Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (774)

Search Parameters:
Keywords = zeolite acidity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4246 KiB  
Article
Theoretical Modeling of Pathways of Transformation of Fructose and Xylose to Levulinic and Formic Acids over Single Na Site in BEA Zeolite
by Izabela Czekaj and Weronika Grzesik
Catalysts 2025, 15(8), 735; https://doi.org/10.3390/catal15080735 (registering DOI) - 1 Aug 2025
Abstract
The aim of our work is to theoretically model the conversion of C6 and C5 carbohydrates derived from lignocellulosic biomass waste into C1–C5 carboxylic acids such as levulinic, oxalic, lactic, and formic acids. Understanding the mechanism of these processes will provide the necessary [...] Read more.
The aim of our work is to theoretically model the conversion of C6 and C5 carbohydrates derived from lignocellulosic biomass waste into C1–C5 carboxylic acids such as levulinic, oxalic, lactic, and formic acids. Understanding the mechanism of these processes will provide the necessary knowledge to better plan the structure of zeolite. In this article, we focus on the theoretical modeling of two carbohydrates, representing C5 and C6, namely xylose and fructose, into levulinic acid (LE) and formic acid (FA). The modeling was carried out with the participation of Na-BEA zeolite in a hierarchical form, due to the large size of the carbohydrates. The density functional theory (DFT) method (StoBe program) was used, employing non-local generalized gradient-corrected functions according to Perdew, Burke, and Ernzerhof (RPBE) to account for electron exchange and correlation and using the nudged elastic band (NEB) method to determine the structure and energy of the transition state. The modeling was performed using cluster representations of hierarchical Na-Al2Si12O39H23 and ideal Al2Si22O64H34 beta zeolite. However, to accommodate the size of the carbohydrate molecules in reaction paths, only hierarchical Na-Al2Si12O39H23 was used. Sodium ions were positioned above the aluminum centers within the zeolite framework. Full article
(This article belongs to the Special Issue State of the Art and Future Challenges in Zeolite Catalysts)
Show Figures

Figure 1

21 pages, 3300 KiB  
Article
Catalytic Ozonation of Nitrite in Denitrification Wastewater Based on Mn/ZSM-5 Zeolites: Catalytic Performance and Mechanism
by Yiwei Zhang, Yulin Sun, Yanqun Zhu, Wubin Weng, Yong He and Zhihua Wang
Processes 2025, 13(8), 2387; https://doi.org/10.3390/pr13082387 - 27 Jul 2025
Viewed by 316
Abstract
In wet flue gas desulfurization and denitrification processes, nitrite accumulation inhibits denitrification efficiency and induces secondary pollution due to its acidic disproportionation. This study developed a Mn-modified ZSM-5 zeolite catalyst, achieving efficient resource conversion of nitrite in nitrogen-containing wastewater through an O3 [...] Read more.
In wet flue gas desulfurization and denitrification processes, nitrite accumulation inhibits denitrification efficiency and induces secondary pollution due to its acidic disproportionation. This study developed a Mn-modified ZSM-5 zeolite catalyst, achieving efficient resource conversion of nitrite in nitrogen-containing wastewater through an O3 + Mn/ZSM-5 catalytic system. Mn/ZSM-5 catalysts with varying SiO2/Al2O3 ratios (prepared by wet impregnation) were characterized by BET, XRD, and XPS. Experimental results demonstrated that Mn/ZSM-5 (SiO2/Al2O3 = 400) exhibited a larger specific surface area, enhanced adsorption capacity, abundant surface Mn3+/Mn4+ species, hydroxyl oxygen species, and chemisorbed oxygen, leading to superior oxidation capability and catalytic activity. Under the optimized conditions of reaction temperature = 40 °C, initial pH = 4, Mn/ZSM-5 dosage = 1 g/L, and O3 concentration = 100 ppm, the NO2 oxidation efficiency reached 94.33%. Repeated tests confirmed that the Mn/ZSM-5 catalyst exhibited excellent stability and wide operational adaptability. The synergistic effect between Mn species and the zeolite support significantly improved ozone utilization efficiency. The O3 + Mn/ZSM-5 system required less ozone while maintaining high oxidation efficiency, demonstrating better cost-effectiveness. Mechanism studies revealed that the conversion pathway of NO2 followed a dual-path catalytic mechanism combining direct ozonation and free radical chain reactions. Practical spray tests confirmed that coupling the Mn/ZSM-5 system with ozone oxidation flue gas denitrification achieved over 95% removal of liquid-phase NO2 byproducts without compromising the synergistic removal efficiency of NOx/SO2. This study provided an efficient catalytic solution for industrial wastewater treatment and the resource utilization of flue gas denitrification byproducts. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

