Nutritional Properties of Edible Flowers from Five Pumpkin (Cucurbita sp.) Species
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemical Composition Analysis (Moisture, Ash, Fat, Protein, Fiber, Carbohydrates, and Total Sugars)
2.3. Amino Acid Analysis
2.4. Fatty Acid Composition Analysis
2.4.1. Lipid Extraction
2.4.2. Preparation of Fatty Acid Methyl Esters (FAMEs)
2.4.3. Gas Chromatography (GC) Analysis
- •
- Injector temperature: 250 °C; split ratio: 50:1.
- •
- Carrier gas: helium at 1.0 mL·min−1.
- •
- Temperature program: initial temperature 120 °C (held for 1 min), increased at 10 °C·min−1 to 175 °C (held for 10 min), then increased at 5 °C·min−1 to 210 °C and held for 5 min.
- •
- Detector temperature: 260 °C.
2.5. Determination of Vitamins
2.5.1. Determination of Vitamin C (Ascorbic Acid)
2.5.2. Determination of B-Group Vitamins (B1, B2, B3, B6, and B9)
2.5.3. Determination of β-Carotene
2.6. Determination of Mineral Components
2.7. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition of Fresh Pumpkin Flowers
3.2. Amino Acid Profile of Pumpkin Flowers
3.3. Mineral Components
3.4. Vitamin Content
| Vitamins | Giant Pumpkin | Summer Squash | Butternut Squash | Fig-Leaf Gourd | Cushaw Squash |
|---|---|---|---|---|---|
| (mg 100 g−1 DW) | |||||
| B1 | 0.053 ± 0.006 d | 0.035 ± 0.005 b | 0.075 ± 0.005 e | 0.027 ± 0.003 a | 0.037 ± 0.006 c |
| B2 | 0.136 ± 0.004 c | 0.128 ± 0.004 b | 0.157 ± 0.012 d | 0.112 ± 0.003 a | 0.158 ± 0.004 d |
| B3 | 0.665 ± 0.013 d | 0.572 ± 0.010 b | 0.782 ± 0.007 e | 0.440 ± 0.004 a | 0.621 ± 0.012 c |
| B6 | 0.100 ± 0.002 c | 0.088 ± 0.004 a | 0.127 ± 0.004 e | 0.091 ± 0.003 b | 0.116 ± 0.005 d |
| B9 | 0.057 ± 0.001 c | 0.054 ± 0.001 b | 0.066 ± 0.001 e | 0.041 ± 0.002 a | 0.062 ± 0.001 d |
| β-carotene | 3.52 ± 0.042 e | 2.80 ± 0.032 a | 3.14 ± 0.03 c | 3.02 ± 0.08 b | 3.36 ± 0.03 d |
| C | 25.50 ± 0.08 e | 12.34 ± 0.04 a | 21.31 ± 0.074 c | 13.59 ± 0.030 b | 23.50 ± 0.051 d |
3.5. Fatty Acid Profile
3.6. Comparison of the Nutrition of Pumpkin Flowers with Other Edible Flowers
- •
- Functional ingredients in bakery, confectionery, and ready-to-eat products;
- •
- Nutritional enhancers in soups, purees, and sauces;
- •
- Sources of natural antioxidants in food preservation systems;
- •
- Botanical raw materials for dietary supplements targeting micronutrient intake.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stryjecka, M.; Krochmal-Marczak, B.; Cebulak, T.; Kiełtyka-Dadasiewicz, A. Assessment of Phenolic Acid Content and Antioxidant Properties of the Pulp of Five Pumpkin Species Cultivated in Southeastern Poland. Int. J. Mol. Sci. 2023, 24, 8621. [Google Scholar] [CrossRef]
- Stryjecka, M. Chemical Composition and Antioxidant Properties of Peels of Five Pumpkin (Cucurbita sp.) Species. Foods 2025, 14, 2023. [Google Scholar] [CrossRef]
- Lira, R.; Andrés, A.G.; Casas, A. Ethnobotany of Mexico: Interactions of People and Plants in Mesoamerica; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Mlcek, J.; Rop, O. Fresh edible flowers of ornamental plants—A new source of nutraceutical foods. Trends Food Sci. Technol. 2011, 22, 561–569. [Google Scholar] [CrossRef]
