Genesis of the Baijianshan Skarn-Type Zn-Cu Polymetallic Deposit, Chinese Eastern Tianshan: Constraints from Geology, Geochronology and Geochemistry
Abstract
1. Introduction
2. Regional Geology
3. Ore Deposit Geology
4. Sampling and Analytical Methods
4.1. LA-ICP-MS Zircon U-Pb Dating
4.2. Whole-Rock Major and Trace Elements Analyses
4.3. In-Situ Zircon Hf Isotopes Analyses
4.4. Fluid Inclusion Microthermometry
4.5. Stable Isotope Analysis
5. Results
5.1. Zircon U-Pb Ages
5.2. Whole-Rock Major and Trace Elements Compositions
5.3. Zircon Hf Isotopes Compositions
5.4. Fluid Inclusions
5.5. S-Pb-H-O Isotopic Compositions
6. Discussion
6.1. Timing of Magmatism and Mineralization
6.2. Petrogenesis and Tectonic Setting of the Causative Granitoids
6.2.1. Petrogenetic Types
6.2.2. Source of Magmas
6.2.3. Fractional Crystallization
6.2.4. Tectonic Setting

6.3. Source of Ore-Forming Components
6.4. Precipitation Mechanism

6.5. Ore-Forming Process and Implications for Exploration
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 150, 3–41. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Lowenstern, J.B. The role of magmas in the formation of hydrothermal ore deposits. Nature 1994, 370, 519–527. [Google Scholar] [CrossRef]
- Richards, J.P.; Spell, T.; Rameh, E.; Razique, A.; Fletcher, T. High Sr/Y Magmas Reflect Arc Maturity, High Magmatic Water Content, and Porphyry Cu ± Mo ± Au Potential: Examples from the Tethyan Arcs of Central and Eastern Iran and Western Pakistan. Econ. Geol. 2012, 107, 295–332. [Google Scholar] [CrossRef]
- Singer, D.A.; Berger, V.L.; Menzie, W.D.; Berger, B.R. Porphyry copper deposit density. Econ. Geol. 2005, 100, 491–514. [Google Scholar] [CrossRef]
- Cooke, D.R.; Deyell, C.L.; Waters, P.J.; Gonzales, R.I.; Zaw, K. Evidence for magmatic-hydrothermal fluids and ore-forming processesin epithermal and porphyry deposits of the Baguio district, Philippines. Econ. Geol. 2011, 106, 1399–1424. [Google Scholar] [CrossRef]
- Sangster, D.F. The Contact Metasomatic Magnetite Deposits of Southwestern British Columbia. Ph.D. Thesis, University of British Columbi, Vancouver, BC, Canada, 1964. [Google Scholar]
- Shu, Q.H.; Chang, Z.S.; Mavrogenes, J. Fluid compositions reveal fluid nature, metal deposition mechanisms, and mineralization potential: An example at the Haobugao Zn-Pb skarn, China. Geology 2021, 49, 473–477. [Google Scholar] [CrossRef]
- Niiranen, T.; Poutiainen, M.; Mänttäri, I. Geology, geochemistry, fluid inclusion characteristics, and U-Pb age studies on iron oxide-Cu-Au deposits in the Kolari region, northern Finland. Ore Geol. Rev. 2007, 30, 75–105. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Lin, W.W.; Bi, C.S.; Li, D.X. Basic Geological Characteristics of Skarn Deposits of China. Bull. Chin. Acad. Geol. Sci. 1986, 14, 59–87. [Google Scholar]
- Jenner, F.E.; O’Neill, H.S.C.; Arculus, R.J.; Mavrogenes, J.A. The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu. J. Petrol. 2010, 51, 2445–2464. [Google Scholar] [CrossRef]
- Sun, W.D.; Liang, H.Y.; Ling, M.X.; Zhan, M.Z.; Ding, X.; Zhang, H.; Yang, X.Y.; Li, Y.L.; Ireland, T.R.; Wei, Q.R.; et al. The link between reduced porphyry copper deposits and oxidized magmas. Geochim. Cosmochim. Acta 2013, 103, 263–275. [Google Scholar] [CrossRef]
- Chiaradia, M. Copper enrichment in arc magmas controlled by overriding plate thickness. Nat. Geosci. 2014, 7, 43–46. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Yang, Z.M.; Lu, Y.; Kemp, A.; Zheng, Y.; Li, Q.; Tang, J.; Yang, Z.; Duan, L. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology 2015, 43, 247–250. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.; Sun, X.; Yang, L.; Groves, D.I.; Shu, Q.; Gao, L.; Yang, L.; Qiu, K.; Wang, C.; et al. Tibetan ore deposits: A conjunction of accretionary orogeny and continental collision. Earth-Sci. Rev. 2022, 235, 104245. [Google Scholar] [CrossRef]
