Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = zinc metallurgy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6738 KiB  
Article
Development of Zn-Reinforced Mg Matrix Composites via High Energy Ball Milling Duration: Impact on Mechanical Properties and Biodegradability
by S. Bilal Çetinkal, Emin Salur, Gökhan Arıcı, Ahmed Degnah, Sayan Sarkar and Halit Sübütay
Coatings 2025, 15(5), 561; https://doi.org/10.3390/coatings15050561 - 8 May 2025
Viewed by 686
Abstract
In this study, Zn-reinforced Mg matrix composite materials were produced via powder metallurgy by exposing them to ball milling at varying mechanical milling times. Following ball milling, the powders were cold-pressed under 600 MPa to obtain green compacts. The sintering process was carried [...] Read more.
In this study, Zn-reinforced Mg matrix composite materials were produced via powder metallurgy by exposing them to ball milling at varying mechanical milling times. Following ball milling, the powders were cold-pressed under 600 MPa to obtain green compacts. The sintering process was carried out in a tube furnace under an argon atmosphere at 500 °C for 120 min. The effects of different milling times (2 h, 4 h, and 8 h) on particle and grain size, as well as the influence of sintering temperature and time on the microstructure, were investigated through SEM analysis. Phase evolution and changes in crystal planes occurring after ball milling were revealed by XRD analysis. SEM images show that Zn particles were homogeneously distributed within the matrix after 8 h of milling. Furthermore, it can be clearly stated that the highest hardness values were obtained from the samples produced after 8 h of milling. The sample group with the highest density, least mass loss, and lowest degradation rate was obtained from materials produced from 4 h ball milled powders. The intermetallic phase formed in the powder structure after 8 h of milling tends to reduce density and corrosion properties. The findings reveal that the addition of these alloys to pure Mg clearly enhances its hardness and density, while also imparting superior corrosion resistance. These combined improvements suggest that the developed materials hold strong potential for application in biomedical and clinical environments, where both mechanical strength and corrosion resistance are critical. Full article
Show Figures

Figure 1

17 pages, 2914 KiB  
Article
Investigation of the Possibilities for the Recycling of Mixed Heterogeneous Lead Refinery Waste
by Jasmina Dedić, Jelena Đokić, Gordana Milentijević, Irma Dervišević and Maja Petrović
Processes 2025, 13(5), 1380; https://doi.org/10.3390/pr13051380 - 30 Apr 2025
Viewed by 362
Abstract
The historical industrial waste deposit Gater was used to dispose of different metallurgy wastes from lead and zinc production. The metallurgical waste deposit was situated in the open space, between the tailing waste deposit Žitkovac and river Ibar flow. Large amounts of lead-containing [...] Read more.
The historical industrial waste deposit Gater was used to dispose of different metallurgy wastes from lead and zinc production. The metallurgical waste deposit was situated in the open space, between the tailing waste deposit Žitkovac and river Ibar flow. Large amounts of lead-containing wastes are produced in the non-ferrous metallurgical industry, such as lead ash and lead slag generated in Pb smelting, lead anode slime, and lead sludge produced in the raw lead refining process. In addition to the lead concentration, numerous valuable components are found in the lead refinery waste from the group of Critical Raw Materials, such as antimony, arsenic, bismuth, copper, nickel, magnesium, scandium, as well as Rare-Earth Elements. Samples with eight characteristic points were taken to obtain relevant data indicating a possible recycling method. The chemical composition analysis was conducted using ICP; the scanning was completed using SEM-EDS. The mineralogical composition was determined by using XRD. The chemical analysis showed a wide range of valuable metal concentrations, from Ag (in the range from 14.2 to 214.6, with an average 86.25 mg/kg) to heavy metals such as Cu (in the range from 282.7 to 28,298, with an average 10,683.7 mg/kg or 1.0683% that corresponds to some active mines), Ni and Zn (in the range from 1.259 to 69,853.4, with an average 14,304.81 mg/kg), Sc (in the range from 2.4 to 75.3, with an average 33.61 mg/kg), Pb (in the range from 862.6 to 154,027.5, with an average 45,046 mg/kg), Sb (in the range from 51.7 to 18,514.7, with an average 2267.8 mg/kg), Ca (in the range from 167.5 to 63,963, with an average 19,880 mg/kg), Mg (in the range from 668.3 to 76,824.5, with an average 31,670 mg/kg), and As (in the range from 62.9 to 24,328.1, with an average 5829.53 mg/kg). The mineralogy analysis shows that all metals are in the form of oxides, but in the case of As and Fe, SEM-EDS shows some portion of elemental lead, pyrite, and silica-magnesium-calcium oxides as slag and tailing waste residues. The proposed recovery process should start with leaching, and further investigation should decide on the type of leaching procedure and agents, considering the waste’s heterogeneous nature and acidity and toxicity. Full article
(This article belongs to the Special Issue Municipal Solid Waste for Energy Production and Resource Recovery)
Show Figures

