, and biotite). Later, hydrothermal alteration produced another generation of secondary epidote. Only a couple of epidote crystals preserve potential magmatic relict characteristics (euhedral habit, zircon inclusions, positive Eu anomaly, and sharp contact with primary minerals). These results provide insights into both the primary magmatic features and the subsequent metamorphic modification of the I-type Kastoria pluton within the Pelagonian domain. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

19 pages, 5898 KB  
Article
Geochronology and Geochemistry of the Granite Porphyry in the Zhilingtou Au-Mo-Pb-Zn Polymetallic Deposit, SE China: Implication for Mineralization Mechanism
by Bo Xing, Kelei Chu, Wei Zheng, Xiaorong Chen, Gang Qi, Shengli Chen and Xiang Gao
Minerals 2025, 15(11), 1166; https://doi.org/10.3390/min15111166 - 5 Nov 2025
Viewed by 597
Abstract
The Zhilingtou Au-Mo-Pb-Zn polymetallic deposit is located in the southwestern Zhejiang Province, NE China, and is tectonically situated in the Shaoxing-Longquan uplift belt. Although previous studies have indicated that Au mineralization in this area occurred between 135 Ma and 145 Ma, evidence for [...] Read more.
The Zhilingtou Au-Mo-Pb-Zn polymetallic deposit is located in the southwestern Zhejiang Province, NE China, and is tectonically situated in the Shaoxing-Longquan uplift belt. Although previous studies have indicated that Au mineralization in this area occurred between 135 Ma and 145 Ma, evidence for coeval intrusive rocks has been lacking. Furthermore, it remains controversial whether the Au mineralization and (~113 Ma) Mo-Pb-Zn mineralization belong to the same magmatic-hydrothermal system. This study conducted comprehensive high-precision geochronological, petrochemical, and Sr-Nd isotopic analyses on the newly discovered granite porphyry intrusion in the mining area. The aim is to constrain the emplacement age of the intrusion, reveal the petrogenesis and source of ore-forming materials, and further discuss the mineralization mechanism. LA-ICP-MS zircon U-Pb dating results indicate that the granite porphyry was formed at 137.8 ± 0.95 Ma, which is broadly consistent with previously reported ages of Au mineralization. It is inferred that this intrusion may be related to a Au mineralization event at around 138 Ma. Geochemical characteristics show that the rock is peraluminous I-type granite, enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs) and depleted in high field strength elements (HFSEs) such as Nb, Ta, and Ti, indicating an “island arc-type” geochemical signatures. Sr-Nd isotopic compositions (initial 87Sr/86Sr = 0.712364–0.712711; εNd(t) = −13.9 to −13.4; two-stage Nd model ages TDM2 = 1877–1908 Ma) suggest that the magma was derived from ancient crustal materials with the addition of mantle-derived components. Integrating existing geochronological, isotopic, and fluid inclusion evidence, it is proposed that the Zhilingtou deposit may have experienced two mineralization events: an early event (~138 Ma) involving Au-Ag mineralization related to the granite porphyry and a later event (~113 Ma) comprising Mo-Pb-Zn mineralization associated with a porphyry–epithermal system. Together, these events form a composite mineralization system. This study has important implications for refining regional metallogenic theories and guiding future ore exploration. Full article
(This article belongs to the Special Issue Genesis and Evolution of Pb-Zn-Ag Polymetallic Deposits: 2nd Edition)
Show Figures

Figure 1

31 pages, 20520 KB  
Article
Genesis of the Baijianshan Skarn-Type Zn-Cu Polymetallic Deposit, Chinese Eastern Tianshan: Constraints from Geology, Geochronology and Geochemistry
by Fenwei Cheng, Shuai Zhang, Jianxin Wu, Baofeng Huang and Di Zhang
Minerals 2025, 15(11), 1107; https://doi.org/10.3390/min15111107 - 24 Oct 2025
Viewed by 591
Abstract
The Baijianshan deposit is the sole skarn Zn-Cu polymetallic deposit in the Xiaoshitouquan ore field, Xinjiang, China. Its ore genesis remains controversial, which hinders understanding of the relationship between skarn-type Zn-Cu and adjacent epithermal Ag-Cu-Pb-Zn mineralization and consequently impedes further regional exploration. LA-ICP-MS [...] Read more.
The Baijianshan deposit is the sole skarn Zn-Cu polymetallic deposit in the Xiaoshitouquan ore field, Xinjiang, China. Its ore genesis remains controversial, which hinders understanding of the relationship between skarn-type Zn-Cu and adjacent epithermal Ag-Cu-Pb-Zn mineralization and consequently impedes further regional exploration. LA-ICP-MS U-Pb dating on zircons from the granite and granite porphyry from the mining area yielded ages of 311 ± 1.7 Ma and 312 ± 1.6 Ma, respectively. The corresponding zircon εHf(t) values and TDM ages are 8.7–9.9 and 624–555 Ma for the granite, and 7.2–9.9 and 673–552 Ma for the granite porphyry. These granites are metaluminous, high-K calc-alkaline I-type granites, with high LREE/HREE ratios (4.92–9.03) and pronounced negative Eu anomalies. They are enriched in K, Th, U, Zr, and Hf, with significant depletions in Sr, P, and Ti. Combined geological and geochemical evidence indicate that these Late Carboniferous granites were derived from the juvenile crustal and formed in subduction-related back basin. Two-phase aqueous inclusions in the ore-bearing quartz and calcite have homogenization temperatures ranging from 117 to 207 °C and 112 to 160 °C, respectively, with the salinities in the ranges of 0.18~7.17 and 0.53~5.26 wt% NaCl eq. The S and Pb isotopic compositions of sulfides in the ores indicate that the ore-forming metals were sourced from the medium-acidic magmatite. The δ18OH2O and δDH2O values of hydrothermal fluids range from −6.97% to −5.84% and −106.8% to −99.6%, respectively, suggesting that the ore-forming fluids originated from the mixing of magmatic and meteoric water. Fluid mixing and corresponding conductive cooling were identified as the principal mechanism triggering the metallic mineral precipitation. The Baijianshan skarn Zn-Cu polymetallic deposit shares contemporaneous magmatic-mineralization ages and analogous material sources with the epithermal polymetallic deposits in the Xiaoshitouquan ore field, collectively constituting a unified skarn-epithermal metallogenic system. This hypothesis indicates that the deep parts of the epithermal deposits within the Yamansu volcanic rocks possess potential for exploring the porphyry-skarn-type deposits. Full article
Show Figures