- Yang, Z.M.; Cao, K. Post-collisional porphyry copper deposits in Tibet: An overview. Earth-Sci. Rev. 2024, 258, 104954. [Google Scholar] [CrossRef]
- Cao, F.G.; Tu, Q.J.; Zhang, X.M.; Ren, Y.; Li, S.L.; Dong, F.R. Preliminary determination of the Early Paleozoic magmatic arc in the Karlik Mountains, East Tianshan, Xinjiang, China-Evidence from zircon SHRIMP U-Pb dating of granite bodies in the Tashuihe area. Geol. Bull. China 2006, 25, 923–927. [Google Scholar]
- Jin, L.Y.; Zhang, J.; Zhu, Z.X.; Zhao, T.Y.; Xu, S.Q.; Li, P.; Chen, B.X. The Geologic Character and Tectonic Significance of Paleozoic Volcanic Rocks in the Harlik Mountains, Xinjiang. Xinjiang Geol. 2013, 31, 173–179. [Google Scholar]
- Wang, X.W.; Xu, X.Y.; Ma, Z.P.; Chen, J.L.; Cui, F.L.; Zhu, X.H.; Sun, J.M. Geochemistry and Tectonic Setting of the Early Carboniferous Volcanic Rocks in the Eastern Section of the Bogda Orogenic Belt in Xinjiang. Geol. Explor. 2015, 51, 108–122. [Google Scholar]
- Fang, T.H.; Qing, K.Z.; Wang, S.L.; Wang, X.D.; Hui, W.D. Geological characteristics and exploration prospect of copper and Multi-Metal deposits in Xiaoshitouquan District, Eastern Xinjiang. Xinjiang Geol. 2002, 20, 371–374. [Google Scholar]
- Wan, B.; Zhang, L.C.; Xu, X.W.; Sun, H. Geochemical characteristics of volcanic, sub-volcanic rocks in Xiaoshitouquan copper polymetallic deposit, eastern Tianshan, and its metallogenie setting. Acta Petrol. Sin. 2006, 22, 2711–2718. [Google Scholar]
- Zhang, R.; Mao, Q.G.; Yu, M.J.; Fang, T.H.; Cheng, F.W. Geochemical Characteristics and Zircon U-Pb Ages of the Magmatite in the Qiongdukuke Ag-Pb-Zn Polymetallic Deposit of Xinjiang. Geol. Explor. 2017, 53, 270–282. [Google Scholar]
- Mo, J.P.; Yi, S.K.; Wang, X.D.; Li, J.A. Study on geological and geochemical characteristics and genesis of Tongshan copper polymetallic deposit, Xingjiang. Miner. Resour. Geol. 2001, 15, 162–166. [Google Scholar]
- Yu, M.J.; Wang, Y.W.; Mao, Q.G.; Wang, J.B.; Zhang, R.; Cheng, F.W.; Fu, W.W. Characteristics of Ore-Forming Fluids and Their Geological Significance of OiongkudukeAg-Polymetallic Deposit in the Xiaoshitouquan Area of Eastern Tianshan Mountains, Xinjiang. Earth Sci. 2018, 43, 3100–3111+3125. [Google Scholar]
- Cheng, F.W.; Zhang, S.; Peng, Y.W.; Dong, S.Y.; Huang, B.F.; Zhang, D.; Song, M.W.; Liao, Z.Y.; Peng, L. Trace element characteristics of hydrothermal minerals and the genesis of the Tongshan copper deposit in the Xiaoshitouquan area, East Tianshan Mountains, Xinjiang. Mineral. Petrol. 2025, 45, 1–24. [Google Scholar]
- Wei, J.Y.; San, J.Z.; Kang, F. Geological Characteristics and Preliminary Analysis of Prospecting Potential for the Baijianshan No. I Copper-Zinc Polymetallic Deposit, Hami City, Xinjiang Uygur Autonomous. Xinjiang Non-Ferr. Met. 2009, 32, 30–32. [Google Scholar]
- Ma, X.H.; Chen, B.; Wang, C.; Yan, X.L. Early Paleozoic subduction of the Paleo-Asian Ocean: Zircon U-Pb geochronological, geochemical and Sr-Nd isotopic evidence from the Harlik pluton, Xinjiang. Acta Petrol. Sin. 2015, 31, 89–104. [Google Scholar]
- Wei, J.Y. Geological Characteristics of the Baijianshan Zinc Polymetallic Deposit in Hami City, Xinjiang. Xinjiang Non-Ferr. Met. 2015, 38, 77–79+82. [Google Scholar]
