Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = yttria-stabilized tetragonal zirconia (Y-TZP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3585 KiB  
Article
Surface Hardness of Polished Dental Zirconia: Influence of Polishing and Yttria Content on Morphology, Phase Composition, and Microhardness
by Andrea Labetić, Teodoro Klaser, Željko Skoko, Marko Jakovac and Mark Žic
Materials 2025, 18(14), 3380; https://doi.org/10.3390/ma18143380 - 18 Jul 2025
Viewed by 294
Abstract
This study examined the relationship between microhardness, morphology, and phase composition of dental yttria-stabilized tetragonal zirconia polycrystals (Y-TZP), which directly impact their long-term clinical performance and durability. The primary objective was to investigate the effects of yttria content and polishing on the surface [...] Read more.
This study examined the relationship between microhardness, morphology, and phase composition of dental yttria-stabilized tetragonal zirconia polycrystals (Y-TZP), which directly impact their long-term clinical performance and durability. The primary objective was to investigate the effects of yttria content and polishing on the surface properties and hardness of these materials. Samples from ZirCAD Prime, Cercon ht ML, ZIRCONIA YML, and ZirCAD LT were analyzed using Vickers hardness testing, Powder X-ray Diffraction (PXRD), and Scanning Electron Microscopy (SEM). SEM analysis revealed a gradual increase in grain size and porosity with higher yttria content in unpolished samples. Polishing resulted in a relatively uniform surface morphology with observable striations across all samples, subsequently leading to similar Vickers hardness values for all polished samples. PXRD and SEM analyses identified that these similar hardness values were likely due to the predominant monoclinic phase on the surface, induced by polishing. These findings underscore the significant influence of yttria content and polishing on Y-TZP microstructure and surface hardness, highlighting their critical role in the long-term success and clinical applicability of dental restorations. Full article
Show Figures

Figure 1

17 pages, 5116 KiB  
Article
Influence of Different Surface Treatments on the Low-Temperature Degradation of Three Commercial Yttria-Stabilized Tetragonal Zirconia Polycrystal
by Jumei Tian, Huei-Jyuan Liao, Wen-Fu Ho, Hsueh-Chuan Hsu and Shih-Ching Wu
Materials 2025, 18(11), 2543; https://doi.org/10.3390/ma18112543 - 28 May 2025
Viewed by 412
Abstract
Aging of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) under wet conditions is known as low-temperature degradation (LTD), which is associated with phase change and decreasing mechanical strength. Herein, we studied the effects of different surface treatments on the LTD of three different commercial Y-TZP [...] Read more.
Aging of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) under wet conditions is known as low-temperature degradation (LTD), which is associated with phase change and decreasing mechanical strength. Herein, we studied the effects of different surface treatments on the LTD of three different commercial Y-TZP blocks utilizing CAD/CAM technology, namely, Cercon®, e.max® ZirCAD, and Vita In-ceram® YZ. The blocks were immersed in 4% acetic acid at 80 °C for 0, 7, 14, and 28 days. The effects of surface treatments such as sandblasting and polishing were also examined. The results showed that the monoclinic phase increased with immersion time in all three brands. In Cercon® blocks, a minimal amount of phase transformation was observed, with the smallest amount of degradation after immersion. Sandblasting and polishing both suppressed phase transformation. After immersion, the mechanical strength exhibited a small decrease with time. Accelerating the evaluation of the LTD of zirconia may effectively help with clinical applications. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

15 pages, 3971 KiB  
Article
Impact Resistance of Yttria- and Ceria-Doped Zirconia Ceramics in Relation to Their Tetragonal-to-Monoclinic Transformation Ability
by Mohamed Imariouane, Malika Saâdaoui, Norberto Labrador, Helen Reveron and Jérôme Chevalier
Ceramics 2025, 8(1), 26; https://doi.org/10.3390/ceramics8010026 - 7 Mar 2025
Viewed by 1271
Abstract
In this work, the impact resistance of three zirconia ceramics was investigated: two yttria-stabilized zirconia (3Y-TZP and 1.5Y-TZP) and a ceria-stabilized-zirconia (Ce-TZP) composite. The impact resistance was evaluated through drop-ball impact tests on disk-shaped samples. The results are discussed in terms of the [...] Read more.
In this work, the impact resistance of three zirconia ceramics was investigated: two yttria-stabilized zirconia (3Y-TZP and 1.5Y-TZP) and a ceria-stabilized-zirconia (Ce-TZP) composite. The impact resistance was evaluated through drop-ball impact tests on disk-shaped samples. The results are discussed in terms of the materials’ transformability, which was correlated to the size of tetragonal-to-monoclinic (t-m) transformation zones observed after the impact tests and to the volume fraction of the monoclinic content on fractured surfaces. The findings show that impact resistance increases with the ability of the material to undergo t-m transformation. The Ce-TZP composite exhibited the highest transformability and consequently the highest impact resistance, followed by 1.5Y-TZP, and then 3Y-TZP. Full article
(This article belongs to the Special Issue Mechanical Behavior and Reliability of Engineering Ceramics)
Show Figures