Figure 1

20 pages, 5672 KiB  
Article
New Process for Efficient Separation and Comprehensive Recovery of Valuable Metals from Jarosite Residues
by Qi Zhou, Jian Pan, Deqing Zhu, Congcong Yang, Zhengqi Guo, Siwei Li and Xianqing Xu
Metals 2025, 15(2), 171; https://doi.org/10.3390/met15020171 - 8 Feb 2025
Viewed by 584
Abstract
Jarosite residue (JR), a hazardous solid waste generated in non-ferrous metallurgy, poses significant environmental challenges due to its large volume and poor storage stability. However, its high content of valuable metals (such as iron, zinc, gallium, indium, silver, …) makes its efficient recovery [...] Read more.
Jarosite residue (JR), a hazardous solid waste generated in non-ferrous metallurgy, poses significant environmental challenges due to its large volume and poor storage stability. However, its high content of valuable metals (such as iron, zinc, gallium, indium, silver, …) makes its efficient recovery and comprehensive utilization highly significant. This study investigates the “oxidative roasting–reductive smelting” process for JR treatment. The reduction thermodynamics of JR-R (roasted JR) were analyzed, and the effects of smelting temperature, time, and slag basicity on the reduction and smelting process were examined. The results indicate that increasing slag basicity and temperature generally decreases slag viscosity. Thermodynamic calculations demonstrate that reductive smelting effectively enriches valuable metals (>1039 °C). The optimal conditions for reductive smelting of JR were determined to be as follows: smelting temperature of 1550 °C, smelting time of 60 min, and slag basicity of 0.9. Under these conditions, the process achieved an Fe grade of 92.87% in pig iron with a recovery rate of 90.66%, a Ga grade of 377 g/t with a recovery rate of 94.91%, and Zn and In volatilization rates of 99.91% and 83.36%, respectively. This study provides a feasible approach for the comprehensive recovery of valuable metals such as Ga, Fe, Zn, and In from JR, offering promising economic and social benefits. Full article
Show Figures

