Synthesis of Dimethyl Terephthalate from Terephthalic Acid Esterification over the Zeolite Catalysts
Abstract
1. Introduction
2. Results and Discussion
2.1. Physiochemical Characterization of the Zeolite Catalysts
2.2. Catalytic Activity for Terephthalic Acid Esterification
2.3. Stability of the β Zeolite Catalyst
3. Experimental
3.1. Materials
3.2. Catalyst Preparation
3.3. Catalyst Characterization
3.4. Product Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peterson, R.L.; Neppel, E.P.; Peereboom, L.; Trinh, P.A.; Ofoli, R.Y.; Dorgan, J.R. Upcycling Waste PET: I. Ammonolysis Kinetics of Model Dimethyl Terephthalate and the Catalytic Effects of Ethylene Glycol. Sustain. Chem. Eng. 2025, 13, 4120–4131. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.; Zhang, Y.; Su, Y.; Hu, H.; Huang, A.; Huang, Z.; Chen, D.; Yang, M.; Wu, J. Esterification of bagasse cellulose with metal salts as efficient catalyst in mechanical activation-assisted solid phase reaction system. Cellulose 2017, 24, 5371–5387. [Google Scholar] [CrossRef]
- Iliopoulou, E.F.; Triantafyllidis, K.S.; Lappas, A.A. Overview of catalytic upgrading of biomass pyrolysis vapors toward the production of fuels and high-value chemicals. Wiley Interdiscip. Rev. Energy Environ. 2018, 8, 1. [Google Scholar] [CrossRef]
- Pereira, P.; Savage, P.E.; Pester, C.W. Acid catalyst screening for hydrolysis of post-consumer PET waste and exploration of acidolysis. Green Chem. 2024, 26, 1964–1974. [Google Scholar] [CrossRef]
- Yuan, B.; Wang, Y.; Wang, M.; Gou, G.; Li, L. Metal−organic frameworks as recyclable catalysts for efficient esterification to synthesize traditional plasticizers. Appl. Catal. A Gen. 2021, 622, 118212. [Google Scholar] [CrossRef]
- Li, J.; Liang, X. Magnetic solid acid catalyst for biodiesel synthesis from waste oil. Energy Convers. Manag. 2017, 141, 126–132. [Google Scholar] [CrossRef]
- Xue, D.; Jiang, Y.; Zheng, F. Magnetic-responsive solid acid catalysts for esterification. RSC Adv. 2023, 13, 27579–27588. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Yin, P.; Ju, H.X.; Chen, Z.Q.; Li, C.; Li, S.C.; Liang, H.W.; Zhu, J.F.; Yu, S.H. Natural Nanofibrous Cellulose-Derived Solid Acid Catalysts. Research 2019, 2019, 6262719. [Google Scholar] [CrossRef]
- Wu, L.; Hu, X.; Wang, S.; Mahmudul Hasan, M.D.; Jiang, S.; Li, T.; Li, C.-Z. Acid-treatment of bio-oil in methanol: The distinct catalytic behaviours of a mineral acid catalyst and a solid acid catalyst. Fuel 2018, 212, 412–421. [Google Scholar] [CrossRef]
- Liu, J.; Wang, N.; Liu, S.; Liu, G. Catalytic Hydrodeoxygenation of Mixed Plastic Wastes into Sustainable Naphthenes. JACS Au 2024, 4, 4361–4373. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, W.; Cui, W.; Dong, X.; Liu, G.; Xu, Y.; Liu, Z. Optimization and modification of ZSM-5 zeolite for efficient catalytic cracking of 1,2-dichloroethane. Mol. Catal. 2023, 545, 113189. [Google Scholar] [CrossRef]
- Jiang, C.; Cai, Y.; Xu, T.; Xiao, B.; Hu, Z.; Wang, X. Vapor-phase hydrodeoxygenation of guaiacol for phenol production using bifunctional Ni/Cu-Beta zeolite catalysts. J. Energy Inst. 2023, 109, 101273. [Google Scholar] [CrossRef]