Figure 1

32 pages, 12542 KB  
Article
Minor and Trace Elements in Copper Tailings: A Mineralogical and Geometallurgical Approach to Identify and Evaluate New Opportunities
by Zina Habibi, Nigel J. Cook, Kathy Ehrig, Cristiana L. Ciobanu, Yuri T. Campo-Rodriguez and Samuel A. King
Minerals 2025, 15(10), 1018; https://doi.org/10.3390/min15101018 - 26 Sep 2025
Cited by 1 | Viewed by 1140
Abstract
Reliable information on the chemical and physical makeup of mine tailings is critical in meeting environmental and regulatory requirements, as well as identifying whether contained elements, including critical minerals, might be economically recovered in future to meet growing demands. Detailed mineralogical characterization, supported [...] Read more.
Reliable information on the chemical and physical makeup of mine tailings is critical in meeting environmental and regulatory requirements, as well as identifying whether contained elements, including critical minerals, might be economically recovered in future to meet growing demands. Detailed mineralogical characterization, supported by chemical assays and automated mineralogy (MLA) data on different size fractions, underpins a case study of flotation tailings from the processing plant at the Carrapateena mine, South Australia. The study provides valuable insights into the deportment of minor and critical elements, including rare earth elements (REEs), along with uranium (U). REE-minerals are represented by major phosphates (monazite and florencite) and subordinate REE-fluorocarbonates (bastnäsite and synchysite). More than half the REE-minerals are concentrated in the finest size fraction (−10 μm). REEs in coarser fractions are largely locked in gangue, such that economic recovery is unlikely to be viable. MLA data shows that the main REE-minerals all display specific associations with gangue, which change with particle size. Quartz and hematite are the most common associations, followed by sericite. Synchysite shows a strong affiliation to carbonates. The contents of other critical elements (e.g., tungsten, molybdenum, cobalt) are low and for the most part occur within other common minerals as submicron-sized inclusions or in the lattice, rather than discrete minerals. Nevertheless, analysis of mine tailings from a large mining–processing operation provides an opportunity to observe intergrowth and replacement relationships in a composite sample representing different ore types from across the deposit. U-bearing species are brannerite (associated with rutile and chlorite), coffinite (in quartz), and uraninite (in hematite). Understanding the ore mineralogy of the Carrapateena deposit and how the ore has evolved in response to overprinting events is advanced by observation of ore textures, including between hematite and rutile, rutile and brannerite, zircon and xenotime, and the U-carbonate minerals rutherfordine and wyartite, the latter two replacing pre-existing U-minerals (uraninite, coffinite, and brannerite). The results of this study are fundamental inputs into future studies evaluating the technical and economic viability of potentially recovering value metals at Carrapateena. They can also guide efforts in understanding the distributions of valuable metals in analogous tailings from elsewhere. Lastly, the study demonstrates the utility of geometallurgical data on process materials to assist in geological interpretation. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