- Wang, B.; Faure, M.; Shu, L.S.; de Jong, K.; Charvet, J.; Cluzel, D.; Jahn, B.M.; Chen, Y.; Ruffet, G. Structural and Geochronological Study of High—Pressure Metamorphic Rocks in the Kekesu Section (Northwestern China): Implications for the Late Paleozoic Tectonics of the Southern Tianshan. J. Geol. 2010, 118, 59–77. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Hao, J.; Zhai, M.G. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian orogenic belt. Tectonics 2003, 22, 1069. [Google Scholar] [CrossRef]
- Jahn, B.M. The Central Asia orogenic Belt and Growth of the continental Crust in the Phanerozoic. Geol. Soc. London Spec. Publ. 2004, 226, 73–100. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.W.; Wang, J.B.; Li, D.D. Mineralogical characteristics and petrogenetic significance of the amphibole in the Weiya V-Ti-magnetite deposit in the eastern Tianshan. Miner. Explor. 2016, 7, 45–52. [Google Scholar]
- Zhu, X.H.; Zhu, T.; Zhang, X.; Xi, R.G.; Meng, Y.; Wang, K. Petrogenesis and Geological Implications of Late Carboniferous Leucogranites in Harlik Area, Eastern Tianshan. Earth Sci. 2018, 43, 4443–4458. [Google Scholar]
- Liu, L.; He, X.F.; Li, J.T.; Yang, P.T.; Liang, B.; Su, H.; Yang, Y.D.; Liu, Y.Z.; Dai, Z.H. Petrogenesis and Tectonic Signficances of the Qincheng Tianshengquan Pluton in the Harlik Orogen of Eastern Xinjiang. Bull. Geol. Sci. Technol. 2017, 36, 86–96. [Google Scholar]
- Cheng, F.W.; Huang, B.F.; Che, C.; Wu, L.N.; Cheng, J.P.; Chen, M.X. Detailed Investigation Report: Baijianshan Marble Mine and Zinc Polymetallic Mine in Hami City, Xinjiang. 2016; 1–133, unpublished. [Google Scholar]
- Jochum, K.P.; Weis, U.; Stoll, B.; Kuzmin, D.; Yang, Q.C.; Raczek, I.; Jacob, D.E.; Stracke, A.; Birbaum, K.; Frick, D.A.; et al. Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines. Geostand. Geoanal. Res. 2011, 35, 397–429. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Hanchar, J.M.; Peck, W.H.; Sylvester, P.; Valley, J.; Whitehouse, M.; Kronz, A.; Morishita, Y.; Nasdala, L.; Fiebig, J.; et al. Further characterisation of the 91500 zircon crystal. Geostand. Geoanal. Res. 2004, 28, 9–39. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Alle, P.; Corfu, F.; Quadt, A.V.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Zong, K.Q.; Gao, C.G.; Gao, S.; Xu, J.; Chen, H.H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Pretorius, W.; Weis, D.; Williams, G.; Hanano, D.; Kieffer, B.; Scoates, J. Complete Trace Elemental Characterisation of Granitoid (USGS G-2, GSP-2) Reference Materials by High Resolution Inductively Coupled Plasma-Mass Spectrometry. Geostand. Geoanal. Res. 2006, 30, 39–54. [Google Scholar] [CrossRef]
- Blichert, T.J. The Hf isotopic composition of zircon reference material 91500. Chem. Geol. 2008, 253, 253–257. [Google Scholar] [CrossRef]
- Blichert, T.J.; Chauvel, C.; Albarè, F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib. Mineral. Petrol. 1997, 127, 248–260. [Google Scholar] [CrossRef]
- Fisher, C.M.; Vervoort, J.D.; Hanchar, J.M. Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data. Chem. Geol. 2014, 363, 125–133. [Google Scholar] [CrossRef]
- Roedder, E. Fluid inclusions. Rev. Mineral. 1984, 12, 1–644. [Google Scholar]
- Zhang, W.; Hu, Z.C.; Gunther, D.; Liu, Y.S.; Ling, W.L.; Zong, K.Q.; Chen, H.H.; Gao, S.; Xu, L. Direct lead isotope analysis in Hg-rich sulfides by LA-MC-ICP-MS with a gas exchange device and matrix-matched calibration. Anal. Chim. Acta 2016, 948, 9–18. [Google Scholar] [CrossRef]