43 pages, 1282 KiB  
Review
Process Intensification Strategies for Esterification: Kinetic Modeling, Reactor Design, and Sustainable Applications
by Kim Leonie Hoff and Matthias Eisenacher
Int. J. Mol. Sci. 2025, 26(15), 7214; https://doi.org/10.3390/ijms26157214 - 25 Jul 2025
Viewed by 606
Abstract
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, [...] Read more.
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, including ion exchange resins, zeolites, metal oxides, mesoporous materials, and others, for improved ester synthesis. Recent advances in membrane-integrated reactors, such as pervaporation and nanofiltration, which enable continuous water removal, shifting equilibrium and increasing conversion under milder conditions, are reviewed. Dual-functional membranes that combine catalytic activity with selective separation further enhance process efficiency and reduce energy consumption. Enzymatic systems using immobilized lipases present additional opportunities for mild and selective reactions. Future directions emphasize the integration of pervaporation membranes, hybrid catalyst systems combining biocatalysts and metals, and real-time optimization through artificial intelligence. Modular plug-and-play reactor designs are identified as a promising approach to flexible, scalable, and sustainable esterification. Overall, the interaction of catalyst development, membrane technology, and digital process control offers a transformative platform for next-generation ester synthesis aligned with green chemistry and industrial scalability. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

55 pages, 1120 KiB  
Review
An Overview of Biodiesel Production via Heterogeneous Catalysts: Synthesis, Current Advances, and Challenges
by Maya Yaghi, Sandra Chidiac, Sary Awad, Youssef El Rayess and Nancy Zgheib
Clean Technol. 2025, 7(3), 62; https://doi.org/10.3390/cleantechnol7030062 - 15 Jul 2025
Viewed by 420
Abstract
Biodiesel, a renewable and environmentally friendly alternative to fossil fuels, has attracted significant attention due to its potential to reduce greenhouse gas emissions. However, high production costs and complex processing remain challenges. Heterogeneous catalysts have shown promise in overcoming these barriers by offering [...] Read more.
Biodiesel, a renewable and environmentally friendly alternative to fossil fuels, has attracted significant attention due to its potential to reduce greenhouse gas emissions. However, high production costs and complex processing remain challenges. Heterogeneous catalysts have shown promise in overcoming these barriers by offering benefits, such as easy separation, reusability, low-cost raw materials, and the ability to reduce reaction times and energy consumption. This review evaluates key classes of heterogeneous catalysts, such as metal oxides, ion exchange resins, and zeolites, and their performance in transesterification and esterification processes. It highlights the importance of catalyst preparation methods, textural properties, including surface area, pore volume, and pore size, activation techniques, and critical operational parameters, like the methanol-to-oil ratio, temperature, time, catalyst loading, and reusability. The analysis reveals that catalysts supported on high surface area materials often achieve higher biodiesel yields, while metal oxides derived from natural sources provide cost-effective and sustainable options. Challenges, such as catalyst deactivation, sensitivity to feedstock composition, and variability in performance, are discussed. Overall, the findings underscore the potential of heterogeneous catalysts to enhance biodiesel production efficiency, although further optimization and standardized evaluation protocols are necessary for their broader industrial application. Full article
Show Figures

