Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = xiaolangdi reservoir

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 21145 KB  
Article
Morphological Response to Sub-Seasonal Hydrological Regulation in the Yellow River Mouth: A 1996–2023 Case Study
by Jingjing Zhu, He Qing Huang, Guo-An Yu, Weipeng Hou, Xiao Zhao and Xueqin Zhang
Hydrology 2025, 12(12), 335; https://doi.org/10.3390/hydrology12120335 - 17 Dec 2025
Viewed by 263
Abstract
River flow has historically been the primary force shaping the morphology of the Yellow River estuary. However, since the Xiaolangdi Reservoir began operating in 2000, the hydrological processes reaching the estuary have been significantly modified. To evaluate the morphological response of the estuary, [...] Read more.
River flow has historically been the primary force shaping the morphology of the Yellow River estuary. However, since the Xiaolangdi Reservoir began operating in 2000, the hydrological processes reaching the estuary have been significantly modified. To evaluate the morphological response of the estuary, we examined the evolution of the mouth channel from 1996 to 2023 using remote sensing, cartographic generalization, and hydrological analysis, supported by annual Landsat imagery, daily hydrological records, and field survey data. Our findings indicate that the channel extended slowly between 1996 and 2002, then advanced rapidly from 2003 to 2007, culminating in a natural avulsion between 2004 and 2008. Following the avulsion, the newly formed channel progressively extended (2008–2013) and, after 2014, developed into a multi-branch system. The development of this bifurcating system since 2014 is attributed to the sustained release of low-sediment-concentration flows from the Xiaolangdi Reservoir. In contrast, the earlier avulsion was triggered by the rapid discharge of a high-sediment-concentration flow in 2004. These results demonstrate that releases from the Xiaolangdi Reservoir with varying sediment concentrations at different timescales elicited distinct morphological responses in the Yellow River estuary, underscoring the need for carefully calibrated hydrological regulation. Full article
Show Figures

Figure 1

20 pages, 4823 KB  
Article
Discussion on the Dominant Factors Affecting the Main-Channel Morphological Evolution in the Wandering Reach of the Yellow River
by Qingbin Mi, Ming Dou, Guiqiu Li, Lina Li and Guoqing Li
Water 2025, 17(24), 3509; https://doi.org/10.3390/w17243509 - 11 Dec 2025
Viewed by 268
Abstract
The wandering reach of the Yellow River has long been a pivotal area of research due to its drastic fluctuations in water-sediment dynamics, frequent shifts in the main channel, and complex river regime evolution. Studies on the main-channel morphological evolution in this reach [...] Read more.
The wandering reach of the Yellow River has long been a pivotal area of research due to its drastic fluctuations in water-sediment dynamics, frequent shifts in the main channel, and complex river regime evolution. Studies on the main-channel morphological evolution in this reach have focused on the analysis of parameters related to the overall oscillation or have only analyzed a certain reach within the wandering reach, with a lack of detailed studies based on the different characteristics of each area. Therefore, taking the Xiaolangdi Reservoir–Gaocun reach as the research area, by constructing a two-dimensional water-sediment dynamic model, the erosion–deposition characteristics of different sub-reaches and the morphological evolution characteristics of key cross-sections were quantified and analyzed. Based on measured hydrological, sediment, and topographic data, the temporal and spatial changes in the bankfull area and fluvial facies coefficient of typical sections before and after the construction of Xiaolangdi Reservoir were analyzed. By interpreting remote sensing images, the spatio-temporal variation characteristics of the migration distance and bending coefficient of different reaches before and after the construction of Xiaolangdi Reservoir were calculated, and the key factors influencing the evolution of river morphology parameters were identified. The results showed that after the Xiaolangdi Reservoir operation, the overall erosion of the Huayuankou–Jiahetan reach is greater than the deposition, and the erosion is more obvious in dry years. The river course direction and control engineering play a significant role in controlling the morphological evolution of the main channel during the process, causing the R2 reach to significantly swing to the north bank and the R3 reach to the south bank. When the sediment transport coefficient values were between 0 and 0.005 kg.s.m−6, water-sediment had a positive effect on shaping and evolving the main-channel morphology. The long-term low-sand discharge of Xiaolangdi Reservoir and the continuous improvement of river regulation projects are the main reasons for the above changes. The results can provide support for controlling the evolution of the main channel and improving river regulation projects. Full article
Show Figures