- Marchioni, I.; Gabriele, M.; Carmassi, G.; Ruffoni, B.; Pistelli, L.; Pistelli, L.; Najar, B. Phytochemical, Nutritional and Mineral Content of Four Edible Flowers. Foods 2024, 13, 939. [Google Scholar] [CrossRef]
- Gavril, R.N.; Stoica, F.; Lipșa, F.D.; Constantin, O.E.; Stănciuc, N.; Aprodu, I.; Râpeanu, G. Pumpkin and Pumpkin By-Products: A Comprehensive Overview of Phytochemicals, Extraction, Health Benefits, and Food Applications. Foods 2024, 13, 2694. [Google Scholar] [CrossRef] [PubMed]
- Dotto, J.M.; Chacha, J.S. The potential of pumpkin seeds as a functional food ingredient: A review. Sci. Afr. 2020, 10, e00575. [Google Scholar] [CrossRef]
- Kim, M.Y.; Kim, E.J.; Kim, Y.N.; Choi, C.; Lee, B.H. Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutr. Res. Pract. 2012, 6, 21–27. [Google Scholar] [CrossRef]
- Ninfali, P.; Angelino, D. Nutritional and functional potential of Beta vulgaris cicla and rubra. Fitoterapia 2013, 89, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Rop, O.; Mlcek, J.; Jurikova, T.; Neugebauerova, J.; Vabkova, J. Edible flowers—A new promising source of mineral elements in human nutrition. Molecules 2012, 17, 6672–6683. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortifying crops with essential mineral elements. Trends Plant Sci. 2005, 10, 586–593. [Google Scholar] [CrossRef]
- AOAC International. Moisture in Foods, Air Oven Method (Method 925.10). In Official Methods of Analysis, 22nd ed.; AOAC International: Gaithersburg, MD, USA, 2023; pp. 10–12. [Google Scholar] [CrossRef]
- AOACINTERNATIONAL AOAC Official Method 942.05, Ash (Ash in Animal Feed). In Official Methods of Analysis of AOAC INTERNATIONAL, 22nd ed.; AOAC International: Gaithersburg, MD, USA, 2023. [CrossRef]
- AOAC International. Protein (Total) in Food, Kjeldahl Method (Method 928.08). In Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2001; pp. 15–16. [Google Scholar]
- AOAC International. Fat in Food (920.39). In Official Methods of Analysis, 21st ed.; AOAC International: Gaithersburg, MD, USA, 2019; pp. 10–15. [Google Scholar] [CrossRef]
- AOAC International. Total Dietary Fiber in Foods, Enzymatic-Gravimetric Method (Method 991.43). In Official Methods of Analysis, 22nd ed.; AOAC International: Gaithersburg, MD, USA, 2022; pp. 40–45. [Google Scholar] [CrossRef]
- Yemm, E.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef]
- Jeannerod, L.; Carlier, A.; Schatz, B.; Daise, C.; Richel, A.; Agnan, Y.; Baude, M.; Jacquemart, A.-L. Some bee-pollinated plants provide nutritionally incomplete pollen amino acid resources to their pollinators. PLoS ONE 2022, 17, e0269992. [Google Scholar] [CrossRef]
- AOAC International. AOAC Official Method 920.39 Fat (Crude) or Ether Extract in Animal Feed; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- ISO 12966-2:2017; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters Part 2: Preparation of Methyl Esters of Fatty Acids. ISO: Geneva, Switzerland, 2017.