Figure 1

33 pages, 392 KiB  
Review
Sustainable Foliar Applications to Improve Grapevine Responses to Drought, High Temperatures, and Salinity: Impacts on Physiology, Yields, and Berry Quality
by Despoina G. Petoumenou and Vasiliki Liava
Plants 2025, 14(14), 2157; https://doi.org/10.3390/plants14142157 - 13 Jul 2025
Viewed by 535
Abstract
Environmental challenges such as drought, high temperatures, and salinity compromise grapevine physiology, reduce productivity, and negatively affect grape and wine quality. In recent years, foliar applications of biostimulants, antitranspirants, and phytohormones have emerged as promising strategies to enhance stress tolerance in grapevines. This [...] Read more.
Environmental challenges such as drought, high temperatures, and salinity compromise grapevine physiology, reduce productivity, and negatively affect grape and wine quality. In recent years, foliar applications of biostimulants, antitranspirants, and phytohormones have emerged as promising strategies to enhance stress tolerance in grapevines. This review focuses on the main effects of salinity, drought, and high temperatures and the combined impact of drought and high temperatures on grapevines and examines how foliar applications influence grapevine responses under these specific stress conditions. Synthesizing the recent findings from the last ten years (160 articles), it provides direct insights into the potential of these compounds to alleviate each type of stress, highlighting their effects on grapevine physiology, yield components, and secondary metabolites in berries. While their mechanism of action is not entirely clear and their efficacy can vary depending on the type of compound used and the grapevine variety, most studies report a beneficial effect or no effect on grapevines under abiotic stresses (either single or combined). Future research is necessary to optimize the concentrations of these compounds and determine the appropriate number and timing of applications, particularly under open-field experiments. Additionally, studies should assess the effect of foliar applications under multiple abiotic stress conditions. In conclusion, integrating foliar applications into vineyard management represents a sustainable technique to mitigate abiotic stresses associated with climate change, such as salinity, water deficit, and heat stress, while preserving or enhancing the quality of grapes and wines. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
15 pages, 3934 KiB  
Article
Methyl Viologen@β-Zeolite with Absorption/Fluorescence Dual-Mode and Photo/Chemical Synergistic Stimuli-Responsive Chromism
by Jingxuan Han, Shaoning Li, Huihui Li, Yu Li, Jiaqiao Qin, Fuxiang Wang and Qinhe Pan
Molecules 2025, 30(13), 2872; https://doi.org/10.3390/molecules30132872 - 6 Jul 2025
Viewed by 333
Abstract
In this work, methyl viologen (MV) was adsorbed into the nanopores of Si/Al H-β-zeolite via cation exchange. The resulting MV@β-zeolite possessed absorption/fluorescence dual-mode and photo/chemical synergistic stimuli-responsive chromism. Owing to the acidic surrounding provided by β-zeolite, the chromism of MV required the synergistic [...] Read more.
In this work, methyl viologen (MV) was adsorbed into the nanopores of Si/Al H-β-zeolite via cation exchange. The resulting MV@β-zeolite possessed absorption/fluorescence dual-mode and photo/chemical synergistic stimuli-responsive chromism. Owing to the acidic surrounding provided by β-zeolite, the chromism of MV required the synergistic stimuli of UV irradiation and a chemical reductant (such as Na2SO3). UV irradiation induced single electron transfer from the chemical reductant to MV@β-zeolite, leading to enhanced absorption at 610 nm together with a daylight color change from pale yellow to blue. Meanwhile, the nanopores of β-zeolite inhibited aggregation-caused quenching of MV, enabling MV to emit cyan fluorescence at 500 nm. After the single electron transfer of the chemical reductant under UV irradiation, the cyan fluorescence of MV@β-zeolite was quenched. Additionally, MV@β-zeolite exhibited a short stimulus response time (250 s) and good color change reversibility. These findings in this work provide valuable insights into the design of multi-mode and synergistic stimuli-responsive viologen-based chromic materials, particularly for applications in secure high-throughput information storage, high-level anti-counterfeiting and multi-target multi-mode sensing. Full article
(This article belongs to the Special Issue Novel Organic-Inorganic Hybrid Porous Photochromic Materials)
Show Figures