Figure 1

18 pages, 3079 KB  
Article
Optimizing Water–Sediment, Ecological, and Socioeconomic Management in Cascade Reservoirs in the Yellow River: A Multi-Target Decision Framework
by Donglin Li, Rui Li, Gang Liu and Chang Zhang
Water 2025, 17(19), 2823; https://doi.org/10.3390/w17192823 - 26 Sep 2025
Viewed by 701
Abstract
Multi-target optimization management of reservoirs plays a crucial role in balancing multiple scheduling objectives, thereby contributing to watershed sustainability. In this study, a model was developed for the multi-target optimization scheduling of water–sediment, ecological, and socioeconomic objectives of reservoirs with multi-dimensional scheduling needs, [...] Read more.
Multi-target optimization management of reservoirs plays a crucial role in balancing multiple scheduling objectives, thereby contributing to watershed sustainability. In this study, a model was developed for the multi-target optimization scheduling of water–sediment, ecological, and socioeconomic objectives of reservoirs with multi-dimensional scheduling needs, including flood control, sediment discharge, ecological protection, and socio-economic development. After obtaining the Pareto solution set by solving the optimization model, a decision model based on cumulative prospect theory (CPT) was constructed to select optimal scheduling schemes, resulting in the development of a multi-target decision framework for reservoirs. The proposed framework not only mitigates multi-target conflicts among water–sediment, ecological, and socioeconomic objectives but also quantifies the different preferences of decision-makers. The framework was then applied to six cascade reservoirs (Longyangxia, Liujiaxia, Haibowan, Wanjiazhai, Sanmenxia, and Xiaolangdi) in the Yellow River basin of China. A whole-river multi-target decision model was developed for water–sediment, ecological, and socioeconomic objectives, and the cooperation–competition dynamics among multiple objectives and decision schemes were analyzed for wet, normal, and dry years. The results demonstrated the following: (1) sediment discharge goals and ecological goals were somewhat competitive, and sediment discharge goals and power generation goals were highly competitive, while ecological goals and power generation goals were cooperative, and cooperation–competition relationships among the three objectives was particularly pronounced in dry years; (2) the decision plans for abundant, normal, and low water years were S293, S241, and S386, respectively, and all are consistent with actual dispatch conditions; (3) compared to local models, the whole-river multi-target scheduling model achieved increases of 71.01 × 106 t in maximum sediment discharge, 0.72% in maximum satisfaction rate of suitable ecological flow, and 0.20 × 109 kW·h in maximum power generation; and (4) compared to conventional decision methods, the CPT-based approach yielded rational results with substantially enhanced sensitivity, indicating its suitability for selecting and decision-making of various schemes. This study provides insights into the establishment of multi-target dispatching models for reservoirs and decision-making processes for scheduling schemes. Full article
Show Figures