- Tarrago-Trani, M.T.; Phillips, K.M.; Cotty, M. Matrix-specific method validation for quantitative analysis of vitamin C in diverse foods. J. Food Compos. Anal. 2012, 26, 2–25. [Google Scholar] [CrossRef]
- Sami, R.; Yang, L.; Baokun, Q.; Shengnan, W.; Qiaozhi, Z.; Feifei, H.; Ma, Y.; Jing, J.; Jiang, L. HPLC analysis of water-solublevitamins (B2, B3, B6, B12, and C) and fat-soluble vitamins (E, K, D, A, and β-Carotene) of Okra (Abelmoschus esculentus). J. Chem. 2014, 2014, 831357. [Google Scholar] [CrossRef]
- Wu, S.; Feng, X.; Wittmeier, A. Microwave Digestion of Plant and Grain Reference Materials in Nitric Acid or a Mixture of Nitric Acid and Hydrogen Peroxide for the Determination of Multi-elements by Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spectrom. 1997, 12, 797–806. [Google Scholar] [CrossRef]
- Kar, S.; Dutta, S.; Yasmin, R. A comparative study on phytochemicals and antioxidant activity of different parts of pumpkin (Cucurbita maxima). Food Chem. Adv. 2023, 3, 100505. [Google Scholar] [CrossRef]
- Bieżanowska-Kopeć, R.; Ambroszczyk, A.M.; Piątkowska, E.; Leszczyńska, T. Nutritional Value and Antioxidant Activity of Fresh Pumpkin Flowers (Cucurbita sp.) Grown in Poland. Appl. Sci. 2022, 12, 6673. [Google Scholar] [CrossRef]
- Ghosh, P.; Singh, S. Physicochemical, nutritional, bioactive compounds and fatty acid profiling of pumpkin flower (Cucurbita maxima) as a potential functional food. SN Appl. Sci. 2021, 3, 216. [Google Scholar] [CrossRef]
- Stryjecka, M.; Cebulak, T.; Krochmal-Marczak, B.; Kiełtyka-Dadasiewicz, A. Antioxidant Properties and Antinutritional Components of Flowers from Five Pumpkin Species. Antioxidants 2025, 14, 1353. [Google Scholar] [CrossRef] [PubMed]
- Kopczyńska, K.; Średnicka-Tober, D.; Hallmann, E.; Wilczak, J.; Wasiak-Zys, G.; Wyszyński, Z.; Kucińska, K.; Perzanowska, A.; Szacki, P.; Barański, M.; et al. Bioactive Compounds, Sugars, and Sensory Attributes of Organic and Conventionally Produced Courgette (Cucurbita pepo). Foods 2021, 10, 2475. [Google Scholar] [CrossRef]
- Shewry, P.R.; Halford, N.G. Cereal seed storage proteins: Structures, properties and role in grain utilization. J. Exp. Bot. 2002, 53, 947–958. [Google Scholar] [CrossRef]
- Young, V.R.; Pellett, P.L. Plant proteins in relation to human protein and amino acid nutrition. Am. J. Clin. Nutr. 1994, 59, 1203S–1212S. [Google Scholar] [CrossRef]
- Tome, D. Protein, amino acids and the control of food intake. Br. J. Nutr. 2004, 92, S27–S30. [Google Scholar] [CrossRef]
- Reeds, P.J.; Burrin, D.G.; Stoll, B.; Jahoor, F. Intestinal glutamate metabolism. J. Nutr. 2000, 130, 978S–982S. [Google Scholar] [CrossRef]
- FAO/WHO. Protein Quality Evaluation: Report of the Joint FAO/WHO Expert Consultation; FAO Food and Nutrition Paper 92; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Schaafsma, G. The protein digestibility-corrected amino acid score. J. Nutr. 2000, 130, 1865S–1867S. [Google Scholar] [CrossRef]