23 pages, 9916 KB  
Article
Mineralization Age and Ore-Forming Material Source of the Yanshan Gold Deposit in the Daliuhang Gold Field in the Jiaodong Peninsula, China: Constraints from Geochronology and In Situ Sulfur Isotope
by Bin Wang, Zhengjiang Ding, Qun Yang, Zhongyi Bao, Junyang Lv, Yina Bai, Shunxi Ma and Yikang Zhou
Minerals 2025, 15(9), 941; https://doi.org/10.3390/min15090941 - 4 Sep 2025
Viewed by 991
Abstract
The newly discovered Yanshan gold deposit within the Qixia–Penglai mineralization belt is situated within the Daliuhang goldfield of Daliuhang Town, approximately 45 km southeast of Penglai City, the Jiaodong Peninsula. Quartz-vein–type gold orebodies are mainly distributed among the Guojialing granite and are controlled [...] Read more.
The newly discovered Yanshan gold deposit within the Qixia–Penglai mineralization belt is situated within the Daliuhang goldfield of Daliuhang Town, approximately 45 km southeast of Penglai City, the Jiaodong Peninsula. Quartz-vein–type gold orebodies are mainly distributed among the Guojialing granite and are controlled by NNE-trending faults. Native gold primarily occurs within the interiors of pyrite grains, forming inclusion gold and fracture gold. In this study, LA-ICP-MS zircon U-Pb dating and in situ sulfur isotope analysis of gold-bearing pyrite were conducted to constrain the ore genesis of the Yanshan gold deposit. Guojialing monzogranite and porphyritic granodiorite yielded weighted mean 206Pb/238U ages of 130 ± 2 Ma (MSWD = 1.8) and 131 ± 2 Ma (MSWD = 1.8), respectively, indicating that magmatism and gold mineralization occurred during the Early Cretaceous period. The in situ sulfur δ34S values of euhedral crystalline pyrite (Py1) formed in the early stage ranged from 3.21% to 5.35‰ (n = 11), while the in situ sulfur δ34S values of pyrite (Py2) formed in the later stage ranged from 6.32‰ to 9.77‰ (n = 10), suggesting that the sulfur of the Yanshan gold deposit primarily originates from magmatism, with contamination from stratigraphic materials. Granitoids are highly likely to provide the thermal drive for fluid activity; however, the origins of the fluids and ore-forming materials remain difficult to determine. Based on geological features, geochronological data, and in situ sulfur isotopic analysis, this study concludes that the Yanshan gold deposit is a mesothermal magmatic hydrothermal vein-type gold deposit. The mineralization of the Yanshan gold deposit is related to the subduction of the Mesozoic Paleo-Pacific Plate beneath the Eurasian continent and is mainly controlled by steep dip faults. This study provides theoretical guidance for further exploration and prospecting of the Yanshan gold deposit. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

35 pages, 17908 KB  
Article
Chemical and Textural Variability of Zircon from Slightly Peralkaline Madeira Albite Granite, Pitinga Magmatic Province, Brazil
by Karel Breiter, Hilton Tulio Costi, Zuzana Korbelová and Marek Dosbaba
Minerals 2025, 15(8), 863; https://doi.org/10.3390/min15080863 - 15 Aug 2025
Cited by 1 | Viewed by 772
Abstract
Zircon is one of the most common accessory minerals in all types of granitoids. Due to its resistance to secondary processes, it preserves information about the composition of magma and conditions at the time of crystallization. Madeira albite granite, Brazil, offers optimum conditions [...] Read more.
Zircon is one of the most common accessory minerals in all types of granitoids. Due to its resistance to secondary processes, it preserves information about the composition of magma and conditions at the time of crystallization. Madeira albite granite, Brazil, offers optimum conditions for the study of chemistry and shape of zircon and the relation between the contents of particular trace elements in magma vs. in crystallizing zircon. Textural and chemical zircon data obtained using scanning electron microscopy (BSE) and cathodoluminescence (CL) imaging, automated mineralogy by TESCAN Integrated Mineral Analyzer (TIMA), and electron probe microanalyses (EPMA) enabled us to define four albite granite facies containing zircons of specific structures and chemistry. Zircon in the Madeira albite granite was formed during several, largely temporally and spatially independent episodes. During the crystallization of the common facies, occupying most of the intrusion volume, Zr/Hf value in zircon decreased from 40 to 20. This zircon, in some episodes, incorporated a higher amount of Th, which was later unmixed in the form of thorite inclusions. The pegmatoidal facies, representing crystallization of residual magma, contains zircon without thorite inclusions with a Zr/Hf value from 35 to 5. The Th/U and Y/Yb values during this evolution scattered but generally evolved to Th, Yb-enriched compositions (Th/U up to >10, Y/Yb down to 0.1). The Li-poor facies, located in the center of the stock near the cryolite deposit, contains zircon with comparatively high Zr/Hf = 45–70 and higher U and Y contents. Later, part of the common facies was hydrothermally altered to border facies, but zircon did not change noticeably during this process. The contents of minor elements in all zircon varieties are generally low (U + Th + Y + REE ˂ 0.05 apfu); Y and REE are incorporated exclusively in the xenotime component. Many crystals have low analytical totals, down to 95 wt%, and are enriched in Al, Fe, Mn, Ca, and F but this process does not influence the primary Zr/Hf, Th/U, and Y/Yb ratios. Zircons from other Madeira granite facies, including the neighboring Europa pluton, differ mainly in much higher Y/Yb values and in having (Y + REE) >> P, indicating a different than xenotime substitution mechanism. Zircon from the Madeira albite granite differs from zircons from many metaluminous rare-metal granites in low contents of minor elements and a common assemblage with thorite, instead of forming Zrn–Thr–Xnt solid solutions. Full article
Show Figures