Figure 1

27 pages, 4633 KB  
Article
Impact of the Xiaolangdi Reservoir Operation on Water–Sediment Transport and Aquatic Organisms in the Lower Yellow River During Flood Events
by Xueqin Zhang, Min Zhang, Chunjin Zhang, Zanying Sun and Binhua Zhao
Sustainability 2025, 17(18), 8136; https://doi.org/10.3390/su17188136 - 10 Sep 2025
Viewed by 1016
Abstract
The operation of reservoirs has prompted rivers to transition from natural ecosystems to “natural–artificial” composite ecosystems, which has not only altered the water–sediment processes but has also affected river ecology in the downstream river channels. To reveal the impact of the Xiaolangdi Reservoir [...] Read more.
The operation of reservoirs has prompted rivers to transition from natural ecosystems to “natural–artificial” composite ecosystems, which has not only altered the water–sediment processes but has also affected river ecology in the downstream river channels. To reveal the impact of the Xiaolangdi Reservoir (China) on sediment transport and aquatic organisms in the Lower Yellow River (LYR), this article analyzes the changes in the water–sediment processes and sediment transport characteristics prior to and following the reservoir construction, based on measured water–sediment data of 688 floods from 1960 to 2023. It derives a theoretical formulation for the sediment delivery ratio (SDR) of flood events based on the sediment transport rate equation and evaluates the living environment of aquatic organisms in the LYR. The results indicate that after the construction of Xiaolangdi Reservoir, the frequency of floods with an average flow discharge below 1000 m3/s increased from 26.08% to 37.42%, and the frequency of floods with an average sediment concentration below 20 kg/m3 increased from 46.34% to 89.03%. The SDR of flood events significantly correlates positively with the average flow discharge and the water load variation coefficient. Conversely, it negatively correlates with the average sediment concentration and the incoming sediment coefficient. The sediment transport capacity of various river reaches in the LYR gradually increases along the direction of the river channel. The use of Xiaolangdi Reservoir has enhanced sediment transport in the upper LYR reach while decreasing it in the lower reach, aligning the overall sediment transport capacity of the downstream river channel. Additionally, the water–sediment process of the flood events following the completion of the Xiaolangdi Reservoir construction has improved the living environment for aquatic organisms, which is conducive to restoring biodiversity and improving the ecological environment of the river. The research results have enriched the understanding of the impact of reservoir construction on downstream water–sediment transport and aquatic organisms in sandy rivers, providing technical support for the health and sustainable development of rivers. Full article
(This article belongs to the Special Issue Ecological Water Engineering and Ecological Environment Restoration)
Show Figures

Figure 1

16 pages, 6064 KB  
Article
Response Analysis of Microbial Community Structures and Functions Under Water and Sediment Changes in the Middle and Lower Yellow River
by Ji Wu, Quan Hong, Jin Zhang, Chen Xie, Yang Liu, Dandan Li, Hao Liu and Ziwu Fan
Diversity 2025, 17(1), 41; https://doi.org/10.3390/d17010041 - 7 Jan 2025
Cited by 1 | Viewed by 1686
Abstract
Safety and ecological health are restricted by the high amount of suspended sediment in the Yellow River. To solve the problems of the high sediment content and siltation in the Yellow River, the Xiaolangdi Reservoir (XLDR) has been carrying out water–sediment regulation (WSR) [...] Read more.
Safety and ecological health are restricted by the high amount of suspended sediment in the Yellow River. To solve the problems of the high sediment content and siltation in the Yellow River, the Xiaolangdi Reservoir (XLDR) has been carrying out water–sediment regulation (WSR) since 2002. To clarify the effects of the water and sediment changes caused by WSR on microbial communities, we analysed the composition of the microbial communities and functional groups in surface water and sediments before and after WSR using high-throughput sequencing and microbial functional annotation. Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were detected as the main microbial communities in the Yellow River’s middle and lower reaches. The water temperature (WT), dissolved oxygen (DO), total nitrogen (TN), total phosphorus (TP), and evolution of the microbial communities were all correlated (p < 0.05). The biodiversity indices of the surface water and sediment microbes, respectively, greatly declined. The WSR programme broke down nutrients that had been adsorbed on the sediments, which diminished microbial metabolic activity and impaired the water bodies’ capacity to purify themselves. In summary, this study provides the biological information needed for the ecological conservation of the Yellow River basin, as well as insights into the changes in and response characteristics of microorganisms following severe disturbances in rivers with high sediment concentrations. Full article
(This article belongs to the Section Freshwater Biodiversity)
Show Figures

Graphical abstract

13 pages, 12475 KB  
Article
Space–Ground Remote Sensor Network for Monitoring Suspended Sediments in the Yellow River Basin
by Yingzhuo Hou, Yonggang Ma, Zheng Hou, Maham Arif, Jinghu Li, Xing Ming, Xinyue Liu and Qianguo Xing
Sensors 2024, 24(21), 6888; https://doi.org/10.3390/s24216888 - 27 Oct 2024
Cited by 3 | Viewed by 2149
Abstract
The Yellow River, China’s second-largest river, is renowned for its high sediment content. In response to the potential impacts of climate change on Yellow River water resources and water environmental management, an advanced monitoring and forecasting system for water and sediment throughout the [...] Read more.
The Yellow River, China’s second-largest river, is renowned for its high sediment content. In response to the potential impacts of climate change on Yellow River water resources and water environmental management, an advanced monitoring and forecasting system for water and sediment throughout the entire Yellow River basin—from its source to the sea—is urgently needed. In this paper, based on the current status of water and sediment monitoring technologies, we proposed an integrated remote sensing monitoring network that combines satellite remote sensing, drone remote sensing, and ground-based wireless automatic monitoring networks, aiming to achieve the digital monitoring of water and sediment across the entire Yellow River basin, from its upper reaches to its estuary in the Bohai Sea. By utilizing ground-based in situ hyperspectral stations for sediment source areas in the upper reaches, such as the Qingshui River basin in Ningxia, and satellite remote sensing for midstream processes in the Xiaolangdi reservoir before the flood season in 2023, as well as downstream monitoring at the Yellow River estuary, this paper demonstrates the novelty and efficiency of the space–air–ground integrated remote sensing monitoring technology. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