Graphical abstract

11 pages, 231 KiB  
Review
Recent Advances in Indium Recovery
by Francisco Jose Alguacil
Metals 2024, 14(11), 1282; https://doi.org/10.3390/met14111282 - 12 Nov 2024
Cited by 2 | Viewed by 2863
Abstract
Though indium has been removed from the fifth list (2023) of critical raw materials for the European Union list of critical metals, its recovery is still of paramount importance due to its wide use in a series of high-tech industries. As its recovery [...] Read more.
Though indium has been removed from the fifth list (2023) of critical raw materials for the European Union list of critical metals, its recovery is still of paramount importance due to its wide use in a series of high-tech industries. As its recovery is closely associated with zinc mining, the recycling of In-bearing wastes is also of interest, for both profitable and environmental reasons. With unit operations (in hydrometallurgy and pyrometallurgy or extractive metallurgy) playing a key role in the recycling of indium, the present work reviewed the most recent innovations (2024) regarding the use of these operations in the recovery from this valuable metal from different solid or liquid wastes. Full article
(This article belongs to the Special Issue Advances in Mineral Processing and Hydrometallurgy—3rd Edition)
25 pages, 5747 KiB  
Article
Potential for the Recovery of Selected Metals and Critical Raw Materials from Slags from Polymineral Zn–Pb Ore Metallurgy—Part I
by Magdalena Cempa, Paweł Lejwoda, Klaudia Karabela, Anna Pieprzyca, Henryk Świnder and Arkadiusz Bauerek
Minerals 2024, 14(10), 1050; https://doi.org/10.3390/min14101050 - 19 Oct 2024
Cited by 2 | Viewed by 1622
Abstract
Slags from the Silesia–Cracow Upland (Poland), including ten historical slags (deposited in waste dumps) and four contemporary slags (from current production), were examined to compare their chemical and mineralogical properties as well as to assess their potential for the recovery of selected metals [...] Read more.
Slags from the Silesia–Cracow Upland (Poland), including ten historical slags (deposited in waste dumps) and four contemporary slags (from current production), were examined to compare their chemical and mineralogical properties as well as to assess their potential for the recovery of selected metals and critical raw materials. The historical slags associated with the smelting of polymetallic ores originating from Mississippi Valley-type (MVT) deposits consisted primarily of gypsum. The contemporary slags, obtained from industrial waste rich in zinc and lead, were predominantly spinels (magnesium-aluminate and ferric) that exhibited higher iron content (up to 46.6 wt% of Fe2O3) compared to the historical slags (up to 26.1 wt% of Fe2O3). The zinc content was similar for both the slag types (3.5 wt% Zn). The average titanium and arsenic contents in the old and contemporary slags were at the same level as well, with 0.21 wt% (Ti) and 0.13 wt% (As), respectively. The contemporary slags contained higher levels of critical raw materials, such as cobalt, nickel, copper, and manganese, compared to the historical slags. Rare earth elements (REEs) were also more abundant in the contemporary slags, with an average content of 212 ppm, while the historical slags averaged 124 ppm. These findings underscore the potential for recovering valuable metals and critical raw materials from such slags, presenting opportunities for resource optimisation and environmental management. Full article
(This article belongs to the Special Issue Characterization and Reuse of Slag)
Show Figures

Figure 1

19 pages, 4803 KiB  
Review
Mineralogy of Zinc and Lead Metallurgical Slags in Terms of Their Impact on the Environment: A Review
by Katarzyna Nowińska and Magdalena Kokowska-Pawłowska
Minerals 2024, 14(9), 852; https://doi.org/10.3390/min14090852 - 23 Aug 2024
Cited by 1 | Viewed by 2301
Abstract
This paper presents the results of a study of the mineralogical and chemical composition of zinc and lead metallurgical slags. These slags contain numerous elements, including toxic metals, which form conglomerates or multiphase intergrowths. The phase composition of slags is one of the [...] Read more.
This paper presents the results of a study of the mineralogical and chemical composition of zinc and lead metallurgical slags. These slags contain numerous elements, including toxic metals, which form conglomerates or multiphase intergrowths. The phase composition of slags is one of the main factors that determine their behaviour in weathering environments, that is, their ability to release metals when exposed to atmospheric factors. In this paper, the release of elements from slags and their mobility in a hypergenic environment is determined based on the results of leachability tests and on geochemical modelling, thus assessing the environmental impact of landfilled slags. The elements released from slags in the largest quantities are zinc and lead. Zn is leached out over a long period of time. It was found that after 12 years, the concentration of Zn in the eluate exceeds by 40 times the permissible value of 200 mg/kg for hazardous waste. The degree of leaching of lead from slags as a function of time (after 12 years), despite its significant solubility in water, is much lower than the degree of leaching of zinc. The most mobile phase components of slags in the studied hypergenic environment are the lead phases (anglesite and galena) and, to a lesser extent, the zinc phases (sphalerite and willemite). Anglesite and galena in almost the entire Eh-pH range, along with admixtures of elements, decompose into ionic forms: PbCl42−, Pb2+, and PbOH+. Sphalerite in the soil and water environment (oxidizing and acidic conditions) will decompose into the mobile ionic form Zn2+. Willemite, which is resistant to weathering, will undergo similar decomposition. It can therefore be assumed that the carriers of toxic metals are primarily lead sulphides and sulphates, zinc sulphides, and, less frequently, zinc, lead, and iron oxides. Full article
(This article belongs to the Special Issue Circular Economy of Remining Secondary Raw Materials)
Show Figures