Figure 1

29 pages, 9860 KB  
Article
The Source and Evolution of Ore-Forming Fluids in the Xiaobaihegou Fluorite Deposit, Altyn-Tagh Orogen, NW China: Constraints from Trace Element, Fluid Inclusion, and Isotope Studies
by Kang Chen, Wenlei Song, Yuanwei Wang, Long Zhang, Yongkang Jing, Yi Zhang, Yongbao Gao, Ming Liu, Nan Deng and Junwei Wu
Minerals 2025, 15(8), 840; https://doi.org/10.3390/min15080840 - 8 Aug 2025
Viewed by 1007
Abstract
The Xiaobaihegou fluorite deposit is located in the southwest of the Altyn-Tagh Orogen, NW China. However, the provenance, thermodynamic properties, and enrichment mechanisms of the ore-forming fluids in this deposit remain unclear. Fluorite mineralization primarily occurs in the vicinity of the contact zone [...] Read more.
The Xiaobaihegou fluorite deposit is located in the southwest of the Altyn-Tagh Orogen, NW China. However, the provenance, thermodynamic properties, and enrichment mechanisms of the ore-forming fluids in this deposit remain unclear. Fluorite mineralization primarily occurs in the vicinity of the contact zone between the granite and the wall rocks. The zircon U-Pb age of the alkali-feldspar granite in the Xiaobaihegou fluorite deposit is 482.3 ± 4.1 Ma. The ore-hosting lithologies are mainly calcareous rock series of the Altyn Group. The ore bodies are controlled by NE-trending faults and consist primarily of veined, brecciated, massive, and banded ores. The ore mineral assemblage is primarily composed of calcite and fluorite. The rare earth element (REE) patterns of fluorite and calcite in the Xiaobaihegou deposit exhibit right-dipping LREE enrichment with distinct negative Eu anomalies, which closely resemble those of the alkali-feldspar granite. This similarity suggests that the REE distribution patterns of fluorite and calcite were likely inherited from the pluton. The ore-forming process can be divided into an early stage and a late stage. The massive ores formed in the early stage contain mainly gas-rich two-phase fluid inclusions and CO2-bearing three-phase inclusions, with homogenization temperatures ranging from 235 °C to 426 °C and salinities from 28.59% to 42.40% NaCl equivalent. In the late stage, brecciated and stockwork ores were formed. They host liquid-rich two-phase and gas-rich two-phase fluid inclusions, with homogenization temperatures ranging from 129 °C to 350 °C and salinities from 0.88% to 21.61% NaCl equivalent. The results of hydrogen and oxygen isotope studies indicate that the ore-forming fluids were derived from a mixture of magmatic–hydrothermal and meteoric water. Fluorite precipitation in the early stage was mainly due to the mixing of magmatic–hydrothermal solution and meteoric water, as well as a water–rock reaction. In the late stage, fluid mixing further occurred, resulting in a decrease in temperature and the formation of brecciated and stockwork ores. The 87Sr/86Sr and 143Nd/144Nd ratios of fluorite from the deposit range from 0.71033 to 0.71272 and 0.511946 to 0.512073, respectively, indicating that the ore-forming material originates from the crust. Based on the ore-forming characteristics, it is proposed that Ca may be primarily leached from the strata formation, while F may predominantly originate from magmatic–hydrothermal solutions. The formation of fluorite deposits is closely related to the transition of the Central Altyn-Tagh Block and Qaidam Block from a compressional orogenic environment to an extensional tectonic environment. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

22 pages, 4895 KB  
Article
Ore Genesis of the Huanggang Iron-Tin-Polymetallic Deposit, Inner Mongolia: Constraints from Fluid Inclusions, H–O–C Isotopes, and U-Pb Dating of Garnet and Zircon
by Hanwen Xue, Keyong Wang, Qingfei Sun, Junchi Chen, Xue Wang and Haoming Li
Minerals 2025, 15(5), 518; https://doi.org/10.3390/min15050518 - 14 May 2025
Viewed by 1074
Abstract
The Huanggang iron-tin deposit, located in the southern Greater Khingan Range, is one of the largest Fe-Sn deposits in Northern China (NE China). Iron-tin mineralization occurs mainly in the contact zone between granitoid intrusions and the marble of the Huanggang and Dashizhai formations. [...] Read more.
The Huanggang iron-tin deposit, located in the southern Greater Khingan Range, is one of the largest Fe-Sn deposits in Northern China (NE China). Iron-tin mineralization occurs mainly in the contact zone between granitoid intrusions and the marble of the Huanggang and Dashizhai formations. Six mineralization stages are identified: (I) anhydrous skarn, (II) hydrous skarn, (III) cassiterite-quartz-calcite, (IV) pyrite-arsenopyrite-quartz-fluorite, (V) polymetallic sulfides-quartz, and (VI) carbonate ones. Fluid inclusions (FIs) analysis reveals that Stage I garnet and Stage II–III quartz host liquid-rich (VL-type), vapor-rich two-phase (LV-type), and halite-bearing three-phase (SL-type) inclusions. Stage IV quartz and fluorite, along with Stage V quartz, are dominated by VL- and LV-type inclusions, while Stage VI calcite contains exclusively VL-type inclusions. The FIs in Stages I to VI homogenized at 392–513, 317–429, 272–418, 224–347, 201–281, and 163–213 °C, with corresponding salinities of 3.05–56.44, 2.56–47.77, 2.89–45.85, 1.39–12.42, 0.87–10.62, and 4.48–8.54 wt% NaCl equiv., respectively. The H–O–C isotopes data imply that fluids of the anhydrous skarn stage (δD = −101.2 to −91.4‰, δ18OH2O = 5.0 to 6.0‰) were of magmatic origin, the fluids of hydrous skarn and oxide stages (δD = −106.3 to −104.7‰, δ18OH2O = 4.3 to 4.9‰) were characterized by fluid mixing with minor meteoric water, while the fluids of sulfide stages (δD = −117.4 to −108.6‰, δ18OH2O = −3.4 to 0.3‰, δ13CV-PDB= −12.2 to −10.9‰, and δ18OV-SMOW = −2.2 to −0.7‰) were characterized by mixing of significant amount of meteoric water. The ore-forming fluids evolved from a high-temperature, high-salinity NaCl−H2O boiling system to a low-temperature, low-salinity NaCl−H2O mixing system. The garnet U-Pb dating constrains the formation of skarn to 132.1 ± 4.7 Ma (MSWD = 0.64), which aligns, within analytical uncertainty, with the weighted-mean U−Pb age of zircon grains in ore-related K-feldspar granite (132.6 ± 0.9 Ma; MSWD = 1.5). On the basis of these findings, the Huanggang deposit, formed in the Early Cretaceous, is a typical skarn-type system, in which ore precipitation was principally controlled by fluid boiling and mixing. Full article
Show Figures