17 pages, 2855 KB  
Article
Emergy-Based Evaluation of Xiaolangdi Reservoir’s Impact on the Ecosystem Health and Services of the Lower Yellow River
by Xiangping Zhang, Yuanjian Wang, Junhua Li, Yanhui Zhang and Shuping Zhang
Sustainability 2024, 16(20), 8857; https://doi.org/10.3390/su16208857 - 13 Oct 2024
Cited by 2 | Viewed by 1614
Abstract
The disturbance in river ecosystems caused by reservoirs and dams has become a critical topic, attracting increasing attention. However, the extent to which reservoir and dam construction and operation impact downstream river ecosystem health and ecosystem service functions is not fully understood. This [...] Read more.
The disturbance in river ecosystems caused by reservoirs and dams has become a critical topic, attracting increasing attention. However, the extent to which reservoir and dam construction and operation impact downstream river ecosystem health and ecosystem service functions is not fully understood. This research examines the Xiaolangdi Reservoir and the Lower Yellow River (LYR) ecosystem in China as a case study. We analyzed the complex material and energy flows in the LYR ecosystem using emergy theory and developed a set of emergy-based indicators for the quantitative assessment of river ecosystem health and services under reservoir operation interference. The results indicate that the total natural capital and environmental endowments of the LYR ecosystem have remained relatively stable after the operation of the Xiaolangdi Reservoir, with an increase in renewable emergy input. The ecosystem’s vigor decreased slightly, while the biomass emergy diversity index remained stable. However, the total emergy inputs increased significantly, with external feedback inputs becoming the most important emergy source for the LYR ecosystem. The resilience of the LYR ecosystem improved, with a significant increase in emergy density and a decrease in the emergy sustainability index. These findings suggest that although the river ecosystem continues to provide supporting services to human society, the extent of these services has diminished compared to pre-perturbation levels. In this research, a methodology for analyzing the impact of key reservoir operations on the ecosystem health and services of a large river is proposed to provide support for large river sustainable development studies. Full article
(This article belongs to the Special Issue Hydrosystems Engineering and Water Resource Management)
Show Figures

Figure 1

13 pages, 1141 KB  
Article
Multi-Objective Planting Structure Optimisation in an Irrigation Area Using a Grey Wolf Optimisation Algorithm
by Li Wu, Junfeng Tian, Yanli Liu, Yong Wang and Peixin Zhang
Water 2024, 16(16), 2297; https://doi.org/10.3390/w16162297 - 14 Aug 2024
Cited by 7 | Viewed by 1636
Abstract
To improve agricultural production efficiency, increase farmers’ income, and promote sustainable development, we established a multi-objective optimisation model for crop planting structure in an irrigation area using the grey wolf optimisation (GWO) algorithm to comprehensively consider the resource, economic, and social objectives associated [...] Read more.
To improve agricultural production efficiency, increase farmers’ income, and promote sustainable development, we established a multi-objective optimisation model for crop planting structure in an irrigation area using the grey wolf optimisation (GWO) algorithm to comprehensively consider the resource, economic, and social objectives associated with agriculture. This model was subsequently applied to obtain the optimal planting structure in the southern bank of the Xiaolangdi Reservoir irrigation area in Henan Province, China. The planting areas of wheat, corn, autumn miscellaneous, and economic crops are 30,417; 25,050; 7157; and 1789 hm2, respectively. The irrigation water is 8292.66 × 104 m3, output value of crops is 105,721.37 × 104 CNY, and crop yield is 34,280.31 × 104 kg. Different solutions are used to solve the model to evaluate the results, and the order degree entropy method is used to evaluate and compare the results of multiple solutions. The optimisation scheme obtained with this model is consistent with the evaluation results of the cooperative game optimisation scheme, and the relative order degree entropy is 0.136, which is better than that in other schemes. Thus, the optimisation scheme of crop planting structure obtained via GWO comprehensively considers irrigation water consumption, economic benefits, and crop yield, which ensures coordinated development of resource, economic, and social systems and is conducive to promoting the benign development of the whole irrigation area system. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

