Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,373)

Search Parameters:
Keywords = zinc proteinate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5029 KB  
Article
Genome-Wide Identification of the Zinc Finger-Homeodomain (ZF-HD) Gene Family and Their Response to Cold Stress in Rosa chinensis
by Xiaona Su, Yiting Dong, Yuan Liao, Weijian Li, Zheng Chen, Chao Xu and Shaomei Jiang
Genes 2026, 17(1), 90; https://doi.org/10.3390/genes17010090 - 15 Jan 2026
Viewed by 27
Abstract
Background: The zinc finger-homeodomain (ZF-HD) transcription factor family exerts pivotal regulatory functions in plant development and stress responses, yet a systematic genome-wide survey is lacking for Rosa chinensis. Methods: In this study, we performed a comprehensive genome-wide identification and analysis of RcZF-HD [...] Read more.
Background: The zinc finger-homeodomain (ZF-HD) transcription factor family exerts pivotal regulatory functions in plant development and stress responses, yet a systematic genome-wide survey is lacking for Rosa chinensis. Methods: In this study, we performed a comprehensive genome-wide identification and analysis of RcZF-HD genes in R. chinensis using bioinformatics approaches. Nine RcZF-HD loci were mined from the rose genome and comprehensively profiled for physicochemical parameters, phylogenetic affiliations, chromosomal positions, exon–intron architectures, conserved motifs, and spatiotemporal expression landscapes. Results: The results showed that RcZF-HD genes were unevenly distributed across four chromosomes (Chr2, Chr4, Chr6, and Chr7), with tandem duplication events detected on chromosomes 2 and 7, suggesting their contribution to gene family expansion. Maximum-likelihood phylogeny placed RcZF-HD proteins within nine well-supported sub-clades alongside Arabidopsis orthologs, implying both evolutionary conservation and lineage-specific divergence. All members retain canonical zinc-finger domains, yet acquire unique motif signatures predictive of functional specialization. Gene structure analysis revealed considerable diversity in exon–intron organization. Expression profiling across six different tissues (root, stem, leaf, bud, flower, and fruit) demonstrated remarkable tissue-specific expression patterns. Notably, RchiOBHm_Chr2g0168531 exhibited extremely high expression in stem tissue, while RchiOBHm_Chr7g0181371 showed preferential expression in flower tissue, suggesting specialized roles in stem development and floral organ formation, respectively. The cold-stress challenge of ‘Old Blush’ petals further disclosed pronounced up-regulation of seven RcZF-HD genes, attesting to their critical contribution to low-temperature tolerance. Conclusions: Integrative analyses furnish a multidimensional blueprint of the rose RcZF-HD repertoire, providing molecular landmarks for future functional dissection and ornamental trait engineering. Full article
(This article belongs to the Topic Genetic Breeding and Biotechnology of Garden Plants)
Show Figures

Figure 1

14 pages, 3718 KB  
Article
Identification of Stable QTLs and Candidate Genes for Heading Date in Wheat Using a 55K SNP-Genotyped Doubled Haploid Population
by Qiongyao Xiang, Shaoxin Wu, Yanhao Zhao, Fei Lu, Yurong Jiang, Xin Hu, Lei Yang and Junkang Rong
Agronomy 2026, 16(2), 188; https://doi.org/10.3390/agronomy16020188 - 13 Jan 2026
Viewed by 174
Abstract
Heading date (HD) is a key adaptive trait determining wheat regional suitability, yield stability, and resilience to environmental stresses. We dissected the genetic architecture of heading date (HD) by phenotyping a doubled haploid (DH) population (178 lines, CASL7AS × ZNL12) across five environments [...] Read more.
Heading date (HD) is a key adaptive trait determining wheat regional suitability, yield stability, and resilience to environmental stresses. We dissected the genetic architecture of heading date (HD) by phenotyping a doubled haploid (DH) population (178 lines, CASL7AS × ZNL12) across five environments and constructing a high-density genetic map with the wheat 55K SNP array. A total of 38 QTLs associated with HD were identified on 12 chromosomes, among which 10 were consistently detected across multiple environments. Two major stable loci, QHD.ZAFU.2B and QHD.ZAFU.4A, explained substantial phenotypic variation and were considered key regulators of heading time. Candidate gene analysis revealed Ppd-B1 (TraesCSU02G196100) as the causal gene for QHD.ZAFU.2B. Within QHD.ZAFU.4A, a zinc finger RNA-binding protein gene (TraesCS4A02G394400) exhibiting strong flag-leaf expression at the heading stage was identified as the most promising candidate. Notably, most favorable alleles were derived from ZNL12, highlighting its potential for breeding applications aimed at manipulating heading time. These results provide valuable genomic resources and molecular targets for marker-assisted selection aimed at optimizing flowering time and improving wheat adaptation. Full article
(This article belongs to the Special Issue Advances in Crop Molecular Breeding and Genetics—2nd Edition)
Show Figures