Figure 1

33 pages, 24486 KB  
Article
Controlling Factors of Diagenetic Evolution on Reservoir Quality in Oligocene Sandstones, Xihu Sag, East China Sea Basin
by Yizhuo Yang, Zhilong Huang, Tong Qu, Jing Zhao and Zhiyuan Li
Minerals 2025, 15(4), 394; https://doi.org/10.3390/min15040394 - 8 Apr 2025
Cited by 1 | Viewed by 1118
Abstract
The tight sandstone reservoirs within the Oligocene Huagang Formation represent one of the most promising exploration targets for future hydrocarbon development in the Xihu Depression of the East China Sea Basin. The reservoir has complex sedimentary and diagenetic processes. In this paper, a [...] Read more.
The tight sandstone reservoirs within the Oligocene Huagang Formation represent one of the most promising exploration targets for future hydrocarbon development in the Xihu Depression of the East China Sea Basin. The reservoir has complex sedimentary and diagenetic processes. In this paper, a variety of methods, such as microscopic image observation, particle size analysis, X-ray diffraction measurement (XRD), heavy minerals, carbon and oxygen isotopes of cement, the homogenization temperature of fluid inclusions, zircon (U-Th)/He isotopes, and high-pressure mercury intrusion (HPMI), are used to analyze the thermal evolution history, diagenetic evolution process, and the causes of differences in diagenetic processes and high-quality reservoirs. This study shows that the provenance of the southern region is derived from western metamorphic rock, while that of the northern region is dominated by northern metamorphic rock, including some eastern volcanic rock. The northern region exhibits a stronger compaction and lower porosity, primarily due to a greater proportion of volcanic rock provenance. Additionally, coarse-grained lithofacies exhibit a higher quartz content and lower proportions of clay minerals and lithic fragment compared to fine-grained lithofacies, consequently demonstrating greater resistance to compaction. The Huagang Formation reservoir has three stages of carbonate cementation, two stages of quartz overgrowth, and two stages of fluid charging. The two stages of fluid charging correspond to two stages of organic acid dissolution. In the northern region, the geothermal gradient is high, and the burial depth is large, so the diagenetic event occurred earlier and is now in the mesodiagenesis B stage, while in the southern region, the geothermal gradient is low, and the burial depth is small and is now in the mesodiagenesis A stage. The southern distributary channel sands and northern high-energy braided channel sands constitute high-quality reservoirs, characterized by a coarse grain size, large pore throats, and minimal cement content. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

25 pages, 15664 KB  
Article
Color Mechanism Analysis and Origin Comparison of Pink-Purple Sapphires from Vietnam and Madagascar
by Qiurong Guo, Pengyu Li, Mingying Wang, Siyi Zhao, Sichun Yang and Guanghai Shi
Crystals 2025, 15(3), 229; https://doi.org/10.3390/cryst15030229 - 27 Feb 2025
Cited by 1 | Viewed by 1787
Abstract
Extensive research has already been conducted on sapphires, yet there remains a notable absence of methods available to identify the provenance of pink-purple sapphires, particularly those originating from Vietnam and Madagascar. This study examined pink-purple sapphires from Vietnam and Madagascar by conducting basic [...] Read more.
Extensive research has already been conducted on sapphires, yet there remains a notable absence of methods available to identify the provenance of pink-purple sapphires, particularly those originating from Vietnam and Madagascar. This study examined pink-purple sapphires from Vietnam and Madagascar by conducting basic gemological tests, microscopic observations, infrared spectroscopy, Raman spectroscopy, UV–Vis–NIR spectroscopy, and LA ICP MS, while also drawing comparisons with pink-red corundum from other locations. In appearance, the Vietnamese samples have a foggy appearance and orange iridescence, while the Madagascan samples show a relatively strong purple hue. The color origin analysis reveals that the absorption peaks of the ultraviolet spectrum caused by Cr3+ in the yellow-green and blue-purple regions account for the pink color of the Vietnamese and Madagascan samples. The lower UV wavelength position of the two main peaks in the Madagascan samples, as compared to the Vietnamese ones, indicates that Fe3+ d–d transitions, as well as transitions between Fe2+—Ti4+ and Fe3+—Ti3+ ions, enhance blue light transmission and cause the samples to tend towards a purple hue. Regarding inclusions, the Vietnamese samples are characterized by white and blue bands, cloudy inclusions, and extensive yellow-orange staining, whereby the cloudy inclusions give them their special appearance, and their calcite and apatite inclusions indicate that they come from marble-type deposits. The presence of many small-grained zircon formations, especially clusters, in the Madagascan samples indicates that they come from alkaline basalt. Chemical analysis confirmed the origin of the samples from the two locations. Compared with the pink-red corundum of the same marble type (Myanmar and Yunnan, China), the Vietnamese samples have lower V, Mg, and Ga contents and a higher Fe content. Compared with the pink-red corundum of the high-iron type (Thailand, Cambodia, and Tanzania), the Madagascan samples have lower Fe and higher Ga contents overall. This study possesses considerable significance in tracing and identifying the origin of pink-purple sapphires. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