- Glew, R.H.; Glew, R.S.; Chuang, L.T.; Huang, Y.S.; Millson, M.; Constans, D.; VanderJagt, D.J. Amino acid, mineral and fatty acid content of pumpkin seeds (Cucurbita spp.) and Cyperus esculentus nuts in the Republic of Niger. Plant Foods Hum. Nutr. 2006, 61, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Discovery of human zinc deficiency: Its impact on human health and disease. Adv. Nutr. 2013, 1, 176–190. [Google Scholar] [CrossRef]
- Houston, M.C. The Importance of Potassium in Managing Hypertension. Curr. Hypertens. Rep. 2011, 13, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Volpe, S.L. Magnesium in disease prevention and overall health. Adv. Nutr. 2013, 4, 378S–383S. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P. Calcium needs of the elderly to reduce fracture risk. J. Am. Coll. Nutr. 2001, 20, 192S–197S. [Google Scholar] [CrossRef]
- Whelton, P.K.; Appel, L.J.; Sacco, R.L.; Anderson, C.A.M.; Antman, E.M.; Campbell, N.; Dubar, S.B.; Frohlich, E.D.; Hall, J.E.; Jessup, M.; et al. Sodium, blood pressure, and cardiovascular disease: Further evidence supporting the American Heart Association sodium reduction recommendations. Circulation 2012, 126, 2880–2889. [Google Scholar] [CrossRef]
- Hurley, L.S.; Keen, C.L. Trace Elements in Human and Animal Nutrition, 5th ed.; Mertz, W., Ed.; Academic Press: Cambridge, MA, USA, 1987; Volume 1, pp. 185–223. [Google Scholar]
- Ninčević Grassino, A.; Rimac Brnčić, S.; Badanjak Sabolović, M.; Šic Žlabur, J.; Marović, R.; Brnčić, M. Carotenoid Content and Profiles of Pumpkin Products and By-Products. Molecules 2023, 28, 858. [Google Scholar] [CrossRef]
- Rodríguez-Amaya, D.B. Update on natural food pigments—A mini-review on carotenoids, anthocyanins, and betalains. Food Res. Int. 2019, 124, 200–205. [Google Scholar] [CrossRef]
- Slavin, L.S.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef]
- Kaur, C.; Kapoor, H.C. Antioxidants in Fruits and Vegetables-the Millennium’s Health. Int. J. Food Sci. Technol. 2001, 36, 703–725. [Google Scholar] [CrossRef]
- Stevenson, D.G.; Eller, F.J.; Wang, L.; Jane, J.L.; Wang, T.; Inglett, G.E. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. J. Agric. Food Chem. 2007, 55, 4005–4013. [Google Scholar] [CrossRef]
- Hossen, J.; Ali, M.A.; Othman, N.H.; Noor, A.M. Oxidative stability and compositional characteristics of oil from microwave irradiated black cumin seed under accelerated oxidation condition. Grasas Aceites 2023, 74, e493. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Dayrit, F.M. The properties of lauric acid and their significance in coconut oil. J. Am. Oil Chem. Soc. 2015, 92, 1–15. [Google Scholar] [CrossRef]
- Adnan, M.; Gul, S.; Batool, S.; Fatima, B.; Rehman, A.; Yaqoob, S.; Shabir, H.; Yousaf, T.; Mussarat, S.; Ali, N.; et al. A review on the ethnobotany, phytochemistry, pharmacology and nutritional composition of Cucurbita pepo L. J. Phytopharm. 2017, 6, 133–139. [Google Scholar] [CrossRef]