Figure 1

19 pages, 5997 KB  
Article
Zinc as a Biomarker of Nutritional Status and Clinical Burden in Recessive Dystrophic Epidermolysis Bullosa: Implications for Preventive Monitoring
by Lucía Quintana-Castanedo, Rocío Maseda, Silvia Sánchez-Ramón, Nora Butta, Marta Molero-Luis, María G. Crespo, Antonio Buño, Sara Herráiz-Gil, Carlos León, Alberto Varas, Lidia M. Fernández-Sevilla, Pilar Zuluaga, Raúl de Lucas, Marcela del Río, Ángeles Vicente, María J. Escámez and Rosa Sacedón
Nutrients 2026, 18(2), 232; https://doi.org/10.3390/nu18020232 - 12 Jan 2026
Viewed by 221
Abstract
Background/Objectives: Recessive dystrophic epidermolysis bullosa (RDEB) is a severe congenital genodermatosis characterized by skin and mucosa fragility, chronic inflammation, recurrent infections and high nutritional demands due to increased metabolism and epithelial barrier-related losses, placing patients at risk of zinc deficiency. We aimed [...] Read more.
Background/Objectives: Recessive dystrophic epidermolysis bullosa (RDEB) is a severe congenital genodermatosis characterized by skin and mucosa fragility, chronic inflammation, recurrent infections and high nutritional demands due to increased metabolism and epithelial barrier-related losses, placing patients at risk of zinc deficiency. We aimed to investigate the clinical relevance and biochemical determinants of zinc deficiency as a potentially modifiable contributor to disease burden in RDEB. Methods: In this cross-sectional study (n = 84), serum zinc levels were analyzed in association with sex, age, disease severity, percentage of body surface area (BSA) affected, inflammatory markers, infection burden, and common clinical complications including anemia and growth impairment. Results: Zinc deficiency, defined as levels below 670 µg/L, was identified in 35% of patients and became more frequent after age 5 and during adulthood, particularly among those with more severe disease. Deficiency was strongly associated with anemia, inflammation, infection burden, growth impairment, and extensive skin involvement. A revised cutoff of 780 µg/L is proposed, showing improved diagnostic performance for identifying patients at risk of systemic complications, and offering a more suitable threshold for starting preventive supplementation. Multivariate logistic modeling confirmed that low serum zinc independently predicted anemia risk, alongside transferrin saturation and C- reactive protein levels. Serum albumin was identified as the strongest determinant of zinc levels, partially mediating the effects of inflammation and skin involvement. Conclusions: These findings identify serum zinc as a clinically relevant marker of nutritional status and complication burden in RDEB. While no causal or therapeutic effects can be inferred from this cross-sectional study, the strong and biologically plausible associations observed suggest a rationale for systematic monitoring and correction of zinc deficiency as part of comprehensive supportive care, and warrant prospective studies to assess clinical benefit. Full article
(This article belongs to the Special Issue Advancing Knowledge of Zinc in Health and Disease)
Show Figures