Figure 1

15 pages, 7202 KiB  
Article
The Effect of Glazing and Repeated Firing on Color, Translucency, and Flexural Strength of Different Types of Zirconia: An In Vitro Study
by Ruwaida Z. Alshali, Mohamed Abdelmageed Awad, Amnah A. Assiri, Shahad A. Aljahdali, Walaa A. Babeer, Dalea M. Bukhary, Mosa M. Altassan and Lulwa E. Al-Turki
Ceramics 2025, 8(1), 14; https://doi.org/10.3390/ceramics8010014 - 6 Feb 2025
Viewed by 1200
Abstract
This study evaluated the impact of glazing and multiple firing on the flexural strength, translucency, and color stability of three types of zirconia: 3 mol% yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP), 4 mol% yttria partially stabilized zirconia (4Y-PSZ), and 5 mol% yttria partially stabilized [...] Read more.
This study evaluated the impact of glazing and multiple firing on the flexural strength, translucency, and color stability of three types of zirconia: 3 mol% yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP), 4 mol% yttria partially stabilized zirconia (4Y-PSZ), and 5 mol% yttria partially stabilized zirconia (5Y-PSZ). A total of 120 samples were categorized into four groups: polishing only (P), polishing + glazing (PG), polishing + glazing + one glaze firing (PGF), and polishing + glazing + two glaze firings (PGFF). A three-point bending test was used for assessing flexural strength and a spectrophotometer analysis for assessing color difference (ΔE*ab) and translucency parameter (TP). Statistical analysis included one-way ANOVA and Kruskal–Wallis tests, with significance set at α = 0.05. The type 3Y-TZP showed the highest flexural strength (918.46 MPa) and lowest translucency (TP = 4.32), while 5Y-PSZ exhibited the lowest strength (401.58 MPa, p < 0.001) and highest translucency (TP = 6.26, p ≤ 0.012). Heat treatment resulted in a significant reduction in the flexural strength of 5Y-PSZ (p = 0.002), followed by 3Y-TZP (p = 0.04). The type 5Y-PSZ exhibited significant change in translucency (p = 0.003) and unacceptable variations in color (ΔE*ab: 1.49–9.6). The type 4Y-PSZ exhibited the highest stability in flexural strength, translucency, and color under multiple treatments. In conclusion, while glazing and firing significantly compromised 5Y-PSZ’s flexural strength and altered its color and translucency, 4Y-PSZ demonstrated the highest stability. Full article
Show Figures

Figure 1

19 pages, 7211 KiB  
Article
Ceria-Stabilized Zirconia/Alumina Nanocomposite (NANO-Zr) Surface Enhances Osteogenesis Through Regulation of Macrophage Polarization
by Yuan Tian, Yunjia Song, Suli Lan, Ruoting Geng, Muxiang Wang, Sanwen Li, Jianmin Han, Hong Bai, Guang Hong and Ying Li
Coatings 2024, 14(11), 1460; https://doi.org/10.3390/coatings14111460 - 17 Nov 2024
Cited by 1 | Viewed by 1378
Abstract
Zirconia implants are recognized for their excellent biocompatibility, aesthetics, and favorable mechanical properties. However, the effects of zirconia surfaces on osteogenesis, particularly in the presence of macrophages, are still not well understood. This study compares two types of zirconia surfaces—ceria-stabilized zirconia/alumina nanocomposite (NANO-Zr) [...] Read more.
Zirconia implants are recognized for their excellent biocompatibility, aesthetics, and favorable mechanical properties. However, the effects of zirconia surfaces on osteogenesis, particularly in the presence of macrophages, are still not well understood. This study compares two types of zirconia surfaces—ceria-stabilized zirconia/alumina nanocomposite (NANO-Zr) and 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP)—with titanium (Ti) substrates. Both zirconia surfaces promoted macrophage adhesion and proliferation, facilitated a shift from M1 to M2 polarization, and created an immune microenvironment conducive to osteogenesis by downregulating IL-6 and TNF-α and upregulating IL-10 and TGF-β gene expression. In macrophage co-cultures, both zirconia surfaces also supported osteoblast adhesion and proliferation, with NANO-Zr notably enhancing osteogenic differentiation and mineralization. These results highlight NANO-Zr as a promising candidate for future dental and orthopedic implant applications. Full article
Show Figures