Graphical abstract

15 pages, 2699 KiB  
Article
Microbial Biomass and Rhizosphere Soil Properties in Response to Heavy Metal-Contaminated Flooding
by Tibor Szili-Kovács and Tünde Takács
Agriculture 2024, 14(5), 756; https://doi.org/10.3390/agriculture14050756 - 13 May 2024
Cited by 2 | Viewed by 2003
Abstract
Mining and metallurgy are the main sources of soil contamination with harmful metals, posing a significant threat to human health and ecosystems. River floodplains in the vicinity of metal mines or industrial plants are often subject to flooding with sediments containing heavy metals, [...] Read more.
Mining and metallurgy are the main sources of soil contamination with harmful metals, posing a significant threat to human health and ecosystems. River floodplains in the vicinity of metal mines or industrial plants are often subject to flooding with sediments containing heavy metals, which can be harmful to the soil ecosystem. This study aimed to investigate the microbial properties of the soil at a metal-contaminated site and to determine the significant relationships between the biological and chemical properties of the soil. The study site was located near the village of Gyöngyösoroszi, in the Mátra mountain region of Northwest Hungary. A phytoremediation experiment was conducted in a metal-polluted floodplain using willow and corn plantations. The soil basal respiration, substrate-induced respiration, soil microbial biomass carbon (MBC), acid phosphatase activities, and soil chemical properties were measured. The soil of the contaminated sites had significantly higher levels of As, Pb, Zn, Cu, Cd, and Ca, whereas the unpolluted sites had significantly higher levels of phosphorus and potassium. The substrate-induced respiration showed a positive correlation with MBC and negative correlations with the metabolic quotient (qCO2). The soil plasticity index and phosphorus showed a positive correlation with MBC, whereas salinity and the presence of Cd, Pb, Zn, As, and Cu showed a negative correlation. Acid phosphomonoesterase activity negatively correlated with the plant-available phosphorus content and MBC, but was positively correlated with the contents of toxic elements, including cadmium, lead, zinc, arsenic, and copper. This study found a significant correlation between the qCO2 and the toxic element content. This suggests that an enhanced metabolic quotient (qCO2), together with a decreased MBC/SOC ratio, could be used to indicate the harmful effect of soil contamination by heavy metals in floodplain soils. Full article
(This article belongs to the Special Issue Advanced Research of Rhizosphere Microbial Activity—Series II)
Show Figures