Graphical abstract

23 pages, 25274 KB  
Article
EDDS-Enhanced Phytoremediation of Cd–Zn Co-Contaminated Soil by Sedum lineare: Mechanisms of Metal Uptake, Soil Improvement, and Microbial Community Modulation
by Haochen Shen, Ziyi Liu, Chen Wang, Ying Chu, Chuhan Zhang, Yang Yu and Shaohui Yang
Plants 2026, 15(2), 231; https://doi.org/10.3390/plants15020231 - 12 Jan 2026
Viewed by 120
Abstract
Soil co-contamination with cadmium (Cd) and zinc (Zn) poses serious threats to environmental safety and public health. This study investigates the enhancement effect and underlying mechanism of the biodegradable chelator Ethylenediamine-N,N′-disuccinic acid (EDDS) on phytoremediation of Cd-Zn contaminated soil using Sedum lineare. [...] Read more.
Soil co-contamination with cadmium (Cd) and zinc (Zn) poses serious threats to environmental safety and public health. This study investigates the enhancement effect and underlying mechanism of the biodegradable chelator Ethylenediamine-N,N′-disuccinic acid (EDDS) on phytoremediation of Cd-Zn contaminated soil using Sedum lineare. The results demonstrate that EDDS application (3.65 g·L−1) effectively alleviated metal-induced phytotoxicity by enhancing chlorophyll synthesis, activating antioxidant enzymes (catalase and dismutase), regulating S-nitrosoglutathione reductase activity, and promoting leaf protein synthesis, thereby improving photosynthetic performance and cellular integrity. The combined treatment significantly increased the bioavailability of Cd and Zn in soil, promoted their transformation into exchangeable fraction, and resulted in removal rates of 30.8% and 28.9%, respectively. EDDS also modified the interaction patterns between heavy metals and essential nutrients, particularly the competitive relationships through selective chelation between Cd/Zn and Fe/Mn during plant uptake. Soil health was substantially improved, as evidenced by reduced electrical conductivity, enhanced cation exchange capacity, and enriched beneficial microbial communities including Sphingomonadaceae. Based on the observed ion antagonism during metal uptake and translocation, this study proposes a novel “Nutrient Regulation Assisted Remediation” strategy to optimize heavy metal accumulation and improve remediation efficiency through rhizosphere nutrient management. These findings confirm the EDDS–S. lineare system as an efficient and sustainable solution for remediation of Cd–Zn co-contaminated soils. Full article
Show Figures

Figure 1

30 pages, 1935 KB  
Review
Metal Pollution in the Air and Its Effects on Vulnerable Populations: A Narrative Review
by Adriana Gonzalez-Villalva, Marcela Rojas-Lemus, Nelly López-Valdez, María Eugenia Cervantes-Valencia, Gabriela Guerrero-Palomo, Brenda Casarrubias-Tabarez, Patricia Bizarro-Nevares, Guadalupe Morales-Ricardes, Isabel García-Peláez, Martha Ustarroz-Cano, José Ángel Salgado-Hernández, Paulina Reséndiz Ramírez, Nancy Villafaña Guillén, Lorena Cevallos, Miranda Teniza and Teresa I. Fortoul
Int. J. Mol. Sci. 2026, 27(2), 720; https://doi.org/10.3390/ijms27020720 - 10 Jan 2026
Viewed by 393
Abstract
Particulate atmospheric pollution poses a global threat to human health. Metals enter the body through inhalation attached to these particles. Certain vulnerable groups are more susceptible to toxicity because of age, physiological changes, and chronic and metabolic diseases and also workers because of [...] Read more.
Particulate atmospheric pollution poses a global threat to human health. Metals enter the body through inhalation attached to these particles. Certain vulnerable groups are more susceptible to toxicity because of age, physiological changes, and chronic and metabolic diseases and also workers because of high and cumulative exposure to metals. A narrative review was conducted to examine the effects of key metals—arsenic, cadmium, chromium, copper, lead, mercury, manganese, nickel, vanadium, and zinc—on vulnerable populations, analyzing articles published over the past decade. Some of these metals are essential for humans; however, excessive levels are toxic. Other non-essential metals are highly toxic. Shared mechanisms of toxicity include competing with other minerals, oxidative stress and inflammation, and interacting with proteins and enzymes. Prenatal and childhood exposures are particularly concerning because they can interfere with neurodevelopment and have been associated with epigenetic changes that have long-term effects. Occupational exposure has been studied, but current exposure limits for specific metals appear dangerous, emphasizing the need to revise these standards. Older adults, pregnant women, and individuals with metabolic diseases are among the least studied groups in this review, underscoring the need for more research to understand these populations better and create effective public health policies. Full article
(This article belongs to the Special Issue Toxicity of Metals, Metal-Based Drugs, and Microplastics)
Show Figures