- Coleman, M.L.; Shepherd, T.J.; Durham, J.J.; Rouse, J.E.; Moore, G.R. Reduction of water with zinc for hydrogen isotope analysis. Anal. Chem. 1982, 54, 993–995. [Google Scholar] [CrossRef]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Middlemost, E.A. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Peccerillo, R.; Taylor, S.R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Wright, J.B. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis. Geol. Mag. 1969, 106, 370–384. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Yang, Y.S.; Chen, T.; Sang, M.S.; Zhang, Y.J. Geochemistry, zircon U-Pb age and geological significance of the Yamanu Formation volcanic rocks in the eastern segment of the East Tianshan. West-China Explor. Eng. 2020, 32, 93–96, 100. [Google Scholar]
- Muzhapaer, M.; Gong, X.K.; Nijiati, A. Geochemical Characteristics and Tectonic Significance of Volcanic Rocks of the Lower Carboniferous Yamansu Formation in the Jueluotage Area. Xinjiang Geol. 2020, 38, 1–8. [Google Scholar]
- Tian, J.; Liao, Q.A.; Fan, G.M.; Nie, X.M.; Wang, F.M. The discovery and tectonic implication of Early Carboniferous post-collisional I-type granites from the south of Karamaili in eastern Junngar. Acta Petrol. Sin. 2015, 31, 1471–1484. [Google Scholar]
- Guo, H.C.; Zhong, L.; Li, L.Q. Zircon SHRIMP U-Pb dating of quartz diorite in the Koumenzi area, Karlik Mountains, East Tianshan, Xinjiang, China, and its geological significance. Geol. Bull. China 2006, 25, 928–931. [Google Scholar]
- Li, J.Y.; Wang, K.Z.; Sun, G.H.; Mo, S.G.; Li, W.Q.; Yang, T.N.; Gao, L.M. Paleozoic active margin slices in the southern Turfan-Hami basin: Geological records of subduction of the Paleo-Asian Ocean platein central Asianregions. Acta Petrol. Sin. 2006, 22, 1087–1102. [Google Scholar]
- Li, J.T.; He, X.F.; Liu, L.; Yang, P.T.; Liang, B.; Su, H.; Yang, Y.D.; Han, H.M.; Liu, Y.Z.; Dai, Z.H. Ordovician Tectonic Evolution of Harlik in Eastern Tianshan of Xinjiang: Constraints from LA-ICP-MS Zircon U-Pb Geochronology and Geochemistry of Volcanic Rocks. Geoscience 2017, 31, 460–473. [Google Scholar]
- Wang, L.Y.; Liao, Q.A.; Xiao, D.; Luo, T.; Zhao, H.; Liu, H.F.; Wang, G.C. Petrogenesis and Tectonic Significance of Early Carboniferous A-Type Grainte in Harlik, Xinjiang. J. Geomech. 2016, 22, 1032–1048. [Google Scholar]
- Liu, H.F.; Zhao, H.; Guo, R.L.; Wang, G.C.; Liao, Q.A. Geochronology, Geochemistry and Geological Implications of Early Carboniferous A-Type Granites in Harlik Area from the Eastern Tianshan. Earth Sci. 2022, 47, 2245–2263. [Google Scholar]
- Luo, T.; Liao, Q.A.; Chen, J.P.; Zhang, X.H.; Guo, D.B.; Hu, Z.C. LA-ICP-MS Zircon U-Pb Dating of the Volcanic Rocks from Yamansu Formation in the Eastern Tianshan, and Its Geological Significance. Earth Sci. 2012, 37, 1338–1352. [Google Scholar]
- Cui, C.; Yu, J.J.; Yang, W.Z.; Zhang, Y.H.; Cui, Y.C.; Yu, J.L. Geochronology, geochemistry and genesis of Yamansu Formation volcanic rocks of southern Aqi Mountain in Jueluotage tectonic belt, eastern Tianshan of Xinjiang. Glob. Geol. 2018, 37, 88–104. [Google Scholar]
- Hou, T.; Zhang, Z.C.; Santosh, M.; Encarnacion, J.; Zhu, J.; Luo, W.J. Geochronology and geochemistry of submarine volcanic rocks in the Yamansu iron deposit, Eastern Tianshan Mountains, NW China: Constraints on the metallogenesis. Ore Geol. Rev. 2014, 56, 487–502. [Google Scholar] [CrossRef]
- Sun, G.H. Dissertation submitted to Chinese Academy of Geological Science for Doctoral Degree. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2007. [Google Scholar]
- Chen, X.J.; Shu, L.S.; Santosh, M.; Zhao, X.X. Island arc-type bimodal magmatism in the eastern Tianshan Belt, Northwest China: Geochemistry, zircon U–Pb geochronology and implications for the Paleozoic crustal evolution in Central Asia. Lithos 2013, 168–169, 48–66. [Google Scholar] [CrossRef]