- Jiang, W.; Cao, J.-P.; Yao, N.-Y.; Xie, J.-X.; Zhao, L.; Yi, F.-J.; Zhang, C.; Zhu, C.; Zhao, X.-Y.; Zhao, Y.-P.; et al. Hydrodeoxygenation of Lignin-Derived Diphenyl Ether to Cyclohexane over a Bifunctional Ru Supported on Synthesis HZSM-5 Catalyst under Mild Conditions. Ind. Eng. Chem. Res. 2022, 61, 2937–2946. [Google Scholar] [CrossRef]
- Yu, L.; Xu, C.; Zhou, Q.; Fu, X.; Liang, Y.; Wang, W. Facile synthesis of hierarchical porous ZSM-5 zeolite with tunable mesostructure and its application in catalytic cracking of LDPE. J. Alloys Compd. 2023, 965, 171454. [Google Scholar] [CrossRef]
- Yang, X.; Ma, X.; Wang, X.; Qin, B.; Zhang, L.; Du, Y.; Liu, Y.; Wang, Q.; Wang, Y.; Zheng, J. Caterpillar-shaped hierarchical ZSM-5 resulted from the self-assembly of regularly primary nano-sized zeolite crystals. J. Porous Mater. 2023, 30, 1543–1553. [Google Scholar] [CrossRef]
- Tang, H.; Hu, Y.; Li, G.; Wang, A.; Xu, G.; Yu, C.; Wang, X.; Zhang, T.; Li, N. Synthesis of jet fuel range high-density polycycloalkanes with polycarbonate waste. Green Chem. 2019, 21, 3789–3795. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Liu, X.; Liao, X.; Huang, J.; Jiang, Y. Co-upcycling of Plastic Waste and Biowaste via Tandem Transesterification Reactions. JACS Au 2024, 4, 3135–3145. [Google Scholar] [CrossRef]
- Yu, S.; Wang, H.-M.; Xiong, S.-J.; Zhou, S.-J.; Wang, H.-H.; Yuan, T.-Q. Sustainable Wood-Based Poly(butylene adipate-co-terephthalate) Biodegradable Composite Films Reinforced by a Rapid Homogeneous Esterification Strategy. ACS Sustain. Chem. Eng. 2022, 10, 14568–14578. [Google Scholar] [CrossRef]
- Liou, T.-H.; Liu, R.-T.; Wen, S.-D. Fabricating mesoporous titanium nanocomposites with high adsorption and photolysis performance by using rice husk ash as a renewable support source. Environ. Technol. Innov. 2024, 34, 103605. [Google Scholar] [CrossRef]
- Lan, K.; Zhao, D. Functional Ordered Mesoporous Materials: Present and Future. Nano Lett. 2022, 22, 3177–3179. [Google Scholar] [CrossRef]
- Trejda, M.; Jądrzak, A.; Nurwita, A.; Kryszak, D. An efficient synthesis of acidic mesoporous materials. Catal. Today 2020, 354, 61–66. [Google Scholar] [CrossRef]
- Lende, A.B.; Bhattacharjee, S.; Lu, W.-Y.; Tan, C.-S. Hydrogenation of dioctyl phthalate over a Rh-supported Al modified mesocellular foam catalyst. New J. Chem. 2019, 43, 5623–5631. [Google Scholar] [CrossRef]
- Cai, S.-J.; Cao, J.-P.; Yao, N.-Y.; Zhao, J.-P.; Pang, X.-B.; Xu, M.; Lu, Y.; Zhao, X.-Y.; Bold, T. Modification of highly acid ZSM-5 composed of nanocrystal stacks for reforming of lignite pyrolysis volatiles to light aromatics. J. Anal. Appl. Pyrolysis 2025, 187, 107009. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, B.; Su, Z.; Ma, W. Preparation, surface acidity and catalytic performance of Beta/ZSM-5 composite molecular sieve. Chem. Phys. 2022, 558, 111512. [Google Scholar] [CrossRef]
- Tong, Y.; Ke, M. Study on the Acidic Modification of Mesoporous HZSM-5 Zeolite and Its Catalytic Cracking Performance. Catalysts 2024, 14, 713. [Google Scholar] [CrossRef]
- Kang, M.J.; Yu, H.J.; Jegal, J.; Kim, H.S.; Cha, H.G. Depolymerization of PET into terephthalic acid in neutral media catalyzed by the ZSM-5 acidic catalyst. Chem. Eng. J. 2020, 398, 125655. [Google Scholar] [CrossRef]