22 pages, 29178 KB  
Article
Molybdenite Re–Os and Zircon U–Pb Isotopic Constraints on Gold Mineralization Associated with Fine-Grained Granite in the Xiawolong Deposit, Jiaodong Peninsula, East China
by Mingchao Wu, Zhongliang Wang and Pengyu Liu
Appl. Sci. 2025, 15(3), 1199; https://doi.org/10.3390/app15031199 - 24 Jan 2025
Viewed by 1129
Abstract
Molybdenite Re–Os and zircon U–Pb isotopic data are first obtained from the stockwork and disseminated-style gold-bearing ores and the fine-grained granite hosting these ores in the Xiawolong gold mine, respectively, which is located within the Muping–Rushan gold metallogenic belt, eastern Jiaodong Peninsula, so [...] Read more.
Molybdenite Re–Os and zircon U–Pb isotopic data are first obtained from the stockwork and disseminated-style gold-bearing ores and the fine-grained granite hosting these ores in the Xiawolong gold mine, respectively, which is located within the Muping–Rushan gold metallogenic belt, eastern Jiaodong Peninsula, so as to illustrate the genesis of gold mineralization and its implication for exploration. Four molybdenite samples yield a well-defined Re–Os isochron age of 118.4 ± 2.5 Ma (2σ), which is identical to the weighted average Re–Os model age of 118 ± 1.7 Ma (2σ). Integration of the new geochronologic data with those reported recently from the other gold mines in the Muping–Rushan gold metallogenic belt suggests that a discrete gold event occurred in Xiawolong ca. 4 m.y. older than that for the other gold mineralization at ca. 114 Ma in eastern Jiaodong. In addition, two fine-grained granite samples, measured using the LA-ICP-MS zircon U–Pb method, produce the first precise ages of 118 ± 2 to 117 ± 2 Ma (2σ), identical to the molybdenite Re–Os ages, within the margin of error and obtained in this study. The fine-grained granite has a similar lithology and emplacement age as those of the medium-grained monzogranite consisting of the marginal facies of the Sanfoshan batholith, and is considered to be the crystallization products of Sanfoshan granitic magma in the late stage. Combined with the previous S-Pb-D-O isotope, fluid inclusion and geological studies, which suggest that the ore-forming fluid of Xiawolong gold mineralization is from magmatic water, and the identification that the magnetite coexists with the gold-bearing pyrite and molybdenite in the gold ores, which indicates a high oxygen fugacity (fO2) of both the magma and resultant hydrothermal fluids, it is logical to infer that the Xiawolong gold deposit is genetically in relation to the Sanfoshan granitic magmatism, which is high in fO2 and rich in Au at the magmatic–hydrothermal transition stage, and the change in fO2 mostly likely makes a significant contribution to the precipitation of Au. This result reveals that the late-stage granitic magma with high fO2, which is crystallized into the fine-grained granite, probably is also rich in Au, except the W–Mo–Cu–Zn–U–Be–Li–Nb–Ta–Sn–Bi-elements. Therefore, based on the extensional tectonic regime for the early Cretaceous Jiaodong gold deposits, we propose that gold exploration in the Jiaodong should not only focus on the fault-hosted Au but also on the fine-grained granite-hosted Au around the apical portions of the late Early Cretaceous small-granitic intrusions with high fO2. This model could also be important for prospecting in other gold ore districts, which have a similar tectonic setting. Full article
(This article belongs to the Special Issue Technologies and Methods for Exploitation of Geological Resources)
Show Figures