- Song, P.; Tong, Y.; Wang, T.; Huang, H.; Zhang, J.J.; Huang, W. Zircon U-Pb ages, genetic evolution and geological significance of Carboniferous granites in the Harlik Mountain, East Tianshan, Xinjiang. Geol. Bull. China 2018, 37, 790–804. [Google Scholar]
- Zhao, M.; Shu, L.S.; Zhu, W.B.; Wang, C.Y.; Ma, R.S. Zircon U-Pb Dating of the Rocks from the Harlik Metamorphic Belt in Eastern Xinjiang and Its Geological Significance. Acta Geol. Sin. 2002, 76, 379–383. [Google Scholar]
- Wang, C.S.; Zhang, Z.Z.; Wu, C.Z.; Tang, J.H.; Shao, Y.; Liu, S.H.; Feng, H.; Lei, R.X. Petrologic characteristics, zircon geochronology of dioritic enclaves in Early Permian Badashi monzogranite of East Tianshan Mountains and their geological implications. Acta Petrol. Mineral. 2009, 28, 299–315. [Google Scholar]
- Chen, X.J.; Zhang, K.H.; Zhou, J. Geochronology and Geochemistry Characteristics of the Early Permian Monzogranite and Dioritic Enclaves of East Tianshan and Their Tectonic Implications. Acta Geol. Sin. 2016, 90, 2334–2354. [Google Scholar]
- Chen, X.J.; Zhang, K.H.; Zhang, G.L.; Zhou, J. Characteristics, petrogenesis and tectonic implications of the Permian Omoertage alkaline granites in Harlik area, Xinjiang. Acta Petrol. Mineral. 2016, 35, 929–946. [Google Scholar]
- Yao, Y.; Xing, W.W.; Jia, H.X.; Wang, Y.G.; Zhao, Z.N.; Ma, M.L.; Guo, S.E. Geochronology, Geochemistry and Tectonic Significance of Southern Xiamaya Granite in Harlik Area, Dongtianshan Mountain. Mineral. Petrol. 2020, 40, 30–43. [Google Scholar]
- Du, X.F.; Wang, W.; Zhang, C.L.; Ma, H.D.; Zhu, B.Y.; Qiu, L. Zircon U-Pb age, geochemical characteristics, and tectonic implications of the early Permian ultrabasic dykes in the Harlik Mountain, east Tianshan, Xinjiang. J. Geomech. 2025, 31, 156–168. [Google Scholar]
- Wu, F.Y.; Li, X.H.; Yang, J.H.; Zheng, Y.F. Discussions on the petrogenesis of granites. Acta Petrol. Sin. 2007, 23, 1217–1238. [Google Scholar]
- Chappell, B.W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Miner. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Sylvester, P.J. Post-collisional strongly peraluminous granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Pichavant, M.; Montel, J.M.; Richard, L.R. Apatite solubility in peraluminous liquids: Experimental data and an extension of the Harrison-Watson model. Geochim. Cosmochim. Acta 1992, 56, 3855–3861. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. I- and S-type granites in the Lachlan Fold Belt. Trans. R. Soc. Edinburgh Earth Sci. 1992, 83, 13–26. [Google Scholar]
- Li, X.H.; Li, Z.X.; Li, W.X.; Liu, Y.; Yuan, C.; Wei, G.J.; Qi, C.S. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of subducted flat-slab? Lithos 2007, 96, 186–204. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Zheng, Y.F.; Gao, S. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrol. Sin. 2007, 23, 185–220. [Google Scholar]
- Benbassat, M.; Carlson, R.W.; Puri, V.K.; Davenport, M.D.; Schriver, J.A.; Latif, M.; Smith, R.; Portigal, L.D.; Lipnick, E.H.; Weil, M.H. Pattern-based interactive diagnosis of multiple disorders: The MEDAS system. IEEE Trans. Pattern Anal. Mach. Intell. 1980, 2, 148–160. [Google Scholar] [CrossRef]
- Mo, X.X.; Hou, Z.Q.; Niu, Y.L.; Dong, G.C.; Qu, X.M.; Zhao, Z.D.; Yang, Z.M. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos 2007, 96, 225–242. [Google Scholar] [CrossRef]
- Kemp, A.I.S.; Hawkesworth, C.J.; Foster, G.L.; Paterson, B.A.; Woodhead, J.D.; Hergt, J.M.; Gray, C.M.; Whitehouse, M.J. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science 2007, 315, 980–983. [Google Scholar] [CrossRef]