Graphical abstract

12 pages, 9322 KiB  
Article
Enhancing Fracture Toughness of Dental Zirconia through Incorporation of Nb into the Surface
by Seiji Ban and Yuta Yasuoka
Materials 2024, 17(18), 4446; https://doi.org/10.3390/ma17184446 - 10 Sep 2024
Viewed by 1176
Abstract
Background: Our previous study found that the addition of pentavalent cations like niobium (Nb) to yttria-stabilized zirconia increased fracture toughness but also raised the coefficient of thermal expansion (CTE), and opacity also increased undesirably. A new surface treatment is required to boost fracture [...] Read more.
Background: Our previous study found that the addition of pentavalent cations like niobium (Nb) to yttria-stabilized zirconia increased fracture toughness but also raised the coefficient of thermal expansion (CTE), and opacity also increased undesirably. A new surface treatment is required to boost fracture toughness without altering CTE or translucency. Methods: The surfaces of pre-sintered 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) and 4.2 mol% yttria-stabilized partially stabilized zirconia (4.2Y-PSZ) were treated with a Nb sol solution containing Nb2O5 nanoparticles. After drying and sintering, a high-Nb-content surface layer formed with a depth of approximately 1 mm. Results: The Nb content in this surface layer matched that of a bulk material with 1 mol% Nb2O5. The tetragonality of the surface zirconia increased, enhancing the surface fracture toughness without changing the CTE or translucency. Conclusions: Adding Nb near the surface improved the fracture toughness without affecting the CTE or translucency. This method could strengthen zirconia prostheses, allowing more reliable dental restorations. Full article
(This article belongs to the Special Issue Advances in Dental Techniques and Restorative Materials)
Show Figures

Figure 1

20 pages, 5212 KiB  
Article
Mechanical Properties of an Extremely Tough 1.5 mol% Yttria-Stabilized Zirconia Material
by Frank Kern and Bettina Osswald
Ceramics 2024, 7(3), 1066-1084; https://doi.org/10.3390/ceramics7030070 - 15 Aug 2024
Cited by 4 | Viewed by 2305
Abstract
Yttria-stabilized zirconia (Y-TZP) ceramics with a drastically reduced yttria content have been introduced by different manufacturers, aiming at improving the damage tolerance of ceramic components. In this study, an alumina-doped 1.5Y-TZP was axially pressed, pressureless sintered in air at 1250–1400 °C for 2 [...] Read more.
Yttria-stabilized zirconia (Y-TZP) ceramics with a drastically reduced yttria content have been introduced by different manufacturers, aiming at improving the damage tolerance of ceramic components. In this study, an alumina-doped 1.5Y-TZP was axially pressed, pressureless sintered in air at 1250–1400 °C for 2 h and characterized with respect to mechanical properties, microstructure, and phase composition. The material exhibits a combination of a high strength of 1000 MPa and a high toughness of 8.5–10 MPa√m. The measured fracture toughness is, however, extremely dependent on the measurement protocol. Direct crack length measurements overestimate toughness due to trapping effects. The initially purely tetragonal material has a high transformability of >80%, the transformation behavior is predominantly dilational, and the measured R-curve-related toughness increments are in good agreement with the transformation toughness increments derived from XRD data. Full article
Show Figures