Figure 1

17 pages, 833 KiB  
Article
Studies of the Possibility of Improving the Quality of Iron Ores and Processing of Technogenic Composite Iron-Containing Waste of Metallurgical Production
by Dauren Yessengaliev, Marzhan Mukhametkhan, Yerlan Mukhametkhan, Gulnara Zhabalova, Bauyrzhan Kelamanov, Olga Kolesnikova, Bakhytzhan Shyngysbayev, Laura Aikozova, Kuralay Kaskataeva and Yerbol Kuatbay
J. Compos. Sci. 2023, 7(12), 501; https://doi.org/10.3390/jcs7120501 - 2 Dec 2023
Cited by 7 | Viewed by 3418
Abstract
Ferrous metallurgy has been and remains one of the main types of production activities that enables humanity to extract, process and produce basic equipment for all types of activities. The growth of ore production as well as the reduction in world reserves of [...] Read more.
Ferrous metallurgy has been and remains one of the main types of production activities that enables humanity to extract, process and produce basic equipment for all types of activities. The growth of ore production as well as the reduction in world reserves of the raw material base have lead to the search for effective methods of processing and preparation of waste for metallurgical processing. The mining and metallurgical sector of the Republic of Kazakhstan, which has its an integrated mining and metallurgical complex with its own coal, iron ore, and energy base, uses iron ores from several deposits. It also includes ash and sludge storage tanks, which store valuable metallurgical waste, such as converter production sludge, rolling scale, and others, the use of which is hindered by the presence of certain harmful impurities in the composition (a rather high content of non-ferrous metals, especially zinc, a high content of oils, etc.). These valuable technological wastes require additional research that may contribute to their use as a charge or as iron-containing components of the charge. Based on the urgency of the tasks of dephosphorylation of iron ores and utilization of human-made waste (converter sludge and rolling scale), studies were conducted to try to eliminate existing problems. The results of the research work make it possible to obtain metals based on prepared pellets with a significantly low phosphorus content; this will enable the use of an oiled rolling scale and converter sludge for the production of a metalized product for steel smelting. The resulting metalized products make it possible to dispose of scale and converter sludge by 70%, and the degree of iron extraction exceeds existing methods by 1–3.5% (92.1–94% vs. 95.6%). Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

19 pages, 4450 KiB  
Review
Zinc and Lead Metallurgical Slags as a Potential Source of Metal Recovery: A Review
by Katarzyna Nowińska and Zdzisław Adamczyk
Materials 2023, 16(23), 7295; https://doi.org/10.3390/ma16237295 - 23 Nov 2023
Cited by 14 | Viewed by 3292
Abstract
This article presents the mineralogical and chemical characteristics of zinc and lead smelting slags, with particular reference to the slags formed during the simultaneous production of Zn and Pb by the Imperial Smelting Process. These slags, because of the presence of many metals [...] Read more.
This article presents the mineralogical and chemical characteristics of zinc and lead smelting slags, with particular reference to the slags formed during the simultaneous production of Zn and Pb by the Imperial Smelting Process. These slags, because of the presence of many metals in their composition, mainly in the form of crystalline phases, are a valuable source for their extraction. Slags from Zn-Pb metallurgy are processed on an industrial scale using pyrometallurgical and hydrometallurgical methods, alongside which a number of experiments conducted to recover metals as efficiently as possible, including bioleaching experiments. Full article
(This article belongs to the Special Issue Processing of End-of-Life Materials and Industrial Wastes–Volume 2)
Show Figures