Figure 1

19 pages, 3246 KiB  
Article
Direct Conversion of 1,3-Butanediol to 1,3-Butadiene over ZSM-22 Catalysts: Influence of the Si/Al Ratio
by Loïc Eloi, Jeroen Poissonnier, Arne De Landsheere, Dhanjay Sharma, Jaouad Al Atrach, Valérie Ruaux, Valentin Valtchev, Maarten K. Sabbe, Joris W. Thybaut and An Verberckmoes
Catalysts 2025, 15(7), 655; https://doi.org/10.3390/catal15070655 - 5 Jul 2025
Viewed by 540
Abstract
ZSM-22 zeolites with different Si/Al ratios (38, 50, 80) were prepared via a hydrothermal synthesis method, investigated for the catalytic dehydration of 1,3-butanediol (1,3-BDO) to butadiene (BD) at 300 °C. The catalytic performance of the synthesized materials was related to their properties and [...] Read more.
ZSM-22 zeolites with different Si/Al ratios (38, 50, 80) were prepared via a hydrothermal synthesis method, investigated for the catalytic dehydration of 1,3-butanediol (1,3-BDO) to butadiene (BD) at 300 °C. The catalytic performance of the synthesized materials was related to their properties and compared to a commercial ZSM-22 zeolite (Si/Al = 30). ZSM-22 (50) exhibited a quick decline in conversion, a lower BD selectivity, and higher propylene selectivity compared to the other materials, which could be attributed to the presence of strong Lewis acid sites and silanol nests. The Lewis sites favor the cracking of the intermediate 3-buten-1-ol (3B1OL) into propylene, while the silanol nests interact with the free hydroxyl group of 3B1OL, potentially inhibiting further dehydration towards BD. The highest initial BD yield of 74% was observed over ZSM-22 (80), while the highest initial BD productivity of 2.7 gBD·g−1cata·h−1 was achieved over ZSM-22 (38). After 22 h time on stream (TOS), c-ZSM-22 and ZSM-22 (38) outperformed previously reported catalysts from the literature, with productivities amounting to 1.3 gBD·g−1cata·h−1 and 1.2 gBD·g−1cata·h−1, respectively, at a site time of 6.6 molH+·s·mol−11,3-BDO. Full article
Show Figures

Graphical abstract

22 pages, 3032 KiB  
Article
Formation and Toxicity of Chlorine Species During Zeolite Regeneration by NaCl-NaClO After Stormwater Adsorption
by Wanlin Lei, Chenxi Li, Xinyue Cao, Yuhao Zhu and Yan Liu
Water 2025, 17(13), 1955; https://doi.org/10.3390/w17131955 - 30 Jun 2025
Viewed by 326
Abstract
Zeolite adsorption followed by NaCl-NaClO regeneration is an effective method for the on-site treatment of ammonia in initial stormwater. However, the formation and toxicity of chlorine species during the zeolite regeneration process need to be investigated. In this study, under intermittent and continuous [...] Read more.
Zeolite adsorption followed by NaCl-NaClO regeneration is an effective method for the on-site treatment of ammonia in initial stormwater. However, the formation and toxicity of chlorine species during the zeolite regeneration process need to be investigated. In this study, under intermittent and continuous operations, zeolites adsorbed NH4Cl + HA (humic acid) and actual stormwater, then regenerated with NaCl-NaClO (0.5 g/L NaCl, ClO:N molar ratio of 1.8, pH = 10). This technology was assessed from the following three aspects: adsorption and regeneration, chlorine species formation, and toxicity. The results showed that zeolites exhibited a greater adsorption capacity for HA in stormwater compared to that in an NH4Cl + HA solution, and the presence of ammonia had a minimal impact on this process. During zeolite regeneration, ammonia had a competitive advantage over HA for ClO. ClO3 was inevitably formed in regeneration. The formation of chlorinated organic compounds (COPs) increased over time. The order of chlorine species toxicity in zeolite regeneration solution was free chlorine > COPs > ClO3. Controlled regeneration time was required to minimize the formation and toxicity of chlorine species. During the 10 cycles of regeneration, chlorine species continued to form and caused high toxicity hazards. Full article
Show Figures