Figure 1

13 pages, 3260 KiB  
Article
Influence of Non-Invasive Zirconium Oxide Surface Treatment on Phase Changes
by Kinga Regulska, Bartłomiej Januszewicz, Anna Jędrzejczak and Leszek Klimek
Ceramics 2024, 7(1), 222-234; https://doi.org/10.3390/ceramics7010014 - 8 Feb 2024
Viewed by 2159
Abstract
The aim of the research was to find a zirconia treatment method that would reduce or minimize the transformation from the tetragonal phase to the monoclinic phase. Background: Yttria-stabilized zirconia is increasingly chosen for the base of permanent prosthetic restorations. To achieve a [...] Read more.
The aim of the research was to find a zirconia treatment method that would reduce or minimize the transformation from the tetragonal phase to the monoclinic phase. Background: Yttria-stabilized zirconia is increasingly chosen for the base of permanent prosthetic restorations. To achieve a good bond between the prosthetic cup and the veneer material, the material must be treated to achieve surface development. This is a mechanical process, during which an unfavorable transformation from the tetragonal into the monoclinic phase takes place, which leads to the weakening of the internal structure of zirconium dioxide, and later damages the prosthetic restoration. Methods: The tested material consisted of cylindrical samples of 3Y-TZP CeramillZi zirconium oxide, which were sintered after cutting out from the block. After sintering, the samples were subjected to the following types of processing: laser structuring, chemical etching and plasma etching. After the surface treatments, the samples were subjected to diffraction tests to determine the phase composition. Next, the wettability was tested to determine the surface free energy. Results: On the basis of the conducted tests, it was noticed that the applied treatments caused a phase transformation from the tetragonal to the monoclinic phase. After the process of chemical etching, the range of the monoclinic phase for the sample was 5%; after plasma etching, it was 8%, and after laser structuring, it was 2%. In addition, post-surface free energy studies have shown that zirconia is wetted better with an apolar than a polar liquid. Conclusions: The obtained results indicate that the transformation was minimized with the treatments we applied; that is why they are called non-invasive methods. According to the literature data, depending on the parameters of the sandblasting process, the percentage of the monoclinic phase in the treated surfaces ranges from 22% to 52%, which confirms the above-mentioned conclusion. Full article
Show Figures

Figure 1

15 pages, 4590 KiB  
Article
The Effect of Sintering on Zirconia Manufactured via Suspension-Enclosing Projection Stereolithography for Dental Applications: An In Vitro Study
by Amit Unnadkat, Levi Kirby, Senthilguru Kulanthaivel, Oscar Rysavy, Akimasa Tsujimoto, Xuan Song and Erica C. Teixeira
Materials 2024, 17(1), 14; https://doi.org/10.3390/ma17010014 - 19 Dec 2023
Cited by 5 | Viewed by 1927
Abstract
Background: Zirconia is a widely used material in the dental industry due to its excellent mechanical and aesthetic properties. Recently, a new 3D printing process called suspension-enclosing projection stereolithography (SEPS) was introduced to fabricate zirconia dental restorations. However, the effect of the sintering [...] Read more.
Background: Zirconia is a widely used material in the dental industry due to its excellent mechanical and aesthetic properties. Recently, a new 3D printing process called suspension-enclosing projection stereolithography (SEPS) was introduced to fabricate zirconia dental restorations. However, the effect of the sintering time and temperature on the properties of zirconia produced via SEPS has not been fully investigated. Methods: Zirconia slurries were prepared with varying percentages of zirconia powders and 3D printing resins, and 5Y-TZP (5 mol% yttria-stabilized zirconia) (n = 40) and 3Y-TZP (3 mol% yttria-stabilized zirconia) (n = 40) bar specimens were fabricated via SEPS manufacturing. The specimens were sintered at different temperatures and dwell times, and their flexural strength, density, and phase composition were measured. The viscosity of the slurries was also measured. Statistical analysis was performed using Welch’s ANOVA and Kruskal–Wallis tests to evaluate the impact of the sintering conditions. Results: Significant differences in flexural strength (p < 0.01) were observed between the 5Y-TZP samples, with those sintered at 1530 °C for 120 min showing an average strength of 268.34 ± 44.66 MPa, compared to 174.16 ± 42.29 MPa for those sintered at 1450 °C for 120 min. In terms of density, significant differences (p < 0.01) were noted for the 3Y-TZP specimens, with an average density of 6.66 ± 0.49 g/cm3 for samples sintered at 1530 °C for 120 min, versus 5.75 ± 0.55 g/cm3 for those sintered at 1530 °C for 10 min. X-ray diffraction confirmed the presence of a predominantly tetragonal phase in both materials. Conclusions: Zirconia printed via SEPS manufacturing can be sintered at a higher temperature with shorter dwell times, thereby producing high density samples. Different sintering conditions can be used to fully sinter 3D-printed zirconia for potential dental applications. Full article
(This article belongs to the Special Issue Latest Materials and Technologies in Dentistry)
Show Figures