| Proximate Analysis (g 100 g−1 FW) | Giant Pumpkin | Summer Squash | Butternut Squash | Fig-Leaf Gourd | Cushaw Squash |
|---|---|---|---|---|---|
| Moisture | 84.82 ± 0.05 b | 83.53 ± 0.23 c | 85.32 ± 0.03 a | 82.61 ± 0.06 d | 81.97 ± 0.08 e |
| Ash | 1.11 ± 0.02 d | 0.94 ± 0.04 e | 1.56 ± 0.06 b | 1.96 ± 0.08 a | 1.38 ± 0.02 c |
| Protein | 2.11 ± 0.025 c | 2.04 ± 0.011 d | 2.17 ± 0.012 a | 2.09 ± 0.015 c | 2.15 ± 0.012 ac |
| Fat | 0.15 ± 0.01 c | 0.24 ± 0.02 b | 0.28 ± 0.006 a | 0.18 ± 0.01 c | 0.22 ± 0.01 b |
| Fiber | 0.90 ± 0.02 b | 0.97 ± 0.01 a | 0.85 ± 0.01 c | 0.94 ± 0.01 a | 0.98 ± 0.006 a |
| Carbohydrate | 4.20 ± 0.1 a | 4.30 ± 0.00 a | 4.18 ± 0.03 a | 4.24 ± 0.03 a | 4.02 ± 0.06 b |
| Total sugar | 1.91 ± 0.04 d | 2.17 ± 0.03 b | 1.16 ± 0.03 e | 2.06 ± 0.03 c | 2.45 ± 0.02 a |
| Amino Acids | Giant Pumpkin | Summer Squash | Butternut Squash | Fig-Leaf Gourd | Cushaw Squash |
|---|---|---|---|---|---|
| (mg 100 g−1) | |||||
| Aspartic acid | 12.88± 0.06 c | 8.17 ± 0.07 e | 12.97 ± 0.02 b | 11.32 ± 0.12 d | 14.34 ± 0.04 a |
| Threonine | 3.88 ± 0.05 d | 4.21 ± 0.04 b | 3.58 ± 0.03 e | 3.96 ± 0.01 c | 4.33 ± 0.03 a |
| Serine | 6.41 ± 0.03 d | 6.59 ± 0.03 b | 6.74 ± 0.02 a | 6.21 ± 0.02 e | 6.55 ± 0.01 c |
| Glutamic acid | 27.91 ± 0.04 a | 24.16 ± 0.04 e | 26.32 ± 0.03 c | 27.51 ± 0.04 b | 25.53 ± 0.04 d |
| Glycine | 5.91 ± 0.05 a | 5.76 ± 0.04 b | 5.65 ± 0.01 c | 5.58 ± 0.03 c | 5.49 ± 0.02 d |
| Alanine | 7.56 ± 0.05 c | 7.29 ± 0.05 d | 7.65 ± 0.01 b | 7.77 ± 0.02 a | 7.20 ± 0.03 e |
| Cysteine | 1.09 ± 0.02 e | 1.32 ± 0.03 c | 1.14 ± 0.02 d | 1.40 ± 0.01 b | 1.50 ± 0.02 a |
| Valine | 6.05 ± 0.07 b | 5.53 ± 0.06 e | 5.66 ± 0.02 d | 6.32 ± 0.03 a | 5.88 ± 0.04 c |
| Methiionine | 1.69 ± 0.04 c | 1.94 ± 0.02 a | 1.55 ± 0.02 d | 1.75 ± 0.01 b | 1.89 ± 0.02 a |
| Isoleucine | 4.22 ± 0.03 d | 4.56 ± 0.04 b | 4.39 ± 0.02 c | 4.70 ± 0.02 a | 4.59 ± 0.02 b |
| Leucine | 8.51 ± 0.02 c | 7.98 ± 0.04 e | 8.43 ± 0.03 d | 8.90 ± 0.04 a | 8.77 ± 0.03 b |
| Tyrosine | 3.41 ± 0.04 c | 3.54 ± 0.01 b | 3.42 ± 0.02 c | 3.79 ± 0.03 a | 3.38 ± 0.03 c |
| Phenylalanine | 5.45 ± 0.02 d | 5.14 ± 0.03 e | 5.63 ± 0.02 c | 5.84 ± 0.02 b | 5.94 ± 0.03 a |
| Histydyne | 4.90 ± 0.02 a | 4.55 ± 0.03 c | 4.70 ± 0.02 b | 4.92 ± 0.01 a | 4.31 ± 0.02 d |
| Lysine | 6.80 ± 0.03 e | 7.05 ± 0.06 c | 7.29 ± 0.03 b | 6.92 ± 0.03 d | 7.45 ± 0.01 a |
| Arginine | 5.25 ± 0.01 a | 5.05 ± 0.06 c | 5.15 ± 0.01 b | 4.92 ± 0.03 d | 4.65 ± 0.03 e |
| Proline | 4.89 ± 0.01 c | 4.96 ± 0.03 b | 4.70 ± 0.01 d | 5.14 ± 0.02 a | 4.58 ± 0.03 e |
| Minerals | Giant Pumpkin | Summer Squash | Butternut Squash | Fig-Leaf Gourd | Cushaw Squash |
|---|---|---|---|---|---|
| (mg 100 g−1 FW) | |||||
| Zn | 0.91 ± 0.03 b | 1.21 ± 0.03 a | 0.84 ± 0.01 c | 0.79 ± 0.02 d | 0.64 ± 0.02 e |
| Fe | 1.90 ± 0.02 a | 1.21 ± 0.02 d | 1.44 ± 0.02 c | 0.98 ± 0.02 e | 1.63 ± 0.01 b |
| K | 372.63 ± 4.18 a | 217.07 ± 4.20 d | 313.07 ± 3.49 b | 187.15 ± 6.42 e | 247.42 ± 2.81 c |