Figure 1

22 pages, 5253 KiB  
Article
On the Deactivation Analysis of IM-5 Zeolite in Pseudocumene Methylation with Methanol
by Shumin Hao, Yongrui Wang, Enhui Xing and Xuhong Mu
Crystals 2025, 15(7), 598; https://doi.org/10.3390/cryst15070598 - 25 Jun 2025
Viewed by 369
Abstract
In the methylation of pseudocumene with methanol over IM-5 zeolite, the yield of durene can be enhanced. However, poorer stability of the catalytic activity was observed, especially at a higher methanol/pseudocumene ratio. In this paper, conventional characterization methods (XRD, XRF, TGA, SEM, physical [...] Read more.
In the methylation of pseudocumene with methanol over IM-5 zeolite, the yield of durene can be enhanced. However, poorer stability of the catalytic activity was observed, especially at a higher methanol/pseudocumene ratio. In this paper, conventional characterization methods (XRD, XRF, TGA, SEM, physical adsorption, OH-IR, NH3-TPD, and Py-IR) were used to characterize fresh and deactivated IM-5 zeolite and ZSM-5. FT-IR, XPS, TG-MS, GC-MS, FT-ICR MS, and NMR were employed to characterize deactivated IM-5 zeolite. It was found that the deactivation of IM-5 zeolite was mainly due to the severe coverage of acidic sites and pore channels by carbon deposits. The carbon deposits within the internal surface had a higher abundance, mainly in the form of linear unsaturated chain-like structures with a high degree of unsaturation. The carbon deposits on the external surface were mainly polycyclic aromatic hydrocarbons with alkyl side chains and a high degree of saturation, accompanied by unreacted methanol. Moreover, graphitized carbon existed on both the internal and external surfaces, which made the conventional coke-burning regeneration method unable to restore the activity of the post-reaction IM-5 zeolite. This work had certain reference significance for modulating the acidity and pore channels of zeolite catalysts, thus improving the activity and stability of the catalysts and extending their service life. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

15 pages, 3069 KiB  
Article
ZIF-93-Based Nanomaterials as pH-Responsive Drug Delivery Systems for Enhanced Antibacterial Efficacy of Kasugamycin in the Management of Pear Fire Blight
by Chunli Chen, Bin Hao, Jincheng Shen, Shuren Liu, Hongzu Feng, Jianwei Zhang, Chen Liu, Yong Li and Hongqiang Dong
Agronomy 2025, 15(7), 1535; https://doi.org/10.3390/agronomy15071535 - 25 Jun 2025
Viewed by 301
Abstract
Kasugamycin (KSM) is easily affected by photolysis, acid–base destruction, and oxidative decomposition in the natural environment, leading to its poor durability and low effective utilization rate, which affects its control effect on plant bacterial diseases. Nanomaterials modified with environment-responsive agents enable the control [...] Read more.
Kasugamycin (KSM) is easily affected by photolysis, acid–base destruction, and oxidative decomposition in the natural environment, leading to its poor durability and low effective utilization rate, which affects its control effect on plant bacterial diseases. Nanomaterials modified with environment-responsive agents enable the control of the release of pesticides through intelligently responding to external stimuli, thereby improving efficacy and reducing environmental impact. In this study, a pH-responsive controlled release system was constructed using zeolitic imidazolate frameworks (ZIF-93) for the sustained and targeted delivery of KSM. The synthesized KSM@ZIF-93 exhibited a diameter of 63.93 ± 11.19 nm with a drug loading capacity of 20.0%. Under acidic conditions mimicking bacterial infection sites, the Schiff base bonds and coordination bonds in ZIF-93 dissociated, triggering the simultaneous release of KSM and Zn2+, achieving a synergistic antibacterial effect. Light stability experiments revealed a 34.81% reduction in UV-induced degradation of KSM when encapsulated in ZIF-93. In vitro antimicrobial assays demonstrated that KSM@ZIF-93 completely inhibited Erwinia amylovora at 200 mg/L and had better antibacterial activity and persistence than KSM and ZIF-93. The field experiment and safety evaluation showed that the control effect of KSM@ZIF-93 on pear fire blight at the concentration of 200 mg/L was (75.19 ± 3.63)% and had no toxic effect on pollen germination. This pH-responsive system not only enhances the stability and bioavailability of KSM but also provides a targeted and environmentally compatible strategy for managing bacterial infections during the flowering period of pear trees. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

8 pages, 906 KiB  
Proceeding Paper
Ion Exchange of Na+ Ions with H+ Ions on ZSM-5 Zeolite Using Acetic Acid
by Aleksandar Došić, Milomirka Obrenović, Zoran Obrenović, Jelena Vuković and Ivan M. Savić
Eng. Proc. 2025, 99(1), 17; https://doi.org/10.3390/engproc2025099017 - 20 Jun 2025
Viewed by 348
Abstract
ZSM-5 zeolites are primarily used in acid-catalyzed hydrocracking reactions in the petrochemical industry, and it is very important to ensure an adequate number of acidic sites for more efficient catalytic activity. This study investigated the possibility of exchanging sodium ions with hydrogen ions [...] Read more.
ZSM-5 zeolites are primarily used in acid-catalyzed hydrocracking reactions in the petrochemical industry, and it is very important to ensure an adequate number of acidic sites for more efficient catalytic activity. This study investigated the possibility of exchanging sodium ions with hydrogen ions on ZSM-5 zeolite with a molar ratio of (SiO2/Al2O3 = 1000) using an ion-exchange process with acetic acid. By employing the XRD and FT-IR methods, along with chemical analysis of ZSM-5 zeolite samples, the influence of hydrogen ion concentration on the chemical composition and structural characteristics of ZSM-5 zeolite was monitored at different acid concentrations and exchange times. It was shown that ion exchange with acetic acid leads to a significant reduction in sodium content even with less concentrated solutions while maintaining the stability of the crystal structure of ZSM-5 (SiO2/Al2O3 = 1000) and a high degree of crystallinity. Full article
Show Figures