Figure 1

26 pages, 5063 KB  
Article
Blocking ASIP to Protect MC1R Signaling and Mitigate Melanoma Risk: An In Silico Study
by Farah Maarfi, Mohammed Cherkaoui, Sana Afreen and Mohd Yasir Khan
Pharmaceuticals 2026, 19(1), 114; https://doi.org/10.3390/ph19010114 - 8 Jan 2026
Viewed by 174
Abstract
Background: Melanin protects skin and hair from the effects of ultraviolet (UV) radiation damage, which contributes to all forms of skin cancer, including melanoma. Human melanocytes produce two main types of melanin: eumelanin provides effective photoprotection, and pheomelanin offers less protection against UV-induced [...] Read more.
Background: Melanin protects skin and hair from the effects of ultraviolet (UV) radiation damage, which contributes to all forms of skin cancer, including melanoma. Human melanocytes produce two main types of melanin: eumelanin provides effective photoprotection, and pheomelanin offers less protection against UV-induced skin damage. The agouti signaling protein (ASIP) antagonizes the melanocortin-1 receptor (MC1R), hinders melanocyte signaling, and shifts pigmentation toward pheomelanin, promoting UV vulnerability. In this study, we aim to discover compounds that inhibit ASIP–MC1R interaction and effectively preserve eumelanogenic signaling. Methods: The ASIP–MC1R interface-based pharmacophore model from ASIP is implicated in MC1R receptor protein engagement. We performed virtual screening with a validated pharmacophore model for ~4000 compounds curated from ZINCPharmer and applied drug-likeness filters, viz. ADMET and toxicity profiling tests. Further, the screened candidates were targeted for docking to the ASIP C-terminal domain corresponding to the MC1R-binding moiety. Top compounds underwent a 100-nanosecond (ns) run of molecular dynamics (MD) simulations to assess complex stability and persistence of key contacted residues. Results: Sequential triage, including pharmacophore, ADME–toxicity (ADMET), and docking/ΔG, yielded a focused group of candidates against ASIP antagonists with a favorable fit value. The MD run for 100 ns supported pose stability at the targeted pocket. Based on these predictions and analyses, compound ZINC14539068 was screened as a new potent inhibitor of ASIP to preserve α-MSH-mediated signaling of MC1R. Conclusions: Our in silico pipeline identifies ZINC14539068 as a potent inhibitor of ASIP at its C-terminal interface. This compound is predicted to disrupt ASIP–MC1R binding, thereby maintaining eumelanin-biased signaling. These findings motivate experimental validation in melanocytic models and in vivo studies to confirm pathway modulation and anti-melanoma potential. Full article
(This article belongs to the Section AI in Drug Development)
Show Figures

Graphical abstract

16 pages, 284 KB  
Article
Nutritional Properties of Edible Flowers from Five Pumpkin (Cucurbita sp.) Species
by Małgorzata Stryjecka, Monika Jaroszuk-Sierocińska, Anna Kiełtyka-Dadasiewicz, Barbara Krochmal-Marczak and Tomasz Cebulak
Foods 2026, 15(2), 219; https://doi.org/10.3390/foods15020219 - 8 Jan 2026
Viewed by 142
Abstract
Edible pumpkin flowers represent a promising but still underutilized source of nutrients and bioactive compounds. Despite their traditional culinary use in various regions of the world, comprehensive studies comparing the nutritional and chemical composition of flowers from different Cucurbita species are limited. This [...] Read more.
Edible pumpkin flowers represent a promising but still underutilized source of nutrients and bioactive compounds. Despite their traditional culinary use in various regions of the world, comprehensive studies comparing the nutritional and chemical composition of flowers from different Cucurbita species are limited. This study conducted a detailed chemical analysis of flowers from five pumpkin species: Cucurbita maxima (giant pumpkin), C. pepo (summer squash), C. moschata (butternut squash), C. ficifolia (fig-leaf gourd), and C. argyrosperma (cushaw squash). The analyses included the determination of basic nutritional components, amino acids, minerals, vitamins, and fatty acid profiles using standard analytical methods (AOAC, ISO, and HPLC). Significant interspecific differences were observed. The flowers of butternut squash exhibited the highest protein and fat contents, while the flowers of cushaw squash contained the largest amounts of dietary fiber and total sugars. Flowers of giant pumpkin were distinguished by their elevated contents of vitamin C and β-carotene. Amino acid analysis revealed a rich protein profile, particularly in cushaw squash, characterized by high lysine and cysteine levels, whereas fig-leaf gourd contained the greatest amounts of leucine and isoleucine. The fatty acid composition was dominated by oleic, stearic, and myristic acids, while a considerable proportion of linoleic acid (PUFA) indicated potential health benefits, such as anti-inflammatory effects. Mineral analysis showed that giant pumpkin was richest in potassium, summer squash in zinc, and butternut squash in calcium and sodium. The findings confirm that pumpkin flowers are a valuable source of nutrients and bioactive compounds. Their composition highlights their potential as functional food ingredients and as raw materials for use in the dietary, food, and pharmaceutical industries. Further studies on bioavailability and antioxidant capacity are recommended to better define their nutritional and functional value. Full article
15 pages, 1832 KB  
Article
QTL/Segment Mapping and Candidate Gene Analysis for Oil Content Using a Wild Soybean Chromosome Segment Substitution Line Population
by Cheng Liu, Jinxing Ren, Huiwen Wen, Changgeng Zhen, Wei Han, Xianlian Chen, Jianbo He, Fangdong Liu, Lei Sun, Guangnan Xing, Jinming Zhao, Junyi Gai and Wubin Wang
Plants 2026, 15(2), 177; https://doi.org/10.3390/plants15020177 - 6 Jan 2026
Viewed by 249
Abstract
Annual wild soybean, the ancestor of cultivated soybean, underwent a significant increase in seed oil content during domestication. To elucidate the genetic basis of this change, a chromosome segment substitution line population (177 lines) constructed with cultivated soybean NN1138-2 as recipient and wild [...] Read more.
Annual wild soybean, the ancestor of cultivated soybean, underwent a significant increase in seed oil content during domestication. To elucidate the genetic basis of this change, a chromosome segment substitution line population (177 lines) constructed with cultivated soybean NN1138-2 as recipient and wild soybean N24852 as donor was used in this study. Phenotypic evaluation across three distinct environments led to the identification of two major QTL/segments, qOC14 on chromosome 14 and qOC20 on chromosome 20, which collectively explained 39.46% of the phenotypic variation, with individual contributions of 17.87% and 21.59%, respectively. Both wild alleles exhibited negative additive effects, with values of −0.35% and −0.42%, respectively, consistent with the inherently low oil content of wild soybeans. Leveraging transcriptome and genome data from the two parents, two candidate genes were predicted. Notably, Glyma.14G179800 is a novel candidate gene encoding a PHD-type zinc finger domain-containing protein, and the hap-A haplotype exhibits a positive effect on oil content. In contrast, Glyma.20G085100 is a reported POWR1 gene, known to regulate protein and oil content. Our findings not only validate the role of known gene but, more importantly, unveil a new candidate gene, offering valuable genetic resources and theoretical targets for molecular breeding of high-oil soybean. Full article
Show Figures