| Mn | 0.28 ± 0.03 c | 0.23 ± 0.02 d | 0.31 ± 0.01 b | 0.17 ± 0.03 e | 0.33 ± 0.30 a |
| Mg | 22.59 ± 0.04 d | 26.40 ± 0.08 b | 25.53 ± 0.28 c | 29.12 ± 0.12 a | 20.37 ± 0.09 e |
| Ca | 24.21 ± 0.05 b | 21.14 ± 0.01 c | 27.31 ± 0.16 a | 21.11 ± 0.04 c | 21.18 ± 0.04 c |
| Na | 10.04 ± 0.08 b | 9.20 ± 0.04 c | 11.35 ± 0.05 a | 8.18 ± 0.02 d | 8.21 ± 0.02 e |
| Fatty Acids | Giant Pumpkin | Summer Squash | Butternut Squash | Fig-Leaf Gourd | Cushaw Squash |
|---|---|---|---|---|---|
| % | |||||
| Capric acid (C10:0) | 1.32 ± 0.04 e | 2.17 ± 0.02 b | 2.89 ± 0.04 a | 1.80 ± 0.03 c | 1.54 ± 0.04 d |
| Lauric acid C12:0) | 2.62 ± 0.03 c | 2.24 ± 0.04 d | 2.91 ± 0.03 b | 2.18 ± 0.05 e | 2.95 ± 0.04 a |
| Myristic acid (C14:0) | 16.24 ± 0.06 d | 16.66 ± 0.02 b | 16.44 ± 0.02 c | 15.31 ± 0.06 e | 16.93 ± 0.06 a |
| Palmitic acid (C16:0) | 4.61 ± 0.05 b | 4.91 ± 0.04 a | 4.46 ± 0.03 c | 4.26 ± 0.03 e | 4.37 ± 0.02 d |
| Palmitoleic acid(C16:1 n-7 cis) | 4.41 ± 0.04 b | 4.66 ± 0.01 a | 4.35 ± 0.04 c | 4.21 ± 0.04 e | 4.24 ± 0.01 d |
| Stearic acid (C18:0) | 15.49 ± 0.04 d | 15.83 ± 0.04 b | 15.35 ± 0.03 e | 15.93 ± 0.04 a | 15.61 ± 0.05 c |
| Oleic acid (C18:1 n-9 cis) | 23.12 ± 0.05 b | 21.63 ± 0.02 e | 21.91 ± 0.03 d | 23.50 ± 0.04 a | 22.79 ± 0.05 c |
| Linoleic acid (C18:2 n-6 cis) | 9.65 ± 0.02 a | 9.22 ± 0.05 e | 9.44 ± 0.02 b | 9.28 ± 0.01 d | 9.36 ± 0.02 c |
| Arachidic acid (C20:0) | 6.36 ± 0.01 c | 6.63 ± 0.02 b | 6.25 ± 0.03 e | 6.73 ± 0.01 a | 6.30 ± 0.03 d |
| Heneicosanoic acid (C21:0) | 12.50 ± 0.04 d | 12.13 ± 0.02 e | 12.80 ± 0.03 b | 12.95 ± 0.04 a | 12.76 ± 0.01 c |
| Behenic acid (C22:0) | 3.68 ± 0.03 c | 3.92 ± 0.04 a | 3.20 ± 0.03 d | 3.85 ± 0.02 b | 3.15 ± 0.04 e |
| MUFA | 27.53 | 26.29 | 26.26 | 27.71 | 27.03 |
| PUFA | 9.65 | 9.22 | 9.44 | 9.28 | 9.36 |
| SFA | 62.82 | 64.49 | 64.30 | 62.01 | 63.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Stryjecka, M.; Jaroszuk-Sierocińska, M.; Kiełtyka-Dadasiewicz, A.; Krochmal-Marczak, B.; Cebulak, T. Nutritional Properties of Edible Flowers from Five Pumpkin (Cucurbita sp.) Species. Foods 2026, 15, 219. https://doi.org/10.3390/foods15020219
Stryjecka M, Jaroszuk-Sierocińska M, Kiełtyka-Dadasiewicz A, Krochmal-Marczak B, Cebulak T. Nutritional Properties of Edible Flowers from Five Pumpkin (Cucurbita sp.) Species. Foods. 2026; 15(2):219. https://doi.org/10.3390/foods15020219
Chicago/Turabian StyleStryjecka, Małgorzata, Monika Jaroszuk-Sierocińska, Anna Kiełtyka-Dadasiewicz, Barbara Krochmal-Marczak, and Tomasz Cebulak. 2026. "Nutritional Properties of Edible Flowers from Five Pumpkin (Cucurbita sp.) Species" Foods 15, no. 2: 219. https://doi.org/10.3390/foods15020219
APA StyleStryjecka, M., Jaroszuk-Sierocińska, M., Kiełtyka-Dadasiewicz, A., Krochmal-Marczak, B., & Cebulak, T. (2026). Nutritional Properties of Edible Flowers from Five Pumpkin (Cucurbita sp.) Species. Foods, 15(2), 219. https://doi.org/10.3390/foods15020219