Figure 1

12 pages, 2545 KiB  
Article
Rapid Fabrication of ZSM-5/AlPO4-5 Composites via Microwave-Ionothermal Strategy for Enhanced Methanol-to-Olefins Catalysis
by Li Han, Mengting Zhang, Hao Li, Huiru Ding, Jingjing Zhao, Yujia Zhang, Lang Wu, Changzhou Jiao, Jie Feng and Zhikun Peng
Catalysts 2025, 15(6), 605; https://doi.org/10.3390/catal15060605 - 19 Jun 2025
Viewed by 496
Abstract
Microwave-assisted ionothermal strategies offer an effective pathway for rapid zeolite crystallization under mild conditions, while conventional ionothermal approaches are still constrained by prolonged crystallization cycles that limit their industrial applicability. Herein, we report a microwave-activated, ionic liquid-mediated synthesis strategy that enables the precise [...] Read more.
Microwave-assisted ionothermal strategies offer an effective pathway for rapid zeolite crystallization under mild conditions, while conventional ionothermal approaches are still constrained by prolonged crystallization cycles that limit their industrial applicability. Herein, we report a microwave-activated, ionic liquid-mediated synthesis strategy that enables the precise modulation of crystallization kinetics and composite assembly. By introducing ZSM-5 seeds into the ionic liquid system, the nucleation and growth of AlPO4-5 were significantly accelerated, reducing crystallization time by up to 75% (optimal condition: 60 min). Among various imidazolium-based ionic liquids, [BMMIm]Br demonstrated an optimal balance of hydrophilic and hydrophobic interactions, yielding composite zeolites with high surface area (350 m2·g−1) and large pore volume (0.28 cm3·g−1). Comprehensive characterization (XRD, SEM-EDX, NH3-TPD) confirmed the formation of well-defined ZSM-5/AlPO4-5 core–shell structures and revealed tunable acid site distributions depending on the ionic liquid used. In methanol to olefins (MTO) reactions, the composite catalyst exhibited outstanding selectivity towards light olefins (C2=–C4=: 72.84%), markedly outperforming the individual ZSM-5 and AlPO4-5 components. The superior catalytic behavior is primarily attributed to the synergistic effect of hierarchical acid site tuning and the integrated core–shell architecture, which together optimize reaction selectivity. This strategy provides a promising route for the rational design of high-performance zeolites with significant industrial applicability. Full article
Show Figures

Graphical abstract

14 pages, 1297 KiB  
Article
Insights into Ball Milling for the Production of Highly Active Zeolites for Catalytic Cracking of VGO
by Petr Kuznetsov, Vladislav Malyavin and Konstantin Dement’ev
Catalysts 2025, 15(6), 596; https://doi.org/10.3390/catal15060596 - 16 Jun 2025
Viewed by 479
Abstract
This research systematically investigates the influence of high-energy ball-milling (BM) parameters on the acidic and textural properties of zeolite Y. Among the BM parameters, the milling time (MT) exerted a more significant influence on the zeolite degradation than milling speed (MS), primarily affecting [...] Read more.
This research systematically investigates the influence of high-energy ball-milling (BM) parameters on the acidic and textural properties of zeolite Y. Among the BM parameters, the milling time (MT) exerted a more significant influence on the zeolite degradation than milling speed (MS), primarily affecting particle size and crystallinity. Milling produced nanozeolites with particle sizes ranging from 210 to 430 nm, and their activity was tested in the catalytic cracking of vacuum gas oil (VGO). The highest catalytic activity was observed for the zeolite with a particle size of 397 nm and a crystallinity of 75.9%: the VGO conversion was 69.0%, and the gasoline fraction yield was 33.9%, compared to the parent zeolite’s 62.7% and 22.1%, respectively. It was found that the activity of milled zeolites in catalytic cracking is determined by the accessibility of acid sites, which can be controlled by forming an optimal micro-mesoporous structure. Full article
(This article belongs to the Collection Nanotechnology in Catalysis)
Show Figures