20 pages, 5320 KB  
Article
Monitoring Suspended Sediment Transport in the Lower Yellow River using Landsat Observations
by Mengwei Duan, Zhiqiang Qiu, Ruren Li, Keyu Li, Shujie Yu and Dong Liu
Remote Sens. 2024, 16(2), 229; https://doi.org/10.3390/rs16020229 - 6 Jan 2024
Cited by 15 | Viewed by 4689
Abstract
The spatiotemporal variations in suspended sediment concentration (SSC) in the lower reaches of the Yellow River exhibit significant variability and are influenced by reservoir operations. Understanding the spatiotemporal distribution characteristics of SSC in water holds crucial implications for environmental protection and reservoir operation [...] Read more.
The spatiotemporal variations in suspended sediment concentration (SSC) in the lower reaches of the Yellow River exhibit significant variability and are influenced by reservoir operations. Understanding the spatiotemporal distribution characteristics of SSC in water holds crucial implications for environmental protection and reservoir operation management. Based on daily-scale SSC monitoring data from four hydrological stations in the lower Yellow River, this study established an SSC remote sensing model applicable to Landsat series satellite data. The independent variable of the model, Rrs(NIR)/(Rrs(G) + Rrs(R) + Rrs(SWIR)), demonstrated sensitivity to water bodies with different SSC values. Distinctive spatiotemporal characteristics in sediment transport were observed across the lower Yellow River. Spatially, the SSC values in the Sanmenxia and Xiaolangdi reservoirs were notably lower than those in other river sections, averaging 1008.42 ± 602.83 mg/L and 1177.89 ± 627.95 mg/L, respectively. Over time, the majority of the river sections (96%) exhibited decreasing trends in SSC during 1984–2022, particularly in the downstream Xiaolangdi reservoir, with average SSC values of 4265.58 ± 1101.77 mg/L in the 1980s and 1840.80 ± 2255.15 mg/L in the 2020s. Seasonal variations in SSC were prominent, with higher summer concentrations, averaging 5536.43 ± 2188.77 mg/L (2020s summer) and 814.11 ± 158.27 mg/L (2020s winter). Reductions in SSC during 1984–2022 primarily occurred in summer, weakening its seasonal variability in the lower Yellow River. Water discharge emerged as a critical factor influencing suspended sediment transport, with SSC increasing in high-water-flow months. Following the construction of the Xiaolangdi reservoir, the relationship between SSC and water discharge at different stations underwent notable alterations. This study enhances our understanding of the spatiotemporal dynamics of suspended sediment transport in the lower Yellow River, providing valuable insights for utilizing long-term Landsat series data in the dynamic monitoring of river sediment transport. Full article
Show Figures

Figure 1

14 pages, 6893 KB  
Article
Time-Lagged Response of Streamflow in the Lower Yellow River to the Water Regulation by Xiaolangdi Reservoir: Implication for Efficient Water Supply
by Juan Wang, Jinquan Xu and Dongxian Kong
Water 2024, 16(1), 78; https://doi.org/10.3390/w16010078 - 24 Dec 2023
Cited by 1 | Viewed by 2334
Abstract
The Lower Yellow River (LYR) is a vital water resource for agriculture, industry, and domestic use in the surrounding areas. Understanding the delayed response of local streamflow response to remote reservoir operations is crucial for effective water management and flood control. In this [...] Read more.
The Lower Yellow River (LYR) is a vital water resource for agriculture, industry, and domestic use in the surrounding areas. Understanding the delayed response of local streamflow response to remote reservoir operations is crucial for effective water management and flood control. In this work, we utilize historical hydrological data and statistical analysis techniques to investigate the time-lagged response of streamflow in the LYR to water regulation by the Xiaolangdi Reservoir. The results demonstrate that there is a time lag of 1.98 days, 2.86 days, and 3.93 days between the record of water regulation at Xiaolangdi Reservoir and the arrival time at Gaocun, Aishan, and Lijin stations, respectively. Time lag correction is proven to be crucial when establishing the relationship between the daily streamflows in the LYR and those at Xiaolangdi station. Further analysis reveals that the travel distance of streamflow is the dominant factor determining the lag time, with a time lag coefficient of 0.57 days per hundred kilometers. It is expected that the findings in this study could offer a fundamental basis for decision-makers in water resource management. Full article
(This article belongs to the Special Issue Advances in Hydrology: Flow and Velocity Analysis in Rivers)
Show Figures