Figure 1

17 pages, 2718 KB  
Review
The Zinc Finger Ran-Binding Protein 3 (ZRANB3): An Advanced Perspective
by Paride Pelucchi, Ettore Mosca, Nika Tomsič, Yossma Waheed, Wendalina Tigani, Alice Chiodi, Aditya Mojumdar, Marco Gerdol and Matteo De March
Int. J. Mol. Sci. 2026, 27(2), 574; https://doi.org/10.3390/ijms27020574 - 6 Jan 2026
Viewed by 332
Abstract
Human zinc finger Ran-binding protein 3 (ZRANB3) is crucial for DNA damage tolerance (DDT), as it prevents excessive damage, restores fork progression, and ultimately maintains genome stability. This unique and ancient architecture mainly exerts its function during replication fork reversal (RFR) and within [...] Read more.
Human zinc finger Ran-binding protein 3 (ZRANB3) is crucial for DNA damage tolerance (DDT), as it prevents excessive damage, restores fork progression, and ultimately maintains genome stability. This unique and ancient architecture mainly exerts its function during replication fork reversal (RFR) and within the p53/Polι axis; thus, ZRANB3 is considered a tumour suppressor. However, possible additional roles in DNA synthesis and cell metabolism have been proposed. In tumour cells, ZRANB3 gene expression is deregulated, a condition that is frequently associated with poor survival and adverse clinical outcomes. ZRANB3 can be altered by functional mutations, gene copy number alterations, and a combination of the two. Although its mRNA levels typically correlate with p53 expression, this correlation breaks down in the context of p53 mutations and high proliferative activity. This comprehensive review integrates the currently available yet fragmented literature on ZRANB3, both at the gene and protein levels, examines its regulation in cancer development, and discusses the evidence supporting its role as a tumour suppressor and prognostic biomarker. Full article
(This article belongs to the Special Issue Chromatin Remodelers as Players and Drivers in Pathological States)
Show Figures