Figure 1

15 pages, 6633 KB  
Article
Nioboixiolite-(□),(Nb0.8□0.2)4+O2, a New Mineral Species from the Bayan Obo World-Class REE-Fe-Nb Deposit, Inner Mongolia, China
by Yike Li, Changhui Ke, Denghong Wang, Zidong Peng, Yonggang Zhao, Ruiping Li, Zhenyu Chen, Guowu Li, Hong Yu, Li Zhang, Bin Guo and Yupu Gao
Minerals 2025, 15(1), 88; https://doi.org/10.3390/min15010088 - 17 Jan 2025
Cited by 4 | Viewed by 1373
Abstract
Nioboixiolite-(□) is a new mineral found in a carbonatite sill from the Bayan Obo mine, Baotou City, Inner Mongolia, China. It occurs as anhedral to subhedral grains (100 to 500 μm in diameter) that are disseminated in carbonatite rock composed of dolomite, calcite, [...] Read more.
Nioboixiolite-(□) is a new mineral found in a carbonatite sill from the Bayan Obo mine, Baotou City, Inner Mongolia, China. It occurs as anhedral to subhedral grains (100 to 500 μm in diameter) that are disseminated in carbonatite rock composed of dolomite, calcite, magnetite, apatite, biotite, actionlike, zircon, and columbite-(Fe). Most of these grains are highly serrated, with numerous inclusions of columbite-(Fe). The mineral is gray to deep black in color; is opaque, with a semi-metallic luster; has a black streak; and is brittle, with an uneven conchoidal splintery. The Mohs hardness is 6–6½, and the calculated density is 6.05 g/cm3. The reflection color is gray with a blue tone, and there is no double reflection color. The measured reflectivity of nioboixiolite-(□) is about 10.6%~12.1%, close to that of ixiolite (11%–13%). Nioboixiolite-(□) is non-fluorescent under 254 nm (short-wave) and 366 nm (long-wave) ultraviolet light. The average chemical analysis results (wt.%) of twelve electron microprobe analyses are F 0.01, MnO 0.12, MgO 0.15, BaO 0.62, PbO 0.91, SrO 1.49, CaO 2.76, Al2O3 0.01, TREE2O3 1.58, Fe2O3 3.57, ThO2 0.11, SiO2 1.69, TiO2 3.68, Ta2O5 13.95, Nb2O5 47.04, and UO3 21.56, with a total of 99.25. The simplified formula is [Nb5+, Ta5+,Ti4+, Fe3+,□,]O2. X-ray diffraction data show that nioboixiolite-(□) is orthorhombic, belonging to the space group Pbcn (#60). The refined unit cell parameters are a = 4.7071(5) Å, b = 5.7097(7) Å, c = 5.1111(6) Å, V = 138.31(3), and β = 90(1) °Å3 with Z = 4. In the crystal structure of nioboixiolite-(□), all cations occupy a single M1 site. In these minerals, edge-sharing M1O6 octahedra form chains along the c direction. In this direction, the chains are connected with each other via common vertices of the octahedra. The strongest measured X-ray powder diffraction lines are [d in Å, (I/I0), (hkl)]: 3.662(20) (110), 2.975(100) (111), 2.501(20) (021), 1.770(20) (122), 1.458(20) (023). A type specimen was deposited in the Geological Museum of China with catalogue number M16118, No. 15, Yangrou Hutong, Xisi, Beijing 100031, People’s Republic of China. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Figure 1

19 pages, 10062 KB  
Article
Geochronology and Genesis of the Shuigou Gold Deposit, Qixia-Penglai-Fushan Metallogenic Area, Jiaodong Peninsula, Eastern China: Constraints from SHRIMP U-Pb, 40Ar/39Ar Age, and He-Ar Isotopes
by Zhenjiang Liu, Shaobo Cheng, Changrong Liu, Benjie Gu and Yushan Xue
Minerals 2025, 15(1), 14; https://doi.org/10.3390/min15010014 - 26 Dec 2024
Cited by 5 | Viewed by 1210
Abstract
The Jiaodong Peninsula is renowned for its significant gold reserves, which exceed 4500 tons. In this study, we conducted zircon SHRIMP U-Pb dating, 40Ar/39Ar geochronology, electron probe microanalysis (EPMA) analysis, and He-Ar isotope analysis on samples from the Shuigou gold [...] Read more.
The Jiaodong Peninsula is renowned for its significant gold reserves, which exceed 4500 tons. In this study, we conducted zircon SHRIMP U-Pb dating, 40Ar/39Ar geochronology, electron probe microanalysis (EPMA) analysis, and He-Ar isotope analysis on samples from the Shuigou gold deposit located in the Qixia-Penglai-Fushan metallogenic area of central Jiaodong. This quartz vein-type gold deposit is characterized by three mineralization stages: (I) the quartz-pyrite stage, (II) the quartz-polymetallic sulfide stage, and (III) the calcite stage. In stages I and II, gold primarily exists as native gold or electrum. Preliminary analysis suggests that the deposit contains rare critical metals, including bismuth (Bi), tellurium (Te), and antimony (Sb). The Sb is found as pyrargyrite in stage III, while the other critical elements occur as isomorphisms or nanoparticles within host minerals such as pyrite, native gold, and electrum. Geochronology data indicate that the pre-mineralization Guojialing monzogranite formed around 126 ± 1.6 Ma, the syn-mineralization muscovite formed at approximately 125 Ma, and the post-mineralization diorite porphyrite formed at 120.4 ± 1.8 Ma. The 3He/4He ratios of fluid inclusions in the main-stage pyrite range from 0.26 to 1.26 Ra, and the 40Ar/36Ar ratios vary from 383 to 426.6. These findings suggest that the Shuigou gold deposit formed during the destruction of the North China Craton (NCC), similar to other super-large gold deposits in the Jiaodong Mesozoic gold metallogenic province. Gold mineralization has been influenced by mantle, crustal, and meteoric fluids. Full article
Show Figures