- Zhang, L.-Y.; Li, L.; Li, M.; Liu, Z.-Q.; Wei, X.-Y.; Ma, H.; Cong, X.-S. Catalytic hydrodeoxygenation of lignin enhanced by selectively etching ZSM-5. J. Energy Inst. 2024, 117, 101838. [Google Scholar] [CrossRef]
- Wei, C.; Li, J.; Liu, Z. Selective Synthesis of Butadiene from γ-Valerolactone over ZSM-35 Zeolite. ACS Sustain. Chem. Eng. 2023, 11, 14103–14111. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Liu, W.; Yu, Q.; Liu, Z.; Xu, S.; An, J.; Li, X.; Zhu, X. An efficient synthesis strategy for MOR zeolite. Microporous Mesoporous Mater. 2022, 346, 112282. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, S.; Zhang, H.; Lü, E.; Ren, J. Investigation of synthesis and hydroisomerization performance of SAPO-11/Beta composite molecular sieve. Chin. J. Catal. 2014, 35, 1676–1686. [Google Scholar] [CrossRef]
- Jia, Y.; Tao, J.; Bai, T.; Liu, H.; Niu, M.; Huang, W.; Li, R.R.; Wei, Q.; Zhou, Y. Study on the synthesis of nanosheets petal-shaped ZSM-5 Zeolites. Mater. Today Commun. 2024, 41, 110478. [Google Scholar] [CrossRef]
- Dai, S.; Tan, Y.; Yang, Y.; Zhu, L.; Liu, B.; Du, Y.; Cao, X. Organotemplate-free synthesis of Al-rich ZSM-35 and ZSM-22 zeolites with the addition of ZSM-57 zeolite seeds. CrystEngComm 2022, 24, 6987–6995. [Google Scholar] [CrossRef]
- Gao, W.; Amoo, C.C.; Zhang, G.; Javed, M.; Mazonde, B.; Lu, C.; Yang, R.; Xing, C.; Tsubaki, N. Insight into solvent-free synthesis of MOR zeolite and its laboratory scale production. Microporous Mesoporous Mater. 2019, 280, 187–194. [Google Scholar] [CrossRef]
- Manal, A.K.; Shanbhag, G.V.; Srivastava, R. Design of a bifunctional catalyst by alloying Ni with Ru-supported H-beta for selective hydrodeoxygenation of bisphenol A and polycarbonate plastic waste. Appl. Catal. B Environ. 2023, 338, 123021. [Google Scholar] [CrossRef]
- Wang, X.; Lv, Y.; Zhu, S.; Wang, X.; Deng, C. Phosphoric Acid Modification of Hβ Zeolite for Guaiacol Hydrodeoxygenation. Catalysts 2021, 11, 962. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, S.; Wei, Y.; Li, J.; Chen, J.; Wang, J.; Zhang, W.; Gao, S.; Li, X.; Wang, C.; et al. Methanol conversion on ZSM-22, ZSM-35 and ZSM-5 zeolites: Effects of 10-membered ring zeolite structures on methylcyclopentenyl cations and dual cycle mechanism. RSC Adv. 2016, 6, 95855–95864. [Google Scholar] [CrossRef]
- Li, C.; Ren, Y.; Gou, J.; Liu, B.; Xi, H. Facile synthesis of mesostructured ZSM-5 zeolite with enhanced mass transport and catalytic performances. Appl. Surf. Sci. 2017, 392, 785–794. [Google Scholar] [CrossRef]
- Li, H.; Chu, H.; Ma, X.; Wang, G.; Liu, F.; Guo, M.; Lu, W.; Zhou, S.; Yu, M. Efficient heterogeneous acid synthesis and stability enhancement of UiO-66 impregnated with ammonium sulfate for biodiesel production. Chem. Eng. J. 2021, 408, 127277. [Google Scholar] [CrossRef]
- Sun, H.; Chen, Z.; Zhou, J.; Chen, L.; Zuo, W. Recovery of high-quality terephthalic acid from waste polyester textiles via a neutral hydrolysis method. J. Environ. Chem. Eng. 2024, 12, 112558. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, Y.; Wu, Y.; Zheng, M.; Zhang, C.; Yang, M.; Cao, G. Production of mesoporous materials with high hydrothermal stability by doping metal heteroatoms. Microporous Mesoporous Mater. 2016, 224, 420–425. [Google Scholar] [CrossRef]