- Collins, W.J.; Richards, S.W. Geodynamic significance of S-type granites in circum-Pacific orogens. Geology. 2008, 36, 559–562. [Google Scholar] [CrossRef]
- Chappell, B.W.; Stephens, W.E. Origin of infracrustal (I-type) granite magmas. Trans. R. Soc. Edinburgh Earth Sci. 1988, 79, 71–86. [Google Scholar] [CrossRef]
- Workman, R.K.; Hart, S.R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 2005, 231, 53–72. [Google Scholar] [CrossRef]
- Chen, B.; Zhai, M.G. Geochemistry of Late Mesozoic lamprophyre dykes from the Taihang Mountains, North China, and implications for the sub-continental lithospheric mantle. Geol. Mag. 2003, 140, 87–93. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Zhang, Z.C.; Encarnación, J.; Xue, C.J.; Duan, S.G.; Zhao, Z.D.; Liu, J.L. Petrogenesis of the Kekesai composite intrusion, western Tianshan, NW China: Implications for tectonic evolution during Late Paleozoic time. Lithos 2012, 146, 65–79. [Google Scholar] [CrossRef]
- Devine, J.D. Petrogenesis of the basalt-andesite-dacite association of Grenada, Lesser Antilles island arc, revisited. J. Volcanol. Geotherm. Res. 1995, 69, 1–33. [Google Scholar] [CrossRef]
- Tatsumi, Y.; Eggins, S. Subduction Zone Magmatism; Blackwell: Cambridge, MA, USA, 1995. [Google Scholar]
- Woodhead, J.D.; Eggins, S.M.; Johnson, R.W. Magma Genesis in the New Britain Island Arc: Further Insights into Melting and Mass Transfer Processes. J. Petrol. 1998, 39, 1641–1668. [Google Scholar] [CrossRef]
- Liu, Z.C.; Liu, X.J.; Yu, L.J.; Yu, L.J.; Wang, J.G. Highly fractionated origin and magmtic-hydrothermal evolution of the Kampa leucogranites in the Tethyan Himalaya. Nanjing Univ. Nat. Sci. 2020, 56, 800–814. [Google Scholar]
- Xia, L.Q.; Xia, Z.C.; Xue, X.Y.; Li, X.M.; Ma, Z.P.; Wang, L.S. Carboniferous Tianshan igneous megaprovince and mantle plume. Geol. Bull. China 2004, 23, 903–910. [Google Scholar]
- Zhang, Y.Y.; Yuan, C.; Long, X.P.; Sun, M.; Huang, Z.Y.; Du, L.; Wang, X.Y. Carboniferous Bimodal Volcanic Rocks in the Eastern Tianshan, NW China: Evidence for Arc Rifting. Gondwana Res. 2017, 43, 92–106. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Sun, M.; Yuan, C.; Long, X.P.; Jiang, Y.D.; Li, P.F.; Huang, Z.Y.; Du, L. Alternating Trench Advance and Retreat: Insights from Paleozoic Magmatism in the Eastern Tianshan, Central Asian Orogenic Belt. Tectonics 2018, 37, 2142–2164. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Badarch, G.; Sun, S.; Li, J.; Qin, K.; Wang, Z. Palaeozoic Accretionary and Convergent Tectonics of the Southern Altaids: Implications for the Growth of Central Asia. J. Geol. Soc. 2004, 161, 339–342. [Google Scholar] [CrossRef]
- Li, L.; Xiao, W.; Windley, B.F.; Yang, H.; Jia, X.; Sang, M.; Abuduxun, N.; Liu, Y. Early Carboniferous Rifting of the Harlik Arc in the Eastern Tianshan (NW China): Response to Rollback in the Southern Altaids? Am. J. Sci. 2022, 322, 313–350. [Google Scholar] [CrossRef]
- Chen, X.J.; Shu, L.S. Features of the post-colisional tectono-magmatism and geochronological evidence in the Harlik Mt., Xinjiang. Acta Petrol. Sin. 2010, 26, 3057–3064. [Google Scholar]
- Yuan, C.; Sun, M.; Wilde, S.; Xiao, W.J.; Xu, Y.G.; Long, X.P.; Zhao, G.H. Post-Collisional Plutons in the Balikun Area, East Chinese Tianshan: Evolving Magmatism in Response to Extension and Slab Break-Off. Lithos 2010, 119, 269–288. [Google Scholar] [CrossRef]