Figure 1

40 pages, 20569 KB  
Article
An Archean Porphyry-Type Deposit: Cu-Au Mineralization Associated with the Chibougamau Tonalite–Diorite Pluton, Abitibi Greenstone Belt, Canada
by Alexandre Crépon, Lucie Mathieu, Daniel J. Kontak, Jeffrey Marsh and Michael A. Hamilton
Minerals 2024, 14(12), 1293; https://doi.org/10.3390/min14121293 - 20 Dec 2024
Cited by 1 | Viewed by 2765
Abstract
The Neoarchean diorite- and tonalite-dominated Chibougamau pluton (Canada) is ideal for case studies dedicated to the petrogenesis and timing of emplacement of fertile magmatic systems and associated Cu-Au porphyry systems. Using whole-rock analyses, geochronology, and zircon chemistry, it is determined that an early [...] Read more.
The Neoarchean diorite- and tonalite-dominated Chibougamau pluton (Canada) is ideal for case studies dedicated to the petrogenesis and timing of emplacement of fertile magmatic systems and associated Cu-Au porphyry systems. Using whole-rock analyses, geochronology, and zircon chemistry, it is determined that an early magmatic phase (pre-2714 Ma) is derived from a dioritic magma with a moderate ƒO2 (ΔFMQ 0 to +1), which is optimal for transporting Au and Cu, and that diorite is a potentially fertile magma. Field descriptions indicate that the main mineralizing style consists of sulfide-filled hairline fractures and quartz–carbonate veins. This is likely the consequence of fluid circulation facilitated by a well-developed diaclase network formed following the intrusion of magma at about 4–7 km depth in a competent hosting material. The petrographic features of fluid inclusions (FIs), considered with their microthermometric data and evaporate mound chemistry, suggest the exsolution of early CO2-rich fluids followed by the unmixing of later aqueous saline fluids characterized by a magmatic signature (i.e., Na-, Ca-, Fe-, Mn-, Ba-, and Cl-F). The type of magmatism and its oxidation state, age relationships, the nature of mineralization, and fluid chemistry together support a model whereby metalliferous fluids are derived from an intermediate hydrous magma. This therefore enforces a porphyry-type metallogenic model for this Archean setting. Full article
Show Figures

Figure 1

17 pages, 3881 KB  
Article
The H–O–S Isotope Characteristics and Diagenetic, Mineralization Ages of the Zhueryu Au Deposit from the Jidong Gold Belt, China
by Wenjing Yang, Tianshe Cheng, Xuebin Zhang, Lijun Guo, Hongsheng Gao, Xingfang Duo, Lipeng Tu and Xianzhen Zhang
Minerals 2024, 14(11), 1068; https://doi.org/10.3390/min14111068 - 24 Oct 2024
Viewed by 1284
Abstract
The Zhueryu Au deposit is one of the important quartz-vein type Au deposits. It is located at the western margin of the Jidong gold belt in China and characterized by ore bodies hosted in structural fractures within the Zhueryu syenite. The H, O, [...] Read more.
The Zhueryu Au deposit is one of the important quartz-vein type Au deposits. It is located at the western margin of the Jidong gold belt in China and characterized by ore bodies hosted in structural fractures within the Zhueryu syenite. The H, O, and S isotopes as well as the Rb–Sr isotope age of fluid inclusions from the quartz-polymetallic sulfide ore bodies (main stage) and the zircon U–Pb isotope age from the syenite were analyzed so as to discuss the source of ore-forming fluids and constrain the Au’s mineralization age. The textural characteristics of the fluid inclusions indicate that the fluid inclusions in the quartz (QzII) are from the same stage, with no evidence of secondary fluid inclusions from the later stage. Fluid inclusion microthermometry performed on the quartz (QzII) reveals a predominance of vapor–liquid two-phase inclusions, with homogenization temperatures ranging from 177 °C to 337 °C (average: 260 °C), characteristic of a medium-low temperature hydrothermal system. Furthermore, H, O, and S isotope analyses of the ore-forming fluids yielded δD, δ18O, and δ34S values ranging from +12.8‰ to +14.8‰, +9.15‰ to +9.51‰, and −8.395‰ to -1.918‰ (average: −5.826‰), respectively. These isotopic signatures, particularly the distinctly positive δD values, strongly suggest that the Zhueryu ore-forming fluids were primarily derived from metamorphic sources, contrasting with the magmatic-hydrothermal fluids implicated in the formation of many other Au deposits within the Jidong belt. The LA–ICP–MS zircon U–Pb dating yielded a concordia age of 242 ± 2 Ma (MSWD = 0.17), indicating a Middle Triassic crystallization age for the Zhueryu syenite. In contrast, the Rb–Sr dating of primary fluid inclusions hosted within quartz (QzII) yielded an isochron age of 181 ± 12 Ma (MSWD = 2.5), placing the Au mineralization event firmly within the Early Jurassic. This demonstrates that the Au mineralization is significantly younger than the host syenite, representing a distinct mineralization event. These results might have certain significance for studying the dynamics of Au mineralization in the Jidong gold belt. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

Back to TopTop