Figure 1

20 pages, 4838 KB  
Article
Impact of Xiaolangdi Reservoir on the Evolution of Water Infiltration Influence Zones of the Secondary Perched Reach of the Lower Yellow River
by Min Zhang, Jianhua Ping, Yafei Zou, He Li, Joshua Mahwa, Jichang Zhao and Jiaqi Liu
Water 2023, 15(24), 4308; https://doi.org/10.3390/w15244308 - 18 Dec 2023
Cited by 2 | Viewed by 2073
Abstract
Understanding the complex interplay between water management infrastructure and groundwater dynamics is crucial for sustainable resource utilization. This study investigates water infiltration dynamics in the secondary perched reach of the Yellow River after the operation of the Xiaolangdi Reservoir. The methodology included the [...] Read more.
Understanding the complex interplay between water management infrastructure and groundwater dynamics is crucial for sustainable resource utilization. This study investigates water infiltration dynamics in the secondary perched reach of the Yellow River after the operation of the Xiaolangdi Reservoir. The methodology included the application of the single-factor analysis of variance and water balance method, alongside a dual-structure, one-dimensional seepage model to simulate interactions within the system, while exploring characteristics of the groundwater flow system and the exploitation depth of below 100 m. Furthermore, we studied the influence zone range and alterations in river water infiltration in the secondary perched reach of the river following the operation of Xiaolangdi Reservoir. The results show that before the operation of the reservoir, the influence ranges of the north and south banks of the aboveground reach extended from 20.13 km to 20.48 km and 15.85 km to 16.13 km, respectively. Following the initiation of the reservoir, the river channel underwent scouring, leading to enhanced riverbed permeability. Additionally, the influence of long-term groundwater exploitation on both riverbanks extended the influence range of groundwater recharge within the secondary perched reach of the river. The influence zone of the north bank is now 23.41 km–26.74 km and the south bank 18.43 km–21.05 km. After years of shallow groundwater extraction, multiple groundwater depression cones emerged within the five major groundwater source areas on both sides of the river. Notably, deeper water levels (Zhengzhou to Kaifeng) have significantly decreased, with a drop of 42 m to 20 m to 15 m. This change in groundwater dynamics extended beyond the main channel of the river, creating a localized shallow groundwater field. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

20 pages, 3916 KB  
Article
Optimizing the Flood Limit Water Level of Reservoirs in Sediment-Laden Rivers under Changing Water and Sediment Conditions: A Case Study of the Xiaolangdi Reservoir
by Cuixia Chen, Xing Gao, Moxi Wu, Chenghao Zhu, Cuihua An, Da Li and Junxiu Liu
Water 2023, 15(20), 3552; https://doi.org/10.3390/w15203552 - 11 Oct 2023
Viewed by 2051
Abstract
Optimizing the flood limit water level (FLWL) of reservoirs in sediment-laden rivers under changing water and sediment conditions is an important research topic that could improve comprehensive utilization benefits. Because reservoir operation has multiple objectives in sediment-laden rivers, this study established a water–sediment [...] Read more.
Optimizing the flood limit water level (FLWL) of reservoirs in sediment-laden rivers under changing water and sediment conditions is an important research topic that could improve comprehensive utilization benefits. Because reservoir operation has multiple objectives in sediment-laden rivers, this study established a water–sediment mathematical model, a comprehensive benefit evaluation model, and an evaluation index system. Taking the Xiaolangdi Reservoir of the Yellow River as an example, the operation mode of the FLWL under changing water and sediment conditions was studied. Under the scenarios of incoming sediment amounts of 300–800 million tons, when using the operation mode of gradually raising the FLWL, the sediment retention period was 4–13 years longer; the lower average annual siltation of the downstream channel and minimum bank-full discharge of the downstream channel after 50 years was larger by 150–260 m3/s than the operation mode of raising the FLWL at one time. However, with enhanced benefits of sediment blocking and siltation reduction, other benefits such as water resources supply, hydropower generation, and ecological improvement are reduced. The average annual number of days that do not meet the downstream water resources supply requirements, irrigation, and ecological improvement was increased by 0.64–2.16 days, and 91–197 million kW·h reduced average annual hydropower generation. The critical amount of incoming sediment was 350 million for conversion between the two FLWL operation modes, and it will increase to 450 million tons if the incoming runoff of the Yellow River increases by 20%. After constructing the Guxian Reservoir in the middle of the Yellow River, the critical amount of incoming sediment will increase to 600 million tons. This study is of great significance for improving the utilization efficiency of water resources and promoting the socio-economic development of river basins. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