- Wang, C.S.; Gu, L.X.; Zhang, Z.Z.; Wu, C.Z.; Tang, J.H.; San, J.Z.; Li, G.G.; Li, Z.H. Petrogenesis and tectonic implications of the Permian alkaline granite and quartz-syenite assemblage in Harlik Mountains, XinJiang. Acta Petrol. Sin. 2009, 25, 3182–3196. [Google Scholar]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature. 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Liu, L.; Li, J.T.; Ma, Y.C.; Li, S.H.; Wang, L.; Wang, F.J. Geochemical Characteristics and Zircon U-Pb Dating of the Omltag Massif in the Eastern Tianshan, Xinjiang. Mineral. Petrol. 2020, 40, 20–29. [Google Scholar]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Chi, G.X.; Lu, H.Z. Validation and representation of fluid inclusion microthermometric data using the fluid inclusion assemblage (FIA) concept. Acta Petrol. Sin. 2008, 24, 1945–1953. [Google Scholar]
- Chi, G.X.; Steel-Maclnnis, M. Fluid Inclusions Studies; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–412. [Google Scholar]
- Goldfarb, R.J.; Grove, D.I. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos 2015, 233, 2–26. [Google Scholar] [CrossRef]
- Peng, Y.W.; Zou, H.; Bagas, L.; Shen, Y.F.; Shu, Z.P.; Su, J.; Liang, Q.D.; Wang, C.S.; Hu, Y.H.; Zhang, H. A newly identified Permian distal skarn deposit in the Western Tianshan, China: New evidence from geology, garnet U–Pb geochronology and S–Pb–C–H–O isotopes of the Arqiale Pb–Zn–Cu deposit. Ore Geol. Rev. 2022, 143, 104754. [Google Scholar] [CrossRef]
- Zhang, S.S.; Li, W.; Wang, K.Y.; Yang, X.Y.; Han, C.S.; Yang, Y.L. Study of ore-forming fluid and ore forming age of skarn-type iron ore in the Fanchang area. Acta Geol. Sin. 2021, 96, 1297–1320. [Google Scholar]
- Peng, Y.; Gu, X.; Su, J.; Zhang, Y.; Wang, J.; Wang, X.; Chen, X.; Song, M.; Shu, Z. Geology, geochemistry and genesis of tabei: A newly identified intermediate-sulphidation epithermal Pb-Zn deposit adjacent to low-sulphidation au deposit in the tulasu basin, Chinese western Tianshan. Geol. J. 2023, 58, 583–604. [Google Scholar] [CrossRef]
- Chaussidon, M.; Lorand, J.P. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-eastern Pyrenees, France): Anion microprobe study. Geochim. Cosmochim. Acta 1990, 54, 2835–2846. [Google Scholar] [CrossRef]
- Holser, W.T.; Kaplan, I.R. Isotope geochemistry of sedimentary sulfates. Chem. Geol. 1966, 1, 93–135. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry, 6th ed.; Springer: Berlin, Germany, 2009; p. 285. [Google Scholar]
- Ohmoto, H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Ohmoto, H.; Rye, R.O. Isotopes of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits, 2nd ed.; Barnes, H.I., Ed.; Wiley: New York, NY, USA, 1979; pp. 509–567. [Google Scholar]
- Zhang, R. The Discussion of the Metallogenic Characteristics and Genesis of the QiongKuduke Ag-Pb-Zn Deposit in Hami, Xinjiang, China. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2016. [Google Scholar]
- Drummond, S.E.; Ohmoto, H. Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ. Geol. 1985, 80, 126–147. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Bowell, R.J.; Migdisov, A.A. Gold in solution. Elements 2009, 5, 281–287. [Google Scholar] [CrossRef]
- Gu, X.X.; Liu, L.; Dong, S.Y.; Zhang, Y.M.; Li, K.; Li, B.H. Immiscibility during mineralization of Yinan Au-Cu-Fe deposit, Shandong Province: Evidence from fluid inclusions and H-O isotopes. Miner. Depos. 2010, 29, 43–57. [Google Scholar]
- Lu, H.Z. Fluids immiscibility and fluid inclusions. Acta Petrol. Sin. 2011, 27, 1253–1261. [Google Scholar]
- Li, W.; Xie, G.Q.; Mao, J.W.; Zhu, Q.Q.; Zheng, J.H. Mineralogy, Fluid Inclusion, and Stable Isotope Studies of the Chengchao Deposit, Hubei Province, Eastern China: Implications for the Formation of High-Grade Fe Skarn Deposits. Econ. Geol. 2019, 114, 325–352. [Google Scholar] [CrossRef]