Graphical abstract

19 pages, 2109 KiB  
Review
Microenvironment Regulation in Zeolite-Based Catalysts for Selective Oxidation of Aromatic VOCs
by Xiaoxin Chen, Wenwen Ma and Guoju Yang
Catalysts 2025, 15(6), 581; https://doi.org/10.3390/catal15060581 - 11 Jun 2025
Viewed by 675
Abstract
Aromatic volatile organic compounds (VOCs) pose significant environmental and public health risks due to their toxicity, carcinogenicity, and role as precursors of hazardous secondary pollutants. Zeolite-based metal catalysts, with their well-defined microporous structures, tunable acidity, and high thermal stability, have shown promise in [...] Read more.
Aromatic volatile organic compounds (VOCs) pose significant environmental and public health risks due to their toxicity, carcinogenicity, and role as precursors of hazardous secondary pollutants. Zeolite-based metal catalysts, with their well-defined microporous structures, tunable acidity, and high thermal stability, have shown promise in the catalytic oxidation of aromatic VOCs. However, the influence of the zeolite microenvironment on supported metal active sites remains insufficiently understood, limiting the rational design of advanced catalysts. This review highlights how microenvironmental parameters—including pore architecture, acid site distribution, framework composition, and surface/interface engineering—can be modulated to enhance adsorption, oxygen activation, and metal–support interactions. Advances in hierarchical porosity, heteroatom substitution, and surface hydrophobicity are discussed. This review provides a framework for the development of next-generation zeolite-based catalysts and offers strategic guidance for advancing microenvironment-controlled catalysis in sustainable environmental remediation. Full article
(This article belongs to the Special Issue Catalytic Removal of Volatile Organic Compounds (VOCs))
Show Figures

Figure 1

15 pages, 5342 KiB  
Article
Synthesis of Dimethyl Terephthalate from Terephthalic Acid Esterification over the Zeolite Catalysts
by Ningyu Jia, Haoyu Han, Tao Yang, Meng Zhang and Zhongyi Liu
Inorganics 2025, 13(6), 184; https://doi.org/10.3390/inorganics13060184 - 5 Jun 2025
Viewed by 567
Abstract
The esterification of terephthalic acid (PTA) with methanol to dimethyl terephthalate (DMT) was investigated using commercially available zeolite catalysts as the eco-friendly solid acids. Six typical zeolites (ZSM-5-25, ZSM-5-50, ZSM-5-100, ZSM-35, MOR, and β) were systematically evaluated. Among them, β zeolite showed excellent [...] Read more.
The esterification of terephthalic acid (PTA) with methanol to dimethyl terephthalate (DMT) was investigated using commercially available zeolite catalysts as the eco-friendly solid acids. Six typical zeolites (ZSM-5-25, ZSM-5-50, ZSM-5-100, ZSM-35, MOR, and β) were systematically evaluated. Among them, β zeolite showed excellent catalytic performance, achieving nearly 100% PTA conversion and 76.1% DMT selectivity under the conditions of 200 °C, of 0.5 MPa N2 pressure, m(PTA):V(methanol) of 1:40 (g/mL), m(PTA):m(catalyst) of 10:1 over 4 h. The characterization results show that the catalytic efficiency was correlated with acid site strength, specific surface area, and mesoporous structure of the zeolite. After optimization, β zeolite achieved 100% PTA conversion and 94.1% DMT selectivity under the conditions of 200 °C, of 1 MPa N2 pressure, m(PTA)/V(methanol) of 1:30 (g/mL), m(PTA)/m(catalyst) of 8:1 over 8 h. Moreover, β zeolite exhibited superior stability, maintaining over 92% of its initial activity after five cycles, highlighting its potential for sustainable DMT production. Full article
(This article belongs to the Special Issue Inorganics Emerging Investigators Themed Collection 2024/2025)
Show Figures

Graphical abstract

Back to TopTop