Figure 1

15 pages, 1576 KiB  
Article
The Influence of Alumina Airborne-Particle Abrasion on the Properties of Zirconia-Based Dental Ceramics (3Y-TZP)
by Paulina Łagodzińska, Beata Dejak and Bartłomiej Konieczny
Coatings 2023, 13(10), 1691; https://doi.org/10.3390/coatings13101691 - 26 Sep 2023
Cited by 4 | Viewed by 2572
Abstract
The objective of this study was to assess the effect of airborne-particle abrasion with alumina particles of various sizes (50 μm, 110 μm, 250 μm) on the surface properties of 3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals). The analysis comprised the Vickers hardness [...] Read more.
The objective of this study was to assess the effect of airborne-particle abrasion with alumina particles of various sizes (50 μm, 110 μm, 250 μm) on the surface properties of 3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals). The analysis comprised the Vickers hardness test (HV1kp), a surface roughness evaluation (Ra, Rq, Rz, Rsk, Rsm, Rt, Vo, profile displays), and SEM–EDS microanalysis (scanning electron microscopy–energy-dispersive X-ray spectroscopy). Any statistical relationships were assessed using the Kruskal–Wallis one-way analysis-of-variance-by-rank test (p = 0.05). While airborne-particle abrasion with 50 µm alumina significantly increases the Vickers hardness of 3Y-TZP (1678.8 HV1kp), 110 μm and 250 μm alumina particles do not appear to have any such effect. The surface roughness of 3Y-TZP increases with the size of the alumina particles (Ra, Rq, Rz, Rt, Vo: vertical plane and retention volume assessment); a higher Rsm (horizontal plane assessment) was noted for specimens air-abraded with 250 µm alumina particles; air abrasion with 50 μm alumina particles yielded a symmetrical surface roughness profile (Rsk). The major topographic pattern of the surface of 3Y-TZP is altered by alumina airborne-particle abrasion, with larger alumina particles causing more severe changes. Aluminum traces on the 3Y-TZP surface are observed. The shape of the alumina particles is irregular, with rough edges; the size of the alumina particles plays a significant role in the air abrasion of zirconia-based dental ceramics, affecting their morphology and properties. Full article
(This article belongs to the Special Issue Surface Properties of Dental Materials and Instruments, 2nd Edition)
Show Figures

Figure 1

14 pages, 16243 KiB  
Article
Effect of Simulated Mastication on Structural Stability of Prosthetic Zirconia Material after Thermocycling Aging
by Anna Ziębowicz, Bettina Oßwald, Frank Kern and Willi Schwan
Materials 2023, 16(3), 1171; https://doi.org/10.3390/ma16031171 - 30 Jan 2023
Cited by 5 | Viewed by 2021
Abstract
Recent trends to improve the aesthetic properties—tooth-like color and translucency—of ceramic dental crowns have led to the development of yttria-stabilized zirconia (Y-TZP) materials with higher stabilizer content. These 5Y-TZP materials contain more cubic or t’ phase, which boosts translucency. The tradeoff as a [...] Read more.
Recent trends to improve the aesthetic properties—tooth-like color and translucency—of ceramic dental crowns have led to the development of yttria-stabilized zirconia (Y-TZP) materials with higher stabilizer content. These 5Y-TZP materials contain more cubic or t’ phase, which boosts translucency. The tradeoff as a consequence of a less transformable tetragonal phase is a significant reduction of strength and toughness compared to the standard 3Y-TZP composition. This study aims at determining the durability of such 5Y-TZP crowns under lab conditions simulating the conditions in the oral cavity during mastication and consumption of different nutrients. The test included up to 10,000 thermal cycles from 5 °C to 55 °C “from ice cream to coffee” and a chewing simulation representing 5 years of use applying typical loads. The investigation of the stress-affected zone at the surface indicates only a very moderate phase transformation from tetragonal to monoclinic after different varieties of testing cycles. The surface showed no indication of crack formation after testing. It can, therefore, be assumed that over the simulated period, dental crowns of 5Y-TZP are not prone to fatigue failure. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