Figure 1

12 pages, 472 KB  
Article
Assessment of Zinc Content in Food Supplements
by Anna Puścion-Jakubik, Katarzyna Kolenda, Katarzyna Socha and Renata Markiewicz-Żukowska
Foods 2026, 15(1), 151; https://doi.org/10.3390/foods15010151 - 2 Jan 2026
Viewed by 411
Abstract
Zinc (Zn) is an essential trace element that plays a key role as a cofactor for over 300 enzymes involved in metabolic processes, protein synthesis, and gene expression regulation. Zn supplementation is used in the prevention and treatment of infectious, dermatological, and reproductive [...] Read more.
Zinc (Zn) is an essential trace element that plays a key role as a cofactor for over 300 enzymes involved in metabolic processes, protein synthesis, and gene expression regulation. Zn supplementation is used in the prevention and treatment of infectious, dermatological, and reproductive system diseases. Legal regulations allow for a relatively wide range of mineral content in this product category (from −20% to +45% of the declared value). The study aimed to analyze the quality of food supplements containing Zn—compliance with declared Zn content was assessed. The study included 80 preparations. The preparations varied in terms of declared Zn content, pharmaceutical form, chemical form of Zn, composition, and primary mode of action. Zn content was determined by atomic absorption spectrometry after prior mineralization of the samples in concentrated nitric acid in a closed microwave system. It was estimated that 70% of food supplements contained Zn within the acceptable range. It should be emphasized that 23.75% of the preparations contained more Zn than the permissible range of Zn content, and 6.25% contained less—both of these groups of preparations may be associated with a health risk. From a regulatory perspective, these results highlight the need for continuous surveillance of the food supplement market to improve consumer safety. Full article
Show Figures

Figure 1

42 pages, 6170 KB  
Review
RNA-Binding Proteins in Dinoflagellates
by Mariia Berdieva, Pavel Safonov and Sergei Skarlato
Int. J. Mol. Sci. 2026, 27(1), 462; https://doi.org/10.3390/ijms27010462 - 1 Jan 2026
Viewed by 383
Abstract
The described features of dinoflagellate gene expression indicate the predominance of post-transcriptional and translational regulation over transcriptional control. These microorganisms also exhibit extensive RNA editing and distinctive splicing characteristics. This regulatory landscape underscores the central role of RNA-binding proteins in dinoflagellate biology. In [...] Read more.
The described features of dinoflagellate gene expression indicate the predominance of post-transcriptional and translational regulation over transcriptional control. These microorganisms also exhibit extensive RNA editing and distinctive splicing characteristics. This regulatory landscape underscores the central role of RNA-binding proteins in dinoflagellate biology. In this review, we summarize current knowledge on major RNA-binding protein groups identified or bioinformatically annotated in dinoflagellates, including RNA recognition motif domain-containing proteins, Sm and Sm-like family, KH domain-containing proteins, zinc-finger proteins, and Pumilio family proteins, S1 domain-containing and cold shock domain-containing proteins, DEAD/DEAH-box RNA helicases, and pentatricopeptide repeat proteins. We focus on the features of their conserved domains, their functions in eukaryotes, and available data on their presence and putative roles in dinoflagellate cells. Integrating genomic, transcriptomic, and proteomic evidence, and where possible experimental data, we highlight both their overall conservation and potential lineage-specific traits. Our aim is to provide a concise synthesis of current knowledge, identify key uncertainties, and outline promising directions for future research into the evolution and cellular roles of RNA-binding proteins in this ecologically and biologically remarkable group. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