18 pages, 13660 KB  
Article
Optimization of Reservoir Level Scheduling Based on InSAR-LSTM Deformation Prediction Model for Rockfill Dams
by Zhigang Fang, Rong He, Haiyang Yu, Zixin He and Yaming Pan
Water 2023, 15(19), 3384; https://doi.org/10.3390/w15193384 - 27 Sep 2023
Cited by 2 | Viewed by 2444
Abstract
The Xiaolangdi reservoir has a storage capacity of more than 10 billion cubic meters, and the dam has significant seasonal deformation. Predicting the deformation of the dam during different periods is important for the safe operation of the dam. In this study, a [...] Read more.
The Xiaolangdi reservoir has a storage capacity of more than 10 billion cubic meters, and the dam has significant seasonal deformation. Predicting the deformation of the dam during different periods is important for the safe operation of the dam. In this study, a long short-term memory (LSTM) model based on interferometric synthetic aperture radar (InSAR) deformation data is introduced to predict dam deformation. First, a time series deformation model of the Xiaolangdi Dam for 2017–2023 was established using Sentinel-1A data with small baseline subset InSAR (SBAS-InSAR), and a cumulative deformation accuracy of 95% was compared with the on-site measurement data at the typical point P. The correlation between reservoir level and dam deformation was found to be 0.81. Then, a model of reservoir level and dam deformation predicted by neural LSTM was established. The overall deformation error of the dam was predicted to be within 10 percent. Finally, we used the optimized reservoir level to simulate the deformation at the measured point P of the dam, which was reduced by about 36% compared to the real deformation. The results showed that the combination of InSAR and LSTM could predict dam failure and prevent potential failure risks by adjusting the reservoir levels. Full article
(This article belongs to the Special Issue Reservoir Control Operation and Water Resources Management)
Show Figures