11 pages, 1189 KiB  
Article
Wear Properties of Conventional and High-Translucent Zirconia-Based Materials
by Francesco De Angelis, Matteo Buonvivere, Edoardo Sorrentino, Giuseppe Daniele Rondoni and Camillo D’Arcangelo
Materials 2022, 15(20), 7324; https://doi.org/10.3390/ma15207324 - 20 Oct 2022
Cited by 12 | Viewed by 2292
Abstract
This study investigated the two-body wear resistance of a first generation 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP), a second generation 3Y-TZP, a third generation 4 mol% yttria partially stabilized zirconia (4Y-PSZ), a 5 mol% yttria partially stabilized zirconia (5Y-PSZ), and a type [...] Read more.
This study investigated the two-body wear resistance of a first generation 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP), a second generation 3Y-TZP, a third generation 4 mol% yttria partially stabilized zirconia (4Y-PSZ), a 5 mol% yttria partially stabilized zirconia (5Y-PSZ), and a type III gold alloy (Aurocast 8), performed using opposing antagonistic cusps made out of the same material. Eight cylindrical specimens were prepared for each material (n = 8) for a total of forty specimens (N = 40). Conical cusps were fabricated for each material. Each cylinder–cusp pair was arranged inside a two-axis chewing simulator over up to 360,000 loading cycles. The wear resistance was analyzed by measuring the vertical substance loss (mm) and the volume loss (mm3). The antagonist wear (mm) was recorded before and after the wear test to evaluate the linear difference. Statistical analysis was performed using one-way analysis of variance (ANOVA); multiple comparisons were performed according to Tukey’s method. No statistically significant differences (p > 0.05) among the first generation 3Y-TZP, second generation 3Y-TZP, and 4Y-PSZ wear were found. 5Y-PSZ showed statistically significant higher wear compared to other the zirconias. Aurocast 8 displayed the highest values in terms of vertical wear, antagonist cusp wear, and volumetric loss. Although still not statistically comparable, the wear behavior of the latest 5Y-PSZ was the closest to the widely recognized gold standard represented by the type III gold alloy. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

10 pages, 3555 KiB  
Article
A Novel Approach for Micro-Antenna Fabrication on ZrO2 Substrate Assisted by Laser Printing for Smart Implants
by C. G. Moura, H. Dinis, O. Carvalho, P. M. Mendes, R. M. Nascimento and F. S. Silva
Appl. Sci. 2022, 12(18), 9333; https://doi.org/10.3390/app12189333 - 17 Sep 2022
Cited by 3 | Viewed by 2549
Abstract
The use of Yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) in medicine has rapidly expanded over the past decade, driven by its advantageous properties, showing potential to overcome titanium alloy in implant fabrication. The release of metal ions and the aesthetic problems of titanium alloy [...] Read more.
The use of Yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) in medicine has rapidly expanded over the past decade, driven by its advantageous properties, showing potential to overcome titanium alloy in implant fabrication. The release of metal ions and the aesthetic problems of titanium alloy implants are the main reasons for this trend. In addition to meeting expectations regarding its properties, an implant must possess intrinsic capacities such as auto-diagnostic and auto-treatment. Thus, based on the concept of smart implants, this work proposes a hybrid approach for printing a part of the communication system of a zirconia implant by resorting to laser technology, aiming to endow the implant with intrinsic capacities. Therefore, the antenna was designed and then printed on the zirconia surface. The laser was applied as a versatile tool, whether for preparing the surface of the material in a subtractive way, by creating the micro-cavity, or for printing the silver-based antenna in an additive way through laser technology. The silver powder was used as the conductor material of the antenna. The results revealed that the antenna is capable of communicating from inside the body with the outside world without needing to have an exterior antenna attached to the skin. Full article
(This article belongs to the Special Issue Advances in Wireless Communication Technologies)
Show Figures