Figure 1

14 pages, 19117 KiB  
Article
Micro Arc Oxidation of Mechanically Alloyed Binary Zn-1X (X = Mg or Sr) Alloys
by Kamil Kowalski, Michał Drzewiecki and Mieczysław Jurczyk
Crystals 2023, 13(10), 1503; https://doi.org/10.3390/cryst13101503 - 16 Oct 2023
Viewed by 1698
Abstract
The binary Zn-1wt.% X (X = Mg or Sr) alloys prepared by the application of mechanical alloying (MA) combined with powder metallurgy were modified by micro-arc oxidation (MAO) treatment in the 2 g/dm3 KOH aqueous solution at 200 V for 1 min [...] Read more.
The binary Zn-1wt.% X (X = Mg or Sr) alloys prepared by the application of mechanical alloying (MA) combined with powder metallurgy were modified by micro-arc oxidation (MAO) treatment in the 2 g/dm3 KOH aqueous solution at 200 V for 1 min for the formation of the ZnO layer. The Zn-alloys, obtained through the powder metallurgy method, are characterized by a dispersive microstructure that significantly improves its microhardness up to 90.5 HV0.3 for the Zn-1wt.%Mg sample after 24 h of MA. In the case of Zn-1Mg alloy after 24 h of mechanical alloying, Zn-1Mg alloy after 48 h of mechanical alloying, and Zn-1Sr alloy after 48 h of mechanical alloying, except for the main αZn phase, the traces of a second phase are noticed: MgZn2 and SrZn13. After the proposed MAO treatment, a zinc oxide (ZnO) layer on the zinc alloys was formed, allowing a significant improvement in the corrosion resistance and surface wetting properties. The potential of the modified ZnO layer is moved to more noble values in the case of MAO-treated samples α-Zn, Zn-1Mg (after 24 h of MA), and Zn-1Sr (after 48 h of MA). The obtained results show a good prospective potential of Zn-1wt.% X (X = Mg or Sr) binary alloys in the application of biodegradable materials. Full article
(This article belongs to the Special Issue Advances in New Functional Biomaterials for Medical Applications)
Show Figures

Figure 1

79 pages, 14366 KiB  
Review
A Review of Top Submerged Lance (TSL) Processing—Part II: Thermodynamics, Slag Chemistry and Plant Flowsheets
by Avinash Kandalam, Markus A. Reuter, Michael Stelter, Markus Reinmöller, Martin Gräbner, Andreas Richter and Alexandros Charitos
Metals 2023, 13(10), 1742; https://doi.org/10.3390/met13101742 - 13 Oct 2023
Cited by 8 | Viewed by 6402
Abstract
In Part II of this series of review papers, the reaction mechanisms, thermodynamics, slag chemistry and process flowsheets are analyzed concerning cases where the TSL bath smelter has found its application. These include the primary and secondary production routes of five non-ferrous metals [...] Read more.
In Part II of this series of review papers, the reaction mechanisms, thermodynamics, slag chemistry and process flowsheets are analyzed concerning cases where the TSL bath smelter has found its application. These include the primary and secondary production routes of five non-ferrous metals (tin, copper, lead, nickel, zinc), ironmaking and two waste-processing applications (spent pot lining and municipal solid waste/related ash treatment). Thereby, chemistry and processing aspects of these processes are concisely reviewed here, allowing for clear and in-depth overview of related aspects. In contrast to Part I, the focus lies on a holistic analysis of the metallurgical processes themselves, especially the particularities induced by carrying them out in a TSL reactor rather than on the respective equipment and auxiliaries. The methodology employed per metal/application is presented briefly. Firstly, the feed type and associated statistical information are introduced, along with relevant process goals, e.g., the secondary metallurgy of copper involves the recovery of platinum group metals (PGMs) from waste from electrical and electronic equipment (WEEE). Subsequently, associated chemistry is discussed, including respective chemical equations, analysis of the reaction mechanisms and phase diagrams (especially of associated slag systems); these are redrawn using FactSage 8.1 (databases used: FactPS, FToxid, FTmisc, FTsalt and FTOxCN) and validated by comparing them with the literature. Then, based on the above understanding of chemistry and thermodynamics, the flowsheets of several industrial TSL plants are introduced and discussed while providing key figures associated with process conditions and input/output streams. Finally, this article culminates by providing a concise overview of the simulation and digitization efforts on TSL technology. In light of the foregoing discourse, this paper encapsulates basic principles and operational details, specifically those pertaining to TSL bath smelting operations within the non-ferrous industry, thereby offering valuable insights intended to benefit both scholarly researchers and industry professionals. Full article
(This article belongs to the Special Issue Metal Extraction/Refining and Product Development)
Show Figures