Figure 1

14 pages, 9031 KB  
Article
Dam Surface Deformation Monitoring and Analysis Based on PS-InSAR Technology: A Case Study of Xiaolangdi Reservoir Dam in China
by Qun Wang, Yufei Gao, Tingting Gong, Tiejun Liu, Zhengwei Sui, Jinghui Fan and Zhenyu Wang
Water 2023, 15(18), 3298; https://doi.org/10.3390/w15183298 - 19 Sep 2023
Cited by 15 | Viewed by 5297
Abstract
The Xiaolangdi Dam is a key project for the control and development of the Yellow River. It bears the functions of flood control, controlling water and sediment in the lower reaches, ice prevention, industrial and agricultural water supply, power generation, and so on. [...] Read more.
The Xiaolangdi Dam is a key project for the control and development of the Yellow River. It bears the functions of flood control, controlling water and sediment in the lower reaches, ice prevention, industrial and agricultural water supply, power generation, and so on. Its safety is related to people’s life and property safety and local economic and social development. It is of great significance to carry out comprehensive and regular deformation monitoring for dams since the deformation is an important evaluation index for dam safety. Interferometric Synthetic Aperture Radar (InSAR) technology has been a rapidly evolving technology in the field of space geodesy in recent years. It offers advantages such as high monitoring precision, extensive coverage, and high monitoring point density, making it a powerful tool for monitoring deformations in hydraulic engineering projects. Based on Sentinel-1 data covering the Xiaolangdi Dam from September 2020 to November 2022, the PS-InSAR technique was used to obtain the surface deformation of the Xiaolangdi Dam, and reservoir water level data on image acquisition dates were obtained for joint analysis. The results show that there is a large deformation in the center of the dam crest of the Xiaolangdi Dam, while both sides of the slope and downstream dam foot are relatively stable. The time series deformation of the dam body is closely related to the reservoir water level change. When the water level increases, the dam body tends to deform downstream; when the water level decreases, the dam body tends to deform upstream. The deformation and water level of the Xiaolangdi Dam exhibit a clear negative correlation. There is no significant cumulative deformation on the dam slopes or at the base of the dam. However, cumulative deformation occurs over time in the central area of the dam’s crest. The deformation process at the central area of the dam’s crest follows a continuous and non-disruptive pattern, which is consistent with the typical deformation behavior of the Xiaolangdi earth–rock dam structure. Therefore, it is judged that the current deformation of the Xiaolangdi Dam does not impact the safe operation of the dam. InSAR technology enables the rapid acquisition of high-precision, high-density deformation information on the surfaces of reservoir dams. With an increasing number of radar satellites in various frequency bands, such as Sentinel-1 and TerraSAR-X, there is now an ample supply of available data sources for InSAR applications. Consequently, InSAR technology can be extended to routine monitoring applications for reservoir dam deformations, especially for small and medium-sized reservoirs that may not be equipped with ground measurement tools like GNSS. This holds significant importance and potential for enhancing the safety monitoring of such reservoirs. Full article
(This article belongs to the Special Issue Geohazards Monitoring Assessment: Earth-Observation Techniques)
Show Figures

Figure 1

28 pages, 54449 KB  
Article
Soil and Rockfill Dams Safety Assessment for Henan Province: Monitoring, Analysis and Prediction
by Hui Liu, Mengyuan Zhu, Wu Zhu, Wenfei Zhao, Zechao Bai, Bochen Zhou, Geshuang Li and Yuanxi Wang
Remote Sens. 2023, 15(17), 4293; https://doi.org/10.3390/rs15174293 - 31 Aug 2023
Cited by 5 | Viewed by 3034
Abstract
It is of great significance to explore the spatial and temporal evolution of soil and rockfill dam deformation, ensuring the safety of people’s lives and healthy economic development. The spatial and temporal evolution patterns of deformation of 17 large soil and rockfill dams [...] Read more.
It is of great significance to explore the spatial and temporal evolution of soil and rockfill dam deformation, ensuring the safety of people’s lives and healthy economic development. The spatial and temporal evolution patterns of deformation of 17 large soil and rockfill dams in Henan Province were analyzed by using the PS-InSAR technique and 55 Sentinel-1A images from March 2017 to September 2021. Based on factors such as reservoir water level and rainfall, a series of analyses were conducted on the Xiaolangdi soil and rockfill dam, which has the highest dam height and the most prominent deformation problem. The monitoring results show that all the soil and rockfill dams in Henan Province have different degrees of deformation, and there is a close relationship between dam height and deformation. In addition, the deformation rate of the Xiaolangdi soil and rockfill dam in the past five years presents a “Stepped Shape” deformation trend from the top to the bottom of the dam. The deformation of the upper, middle, and lower parts of the dam body reaches 80 mm, 40 mm, and 20 mm, respectively, among which the middle part of the dam crest has the largest deformation. Furthermore, the time series prediction model for sparrow search algorithm Long Short-Term Memory considering the moving average filter (MAF-SSA-LSTM) is proposed to predict and accurately analyze the future deformation of Xiaolangdi soil and rockfill dam with RMSE of 1.526 mm, MAE of 1.447 mm, and MAPE of 2.22%, which proved that the model has high prediction accuracy. It can truly reflect the overall deformation trend of the dam body. The results provide a theoretical basis and decision basis for the census of reservoir safety conditions and deformation history retrieval in Henan Province. Full article
(This article belongs to the Special Issue Dam Stability Monitoring with Satellite Geodesy)
Show Figures

Graphical abstract

Back to TopTop