Figure 1

27 pages, 10540 KiB  
Article
Self-Lubricating Effect of WC/Y–TZP–Al2O3 Hybrid Ceramic–Matrix Composites with Dispersed Hadfield Steel Particles during High-Speed Sliding against an HSS Disk
by Nickolai Savchenko, Irina Sevostyanova, Mikhail Grigoriev, Tatiana Sablina, Ales Buyakov, Maxim Rudmin, Andrey Vorontsov, Evgeny Moskvichev, Valery Rubtsov and Sergei Tarasov
Lubricants 2022, 10(7), 140; https://doi.org/10.3390/lubricants10070140 - 4 Jul 2022
Cited by 7 | Viewed by 2946
Abstract
WC/Y–TZP–Al2O3 hybrid ceramic–matrix composites (CMCs) with dispersed Hadfield steel particles were sintered and then tested at sliding speeds in the range of 7–37 m/s and contact pressure 5 MPa. Fast and low-temperature sinter-forging allowed obtaining micron-sized WC grains, submicron-sized alumina-reinforced [...] Read more.
WC/Y–TZP–Al2O3 hybrid ceramic–matrix composites (CMCs) with dispersed Hadfield steel particles were sintered and then tested at sliding speeds in the range of 7–37 m/s and contact pressure 5 MPa. Fast and low-temperature sinter-forging allowed obtaining micron-sized WC grains, submicron-sized alumina-reinforced yttria partially stabilized polycrystalline tetragonal zirconia (Y–TZP–Al2O3), and evenly distributed Hadfield steel grains. Such a microstructure provided new hybrid characteristics combining high hardness with high fracture toughness and tribological adaptation. The CMCs demonstrated low friction and high wear resistance that were better than those demonstrated by other composite materials such as, for example, MAX-phase composites, zirconia-base ceramics, ZrB2-SiC ceramics, and metal matrix WC–(Fe–Mn–C) composites. These good tribological characteristics were obtained due to the in situ mechanochemical formation of iron tungstates FeWO4 and Fe2WO6 on the worn surfaces of composite samples. These mixed oxides were included in multilayer subsurface structures that provided the self-lubricating and self-healing effects in high-speed sliding because of their easy shear and quasi-viscous behavior. Full article
(This article belongs to the Special Issue Friction and Wear in Composite Materials)
Show Figures

Figure 1

12 pages, 1394 KiB  
Review
Porous Zirconia Blocks for Bone Repair: An Integrative Review on Biological and Mechanical Outcomes
by Cláudia Inês Resende-Gonçalves, Nuno Sampaio, Joaquim Moreira, Oscar Carvalho, João Caramês, Maria Cristina Manzanares-Céspedes, Filipe Silva, Bruno Henriques and Júlio Souza
Ceramics 2022, 5(1), 161-172; https://doi.org/10.3390/ceramics5010014 - 17 Mar 2022
Cited by 10 | Viewed by 5321
Abstract
The aim of this study was to conduct an integrative review of the biological and mechanical outcomes of porous zirconia structures for extensive bone repair. An electronic search was performed on the PubMed database using a combination of the following scientific terms: porous, [...] Read more.
The aim of this study was to conduct an integrative review of the biological and mechanical outcomes of porous zirconia structures for extensive bone repair. An electronic search was performed on the PubMed database using a combination of the following scientific terms: porous, scaffold, foam, zirconia, bone regeneration, bone repair, bone healing. Articles published in the English language up to December 2021 and related to porosity, pore interconnectivity, biocompatibility and strength of the material, and the manufacturing methods of zirconia porous structures were included. Randomized controlled trials and prospective cohort studies were also evaluated. The research identified 145 studies, of which 23 were considered relevant. A high percentage of pores and the size and interconnectivity of pores are key factors for cell migration, attachment, proliferation, and differentiation. In addition, pore interconnectivity allows for the exchange of nutrients between cells and formation of blood vessels. However, a decrease in strength of the porous structures was noted with an increase in the number and size of pores. Therefore, yttria-stabilized zirconia tetragonal polycrystal (Y-TZP) has mechanical properties that make it suitable for the manufacture of highly porous structures or implants for extensive bone repair. Additionally, the porous structures can be coated with bioactive ceramics to enhance the cell response and bone ingrowth without compromising pore networking. Porous structures and mesh implants composed of zirconia have become a strategy for extensive bone repair since the material and the pore network provide the desired biological response and bone volume maintenance. Full article
(This article belongs to the Special Issue Advances in Ceramics)
Show Figures

Figure 1

Back to TopTop