Figure 1

19 pages, 14430 KiB  
Article
Microstructural and Mechanical Characterization of Newly Developed Zn-Mg-CaO Composite
by Jan Pinc, Jiří Kubásek, Jan Drahokoupil, Jaroslav Čapek, Dalibor Vojtěch and Andrea Školáková
Materials 2022, 15(23), 8703; https://doi.org/10.3390/ma15238703 - 6 Dec 2022
Cited by 3 | Viewed by 2118
Abstract
In this study, the Zn-0.8Mg-0.28CaO wt.% composite was successfully prepared using different conditions of ball milling (rotations and time) followed by a direct extrusion process. These materials were characterized from the point of view of microstructure and compressive properties, and the correlation between [...] Read more.
In this study, the Zn-0.8Mg-0.28CaO wt.% composite was successfully prepared using different conditions of ball milling (rotations and time) followed by a direct extrusion process. These materials were characterized from the point of view of microstructure and compressive properties, and the correlation between those characteristics was found. Microstructures of individual materials possessed differences in grain size, where the grain size decreased with the intensified conditions (milling speed and time). However, the mutual relation between grain size and compressive strength was not linear. This was caused by the effect of other factors, such as texture, intermetallic phases, and pores. Material texture affects the mechanical properties by a different activity ratio between basal and pyramidal <c + a> slips. The properties of intermetallic particles and pores were determined in material volume using micro-computed tomography (µCT), enhancing the precision of our assumptions compared with commonly applied methods. Based on that, and the analysis after the compressive tests, we were able to determine the influence of aspect ratio, feret diameters, and volume content of intermetallic phases and pores on mechanical behavior. The influence of the aspects on mechanical behavior is described and discussed. Full article
Show Figures

Figure 1

11 pages, 4389 KiB  
Article
Ultrafine-Grained Zn–Mg–Sr Alloy Synthesized by Mechanical Alloying and Spark Plasma Sintering
by David Nečas, Jiří Kubásek, Jan Pinc, Ivo Marek, Črtomir Donik, Irena Paulin and Dalibor Vojtěch
Materials 2022, 15(23), 8379; https://doi.org/10.3390/ma15238379 - 24 Nov 2022
Cited by 5 | Viewed by 1787
Abstract
Zinc materials are considered promising candidates for bioabsorbable medical devices used for the fixation of broken bones or stents. Materials for these applications must meet high mechanical property requirements. One of the ways to fulfil these demands is related to microstructure refinement, particularly [...] Read more.
Zinc materials are considered promising candidates for bioabsorbable medical devices used for the fixation of broken bones or stents. Materials for these applications must meet high mechanical property requirements. One of the ways to fulfil these demands is related to microstructure refinement, particularly the decrease in grain size. In the present work, we combine two powder metallurgy techniques (mechanical alloying—MA, and spark plasma sintering—SPS) to prepare Zn–1Mg–0.5Sr nanograin material. The microstructure of compacted material consisted of Zn grains and particles of Mg2Zn11 intermetallic phases from 100 to 500 nm in size, which resulted in high values of hardness and a compressive strength equal to 86 HV1 and 327 MPa, respectively. In this relation, the combination of the suggested techniques provides an innovative way to form extremely fine microstructures without significant coarsening during powder compaction at increased temperatures. Full article
(This article belongs to the Special Issue Advanced Processing Methods for Metals and Their Alloys)
Show Figures