16 pages, 3099 KB  
Article
Hermetia illucens Larvae Meal Enhances Colonic Antimicrobial Peptide Expression by Promoting Histone Acetylation in Weaned Piglets Challenged with ETEC in Pig Housing
by Qingsong Tang, Guixing Wu, Wentuo Xu, Jingxi Liu, Huiliang Liu, Bin Zhong, Qiwen Wu, Xuefeng Yang, Li Wang, Zongyong Jiang and Hongbo Yi
Animals 2026, 16(1), 118; https://doi.org/10.3390/ani16010118 - 31 Dec 2025
Viewed by 268
Abstract
The objective of this study was to investigate the effects of replacing fishmeal with H. illucens larval meal on the colonic immune homeostasis in weaned piglets in enterotoxigenic Escherichia coli (ETEC)-challenged pig housing. Seventy-two weaned piglets, aged 28 days, were randomly divided into [...] Read more.
The objective of this study was to investigate the effects of replacing fishmeal with H. illucens larval meal on the colonic immune homeostasis in weaned piglets in enterotoxigenic Escherichia coli (ETEC)-challenged pig housing. Seventy-two weaned piglets, aged 28 days, were randomly divided into three groups for dietary treatment: the basal diet (negative control, NC), the positive control diet (PC) supplemented with 1445 mg zinc/kg zinc oxide in the basal diet, and the H. illucens larval meal complete replacement of fishmeal in the basal diet (HILM), for 28 days in ETEC-challenged pig housing. The results showed that the relative transcript abundances of ZO-1, pBD2, PR39, and PG1–5 were increased (p < 0.05) in pigs fed the HILM diet compared with those fed the NC diet. In addition, the HILM diet reduced (p < 0.05) the serum contents of IL-8 and increased (p < 0.05) the serum contents of IL-10 and IgG compared with the NC diet. In terms of the molecular mechanisms by which immune homeostasis is improved, the p-NF-κB/ NF-κB ratio and TLR2 protein expression in the colon were decreased (p < 0.05) in pigs fed the HILM diet compared with those fed the NC diet. Compared with the NC diet, the HILM diet reduced (p < 0.05) the protein expression of HDAC3 and HDAC7 in the colon of pigs. The SIRT1, acH3K9, and pH3S10 protein expressions in the colon were the greatest (p < 0.05) in pigs fed the HILM diet compared with the NC diet. HILM diets improved the colonic immune homeostasis in weaned piglets by enhancing the antimicrobial peptide expression, thereby mitigating ETEC challenges in pig housing. Mechanistically, HILM diets promote antimicrobial peptide expression through increased histone acetylation (acH3K9 and pH3S10). Full article
Show Figures

Figure 1

15 pages, 6437 KB  
Article
In Situ Synthesis of ZnO Nanoparticles Using Soy Protein Isolate for Sustainable and Multifunctional Finishing of Hemp Fabrics
by Benjamas Klaykruayat, Penwisa Pisitsak, Pisutsaran Chitichotpanya and Ritthisak Klanthip
Polymers 2026, 18(1), 116; https://doi.org/10.3390/polym18010116 - 31 Dec 2025
Viewed by 280
Abstract
This study presents an environmentally sustainable finishing approach for hemp fabrics by combining soy protein isolate (SPI) pretreatment with an in situ infrared (IR)-assisted synthesis of zinc oxide nanoparticles (ZnO NPs). IR heating was employed to reduce energy consumption while promoting efficient nanoparticle [...] Read more.
This study presents an environmentally sustainable finishing approach for hemp fabrics by combining soy protein isolate (SPI) pretreatment with an in situ infrared (IR)-assisted synthesis of zinc oxide nanoparticles (ZnO NPs). IR heating was employed to reduce energy consumption while promoting efficient nanoparticle formation compared to conventional thermal processing, while SPI acted as a bio-based stabilizer to enable uniform ZnO NP distribution on the fabric surface. Transmission electron microscopy revealed predominantly spherical to polyhedral ZnO NPs with minimal agglomeration, and X-ray diffraction confirmed their characteristic wurtzite crystalline structure. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy mapping further verified the homogeneous deposition of ZnO NPs on hemp fibers. The treated fabrics exhibited multifunctional performance, showing significantly enhanced ultraviolet (UV) protection with a UV protection factor (UPF) of 50+ compared with untreated hemp. Antibacterial activity against Staphylococcus aureus and Escherichia coli was confirmed by the AATCC TM147 test, while a quantitative AATCC TM100 assessment demonstrated an excellent antibacterial efficiency of 99.99% bacterial reduction against S. aureus. Additionally, the incorporation of 2 wt% SPI significantly improved fabric hydrophilicity and wettability. Overall, this work demonstrates a green and effective strategy for producing antibacterial and UV-protective hemp textiles. Full article
(This article belongs to the Special Issue Technical Textile Science and Technology)
Show Figures