- Tian, K.; Tan, D.; Fu, X.; Zhang, Y.; Yao, D.; Zhong, M.; Chen, R.; Dong, Y.; Liu, Y. Adsorption performance of 1,4-dioxane by MCM-22 and Beta zeolites and their bio-zeolite composite system in the presence of co-contaminants. Sep. Purif. Technol. 2025, 354, 128752. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, W.; Chen, Z.; Ye, Y.; Luo, Y.; Street, J.; Zhou, H.; Xu, C. Formation and Regeneration of Shape-Selective ZSM-35 Catalysts for n-Butene Skeletal Isomerization to Isobutene. ACS Omega 2018, 3, 8202–8211. [Google Scholar] [CrossRef]
- Azam, M.U.; Fernandes, A.; Ferreira, M.J.; Afzal, W.; Graça, I. Pore-Structure Engineering of Hierarchical β Zeolites for the Enhanced Hydrocracking of Waste Plastics to Liquid Fuels. ACS Catal. 2024, 14, 16148–16165. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, R.; Yang, L.; Ge, J.; Hu, F.; Zhang, T.; Lu, F.; Wang, H.; Qi, J. In Situ Growth of Mn-Co3O4 on Mesoporous ZSM-5 Zeolite for Boosting Lean Methane Catalytic Oxidation. Catalysts 2024, 14, 397. [Google Scholar] [CrossRef]
- Ye, B.; Zhou, R.; Zhong, Z.; Wang, S.; Wang, H.; Hou, Z. Upcycling of waste polyethylene terephthalate to dimethyl terephthalate over solid acids under mild conditions. Green Chem. 2023, 25, 7243–7252. [Google Scholar] [CrossRef]
Sample | Weak Acid | Strong Acid | Total Acid Amount (mmol g−1) | ||
---|---|---|---|---|---|
Temperature (°C) | Amount (mmol g−1) | Temperature (°C) | Amount (mmol g−1) | ||
ZSM-5-25 | 231 | 0.202 | 412 | 0.181 | 0.383 |
ZSM-5-50 | 229 | 0.183 | 397 | 0.168 | 0.351 |
ZSM-5-100 | 221 | 0.158 | 407 | 0.154 | 0.312 |
ZSM-35 | 203 | 0.197 | 443 | 0.054 | 0.251 |
MOR | 193 | 0.205 | 492 | 0.074 | 0.279 |
β | 200 | 0.168 | 395 | 0.153 | 0.321 |
Sample | SBET (m2/g) | Smicro (m2/g) | Smeso (m2/g) | Vtotal (cm3/g) | Vmicro (cm3/g) | Vmeso (cm3/g) | Dp (nm) |
---|---|---|---|---|---|---|---|
ZSM-5-25 | 347 | 246 | 101 | 0.19 | 0.13 | 0.06 | 2.03 |
ZSM-5-50 | 361 | 254 | 107 | 0.21 | 0.13 | 0.08 | 2.15 |
ZSM-5-100 | 334 | 236 | 98 | 0.18 | 0.12 | 0.06 | 2.05 |
ZSM-35 | 303 | 262 | 41 | 0.17 | 0.12 | 0.05 | 2.33 |
MOR | 423 | 391 | 32 | 0.23 | 0.17 | 0.06 | 2.17 |
β | 556 | 451 | 104 | 0.24 | 0.19 | 0.05 | 2.36 |
β | 556 | 451 | 104 | 0.24 | 0.19 | 0.05 | 2.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, N.; Han, H.; Yang, T.; Zhang, M.; Liu, Z. Synthesis of Dimethyl Terephthalate from Terephthalic Acid Esterification over the Zeolite Catalysts. Inorganics 2025, 13, 184. https://doi.org/10.3390/inorganics13060184
Jia N, Han H, Yang T, Zhang M, Liu Z. Synthesis of Dimethyl Terephthalate from Terephthalic Acid Esterification over the Zeolite Catalysts. Inorganics. 2025; 13(6):184. https://doi.org/10.3390/inorganics13060184
Chicago/Turabian StyleJia, Ningyu, Haoyu Han, Tao Yang, Meng Zhang, and Zhongyi Liu. 2025. "Synthesis of Dimethyl Terephthalate from Terephthalic Acid Esterification over the Zeolite Catalysts" Inorganics 13, no. 6: 184. https://doi.org/10.3390/inorganics13060184
APA StyleJia, N., Han, H., Yang, T., Zhang, M., & Liu, Z. (2025). Synthesis of Dimethyl Terephthalate from Terephthalic Acid Esterification over the Zeolite Catalysts. Inorganics, 13(6), 184. https://doi.org/10.3390/inorganics13060184