Figure 1

25 pages, 8341 KiB  
Article
Cost-Effective and High Purity Valuable Metals Extraction from Water Leaching Solid Residues Obtained as a By-Product from Processing the Egyptian Boiler Ash
by Ahmed H. Ibrahim, Xianjun Lyu, Bahig M. Atia, Mohamed A. Gado and Amr B. ElDeeb
Minerals 2022, 12(9), 1084; https://doi.org/10.3390/min12091084 - 27 Aug 2022
Cited by 16 | Viewed by 2879
Abstract
The water leaching solid residues (WLSR) obtained from salt-roasting Egyptian boiler ash are considered an essential secondary resource for (13%) nickel and (5.6%) zinc extraction. Hence, the current study aims for the cost-effective and high purity Ni, Zn, Fe and Mg metal ion [...] Read more.
The water leaching solid residues (WLSR) obtained from salt-roasting Egyptian boiler ash are considered an essential secondary resource for (13%) nickel and (5.6%) zinc extraction. Hence, the current study aims for the cost-effective and high purity Ni, Zn, Fe and Mg metal ion extraction from (WLSR) using a sulfuric acid leaching process. The factors affecting the percentage recovery of Ni, Zn, Fe and Mg from WLSR, including leaching temperature, time, acid concentration and solid/liquid ratio, have been investigated. The obtained leaching solutions were analyzed chemically using ICP, and the different precipitates were analyzed mineralogically using XRD and EDX analysis and chemically using XRF. The maximum percentage recovery of Ni, Zn, Fe and Mg was 95.02%, 90.13%, 66.29% and 75.73%, which was obtained under the optimum leaching conditions of 8% H2SO4 concentration and 1/15 solid/liquid ratio at 85 °C for 240 min. The effect of pH, Fe2O3 dosage as nucleating agent and the precipitation duration on iron removal and Ni and Zn loss have been thoroughly studied. It has been found that >95% of the contained iron impurity can be removed, while nickel and zinc losses are around 4.2% and 3.8%, respectively. Additionally, a pH of 6 and 0.45 mol/L concentration of H2C2O4 was utilized to precipitate Mg as MgC2O4.2H2O, demonstrating that the precipitation efficiency of Mg reaches 96.9%. Nickel and zinc precipitation efficiency was 92.25% and 85.51%, respectively, by raising the solution pH to approximately 9. The kinetic of Ni and Zn dissolution has been investigated to explain the mechanism prevalent and the factors influencing the leaching process. It has been found that the nickel leaching kinetic is controlled by both diffusion through an inert porous layer and by chemical reaction with an activation energy of 20.25 kJ.mol−1. Meanwhile, the kinetic of zinc leaching is controlled by solid product layer diffusion with an activation energy of 11.67 kJ mol−1. Full article
(This article belongs to the Special Issue Valuable Metals Recovery by Mineral Processing and Hydrometallurgy)
Show Figures

Figure 1

17 pages, 5450 KiB  
Article
Advanced Zinc–Magnesium Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering
by David Nečas, Ivo Marek, Jan Pinc, Dalibor Vojtěch and Jiří Kubásek
Materials 2022, 15(15), 5272; https://doi.org/10.3390/ma15155272 - 30 Jul 2022
Cited by 20 | Viewed by 2890
Abstract
Zinc and its alloys are considered as promising materials for the preparation of biodegradable medical devices (stents and bone fixation screws) due to their enhanced biocompatibility. These materials must achieve an ideal combination of mechanical and corrosion properties that can be influenced by [...] Read more.
Zinc and its alloys are considered as promising materials for the preparation of biodegradable medical devices (stents and bone fixation screws) due to their enhanced biocompatibility. These materials must achieve an ideal combination of mechanical and corrosion properties that can be influenced by alloying or thermomechanical processes. This paper presents the effects of different mechanical alloying (MA) parameters on the composition of Zn-1Mg powder. At the same time, this study describes the influence of preparation by MA on Zn-6Mg and Zn-16Mg alloys. The selected powders were compacted by the spark plasma sintering (SPS) method. Subsequently, their microstructures were studied and their mechanical properties were tested. The overall process led to a significant grain refinement (629 ± 274 nm for Zn-1Mg) and the formation of new intermetallic phases (Mg2Zn11, MgZn2). The compressive properties of the sintered samples were mainly related to the concentration of the alloying elements, where an increase in concentration led to an improvement in strength but a deterioration in ductility. According to the obtained results, the best properties were obtained for the Zn-1Mg alloy. Full article
Show Figures

Figure 1

Back to TopTop