Figure 1

19 pages, 1947 KB  
Review
Phosphate and Inflammation in Health and Kidney Disease
by Carlos Novillo-Sarmiento, Raquel M. García-Sáez, Antonio Rivas-Domínguez, Ana Torralba-Duque, Cristian Rodelo-Haad, María E. Rodríguez-Ortiz, Juan R. Muñoz-Castañeda and M. Victoria Pendón-RuizdeMier
Int. J. Mol. Sci. 2026, 27(1), 408; https://doi.org/10.3390/ijms27010408 - 30 Dec 2025
Viewed by 373
Abstract
Phosphate is emerging as an active mediator of oxidative stress and vascular injury in chronic kidney disease (CKD). This emerging pathophysiological framework, referred to as “Phosphatopathy”, describes the systemic syndrome driven by chronic phosphate overload and characterized by oxidative stress, inflammation, endothelial dysfunction, [...] Read more.
Phosphate is emerging as an active mediator of oxidative stress and vascular injury in chronic kidney disease (CKD). This emerging pathophysiological framework, referred to as “Phosphatopathy”, describes the systemic syndrome driven by chronic phosphate overload and characterized by oxidative stress, inflammation, endothelial dysfunction, vascular calcification, cellular senescence, and metabolic imbalance. Beyond being a biochemical marker, phosphate overload triggers NOX-derived reactive oxygen species (ROS), activates Wnt/β-catenin and TGF-β signaling, and disrupts the FGF23–Klotho axis, promoting endothelial dysfunction, vascular calcification, and left ventricular hypertrophy (LVH). These pathways converge with systemic inflammation and energy imbalance, contributing to the malnutrition–inflammation–atherosclerosis (MIA) syndrome. Experimental and clinical data reveal that the phosphate/urinary urea nitrogen (P/UUN) ratio is a sensitive biomarker of inorganic phosphate load, while emerging regulators such as microRNA-125b and calciprotein particles integrate phosphate-driven oxidative and inflammatory responses. Therapeutic strategies targeting phosphate burden—rather than serum phosphate alone—include dietary restriction of inorganic phosphate, non-calcium binders, magnesium and zinc supplementation, and activation of important pathways related to the activation of antioxidant defense such as AMP-activated protein kinase (AMPK) and SIRT1. This integrative framework redefines phosphate as a modifiable upstream trigger of oxidative and metabolic stress in CKD. Controlling phosphate load and redox imbalance emerges as a convergent strategy to prevent vascular calcification, improve arterial stiffness, and reduce cardiovascular risk through personalized, mechanism-based interventions. Full article
(This article belongs to the Special Issue Oxidative Stress and Inflammation in Health and Disease)
Show Figures

Figure 1

18 pages, 4462 KB  
Article
Genome-Wide Identification of the Double B-Box (DBB) Family in Three Cotton Species and Functional Analysis of GhDBB22 Under Salt Stress
by Haijun Zhang, Xuerui Wu, Jiahao Yang, Mengxue He, Na Wang, Jie Liu, Jinnan Song, Liyan Yu, Wenjuan Chi and Xianliang Song
Plants 2026, 15(1), 109; https://doi.org/10.3390/plants15010109 - 30 Dec 2025
Viewed by 259
Abstract
Salt stress causes harm to plants through multiple aspects, such as osmotic pressure, ion poisoning, nutrient imbalance, and oxidative damage. Zinc finger proteins harboring two B-box domains, known as double B-box (DBB) proteins, constitute the DBB family. While DBB genes have been implicated [...] Read more.
Salt stress causes harm to plants through multiple aspects, such as osmotic pressure, ion poisoning, nutrient imbalance, and oxidative damage. Zinc finger proteins harboring two B-box domains, known as double B-box (DBB) proteins, constitute the DBB family. While DBB genes have been implicated in regulating circadian rhythms and stress responses in various plant species, their functions in cotton remain largely unexplored. The present study characterized the DBB gene family across the genomes of Gossypium hirsutum L., Gossypium raimondii L., and Gossypium arboreum L., revealing a complement of 58 members. These DBB genes were assigned to three separate clades based on phylogenetic analysis. Members possessing close phylogenetic relationships have similar conserved protein motifs and gene structures. All DBB proteins were predicted to be nuclear-localized, consistent with their roles as transcription factors. Furthermore, the presence of multiple cis-acting elements related to light, hormone, and stress responses in the promoters implies that GhDBBs are integral to cotton’s environmental stress adaptation. Expression pattern analysis indicated that the expression of GhDBB genes was associated with the plant’s response to multiple abiotic stresses, such as salt, drought, heat (37 °C), and cold (4 °C). The reliability of the expression data was confirmed by qPCR analysis of eight selected GhDBBs. Under 200 mM NaCl, Arabidopsis plants overexpressing GhDBB22 displayed longer roots and healthier true leaves than the wild-type controls. Conversely, VIGS-mediated silencing of GhDBB22 in G. hirsutum led to significantly reduced salt tolerance, accompanied by exacerbated oxidative damage. Taken together, the findings from our integrated genomic and functional analyses provide a foundational understanding of the molecular mechanisms through which proteins encoded by DBB genes are involved in the plant’s response to salt stress. Full article
(This article belongs to the Special Issue Plant Functioning Under Abiotic Stress)
Show Figures

Figure 1

Back to TopTop