- Ni, P.; Fan, H.R.; Pan, J.Y.; Chi, Z.; Cui, J.M. Progress and Prospect of Fluid Inclusion Research in the Past Decade in China (2011–2020). Bull. Mineral. Petrol. Geochem. 2021, 40, 802–818. [Google Scholar]
- Fang, J.; Chen, H.Y.; Zhang, L.; Zheng, Y.; Li, D.F.; Wang, C.M.; Shen, D.L. Ore genesis of the Weibao lead-zinc district, Eastern Kunlun Orogen, China: Constrains from ore geology, fluid inclusion and iso-tope geochemistry. Int. J. Earth Sci. 2015, 104, 1209–1233. [Google Scholar] [CrossRef]
- Chen, F.C.; Deng, J.; Shu, Q.H.; Li, G.J.; Cui, X.L.; Zhao, F.; Wang, Q.F. Geology, fluid inclusion and stable isotopes (O, S) of the Hetaoping distal skarn Zn-Pb deposit, northern Baoshan block, SW China. Ore Geol. Rev. 2017, 90, 913–927. [Google Scholar] [CrossRef]
- Shu, Q.H.; Chang, Z.S.; Hammerli, J.; Lai, Y.; Huizenga, J.M. Composition and Evolution of Fluids Forming the Baiyinnuo’er Zn-Pb Skarn Deposit, Northeastern China: Insights from Laser Ablation ICP-MS Study of Fluid Inclusions. Econ. Geol. 2017, 112, 1441–1460. [Google Scholar] [CrossRef]
- Huang, H.L.; Tan, J.; Qiu, K.F.; Fu, J.M.; Cheng, X.H.; Li, F.; Yang, X.L. Fluid Inclusion Characteristics of Zhouwu Cu-Polymetal Deposit, Yingde, Guangdong Province. Geol. Sci. Technol. Inf. 2017, 36, 122–135. [Google Scholar]
- Zhao, Y.Y.; Tan, J.; Liu, X.Y.; Zhang, M.; Chen, Y.; He, D. Inclusion features and geological significance of the Tonglüshan skarn-type copper-iron (gold) deposit in Daye, Hubei. Bull. Geol. Sci. Technol. 2020, 39, 64–74. [Google Scholar]
- Altunbey, M.; Kilic, A.D. Fluid inclusion and oxygen isotope studies in garnets related to cavuslu Skarn iron mineralization, East Turkey. J. Afr. Earth Sci. 2019, 149, 465–473. [Google Scholar] [CrossRef]
- Wang, L.Q.; Gu, X.X.; Tang, J.X.; Wang, H.; Cheng, W.B.; Jing, L.B.; Xiang, H.Y. Source and characteristics of ore-forming fluids in the Mengya’a Pb-Zn deposit, Tibet. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2011, 38, 69–75. [Google Scholar]
- Hu, D.L.; Jiang, S.Y.; Duan, D.F.; Xiong, S.F. Fluid origin and evolution of the Ruanjiawan W-Cu-(Mo) deposit from the Edong District in the Middle-Lower Yangtze River metallogenic belt of China: Constraints from fluid inclusions and H-O-C-S isotopes. Ore Geol. Rev. 2021, 139, 104428. [Google Scholar] [CrossRef]
- Zartman, R.E.; Doe, B.R. Plumbotectonics-the model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]

















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, F.; Zhang, S.; Wu, J.; Huang, B.; Zhang, D. Genesis of the Baijianshan Skarn-Type Zn-Cu Polymetallic Deposit, Chinese Eastern Tianshan: Constraints from Geology, Geochronology and Geochemistry. Minerals 2025, 15, 1107. https://doi.org/10.3390/min15111107
Cheng F, Zhang S, Wu J, Huang B, Zhang D. Genesis of the Baijianshan Skarn-Type Zn-Cu Polymetallic Deposit, Chinese Eastern Tianshan: Constraints from Geology, Geochronology and Geochemistry. Minerals. 2025; 15(11):1107. https://doi.org/10.3390/min15111107
Chicago/Turabian StyleCheng, Fenwei, Shuai Zhang, Jianxin Wu, Baofeng Huang, and Di Zhang. 2025. "Genesis of the Baijianshan Skarn-Type Zn-Cu Polymetallic Deposit, Chinese Eastern Tianshan: Constraints from Geology, Geochronology and Geochemistry" Minerals 15, no. 11: 1107. https://doi.org/10.3390/min15111107
APA StyleCheng, F., Zhang, S., Wu, J., Huang, B., & Zhang, D. (2025). Genesis of the Baijianshan Skarn-Type Zn-Cu Polymetallic Deposit, Chinese Eastern Tianshan: Constraints from Geology, Geochronology and Geochemistry. Minerals, 15(11), 1107. https://doi.org/10.3390/min15111107
