error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,392)

Search Parameters:
Keywords = xenograft study

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 65850 KB  
Article
Antitumor Activity of the Ethanolic Extract from Syzygium aromaticum in Colorectal Cancer Xenograft Mice
by Thunyatorn Yimsoo, Weerakit Taychaworaditsakul, Hathaichanok Chuntakaruk, Worapapar Treesuppharat, Sumet Kongkiatpaiboon, Apipu Ariyachayut, Sunee Chansakaow, Teera Chewonarin, Parirat Khonsung and Seewaboon Sireeratawong
Pharmaceutics 2026, 18(1), 79; https://doi.org/10.3390/pharmaceutics18010079 - 7 Jan 2026
Abstract
Background/Objectives: Colorectal cancer (CRC) remains a leading cause of cancer-related mortality worldwide, and the development of effective therapies with improved safety profiles is urgently needed. The hydrodistillation residue extract of Syzygium aromaticum (SA) is rich in phenolic compounds, including ellagic acid and [...] Read more.
Background/Objectives: Colorectal cancer (CRC) remains a leading cause of cancer-related mortality worldwide, and the development of effective therapies with improved safety profiles is urgently needed. The hydrodistillation residue extract of Syzygium aromaticum (SA) is rich in phenolic compounds, including ellagic acid and gallic acid, which are known for their antioxidant and anticancer properties. This study aimed to evaluate the anticancer efficacy, safety, and metabolic effects of SA extract in CRC models. Methods: The anticancer activity of SA was investigated using in vitro and in vivo approaches. Human colorectal cancer HCT116-Red-FLuc cells were used to assess cytotoxicity, selectivity, and dose- and time-dependent effects. In vivo efficacy was evaluated in a CRC xenograft mouse model using tumor volume measurement, micro-ultrasound imaging, and bioluminescence analysis. Hematological and blood biochemical parameters were analyzed to assess systemic safety. Untargeted metabolomic profiling was performed to explore metabolic alterations associated with SA treatment. Results: SA inhibited HCT116-Red-FLuc cell proliferation in a dose- and time-dependent manner and demonstrated selective cytotoxicity toward cancer cells, with a selectivity index of 4.41 at 24 h, although selectivity declined with prolonged exposure. In xenograft mice, SA significantly suppressed tumor growth and reduced metastatic incidence. The 500 mg/kg dose (SA500) showed the greatest antitumor efficacy while maintaining normal hematological and biochemical profiles, indicating a favorable safety margin compared with 5-fluorouracil (5FU). The 1000 mg/kg dose (SA1000) induced marked suppression of Ki-67, Bcl-2, and CD31 expression and enhanced apoptosis. Metabolomic analysis identified 44 differential metabolites related to fatty acid, amino acid, and nucleotide metabolism. Conclusions: These findings suggest that SA extract exerts significant antitumor activity against CRC with improved tolerability compared with conventional chemotherapy, supporting its potential as a complementary natural therapeutic candidate. Full article
Show Figures

Figure 1

20 pages, 4835 KB  
Article
Cell-Penetrating Peptide-Mediated siRNA Targeting of LDHC Suppresses Tumor Growth in a Triple-Negative Breast Cancer Zebrafish Xenograft Model
by Hanan Qasem, Adviti Naik, Tricia Gomez, Janarthanan Ponraj, Umar Jafar, Martin Sikhondze, Remy Thomas, Khaled A. Mahmoud and Julie Decock
Pharmaceutics 2026, 18(1), 78; https://doi.org/10.3390/pharmaceutics18010078 - 7 Jan 2026
Abstract
Background: Lactate Dehydrogenase C (LDHC) is a promising therapeutic target due to its highly tumor-specific expression, immunogenicity, and oncogenic functions. We previously showed that LDHC silencing in triple-negative breast cancer (TNBC) cells enhances treatment response to DNA-damage response-related drugs, supporting its therapeutic [...] Read more.
Background: Lactate Dehydrogenase C (LDHC) is a promising therapeutic target due to its highly tumor-specific expression, immunogenicity, and oncogenic functions. We previously showed that LDHC silencing in triple-negative breast cancer (TNBC) cells enhances treatment response to DNA-damage response-related drugs, supporting its therapeutic potential. However, no selective LDHC inhibitors exist, highlighting the need for innovative targeting strategies. Methods: We assessed the physicochemical properties and evaluated the delivery efficiency, anti-tumor activity, and safety of four cell-penetrating peptides (CPPs)—R10, 10R-RGD, cRGD-10R, and iRGD-10R—for siRNA-mediated LDHC silencing in TNBC. Clonogenic assays were used to evaluate effects on olaparib sensitivity, and TNBC zebrafish xenografts were utilized to study in vivo anti-tumor activity. Results: All CPP:siRNA complexes formed uniform nanocomplexes (129–168 nm) with low polydispersity indices (<0.25) and positive zeta potentials (+6.47 to +29.6 mV). Complexes remained stable in human serum for 24 h and showed no significant cytotoxicity in TNBC and non-cancerous cell lines. The 10R-RGD and cRGD-10R:siLDHC complexes achieved 40% LDHC protein knockdown, reduced TNBC clonogenicity by 30–36%, and enhanced olaparib sensitivity. Treatment of TNBC zebrafish xenografts with 10R-RGD or cRGD-10R:siLDHC complexes significantly reduced tumor growth by approximately 50% without major toxicity. Conclusions: These results demonstrate that CPP-mediated siRNA delivery enables selective LDHC silencing with tumor growth inhibition in triple-negative breast cancer models. This approach represents a novel, effective, and safe proof-of-concept therapeutic strategy to target LDHC, with potential translational relevance as a standalone therapy or in combination with common anti-cancer drugs. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

27 pages, 7523 KB  
Article
Upregulation of the TCA Cycle and Oxidative Phosphorylation Enhances the Fitness of CD99 CAR-T Cells Under Dynamic Cultivation
by Jiaxuan Zhao, Youyong Wang, Yixuan Wang, Ge Dong, Han Wu, Yeting Cui, Lixing Gu, Fenfang Zhao, Guanlin Zhao, Jinyu Kang, Qian Zhang, Nan Liu, Ning Wang, Xiao Sun, Yao Xu, Tongcun Zhang and Jiangzhou Shi
Int. J. Mol. Sci. 2026, 27(2), 607; https://doi.org/10.3390/ijms27020607 - 7 Jan 2026
Abstract
The manufacturing process contributes significantly to the proliferation, metabolic state, and functional persistence of chimeric antigen receptor (CAR)-T cells. However, how different culture systems regulate CAR-T cell metabolism and thereby influence their long-term antitumor activity remains poorly understood. In this study, we compared [...] Read more.
The manufacturing process contributes significantly to the proliferation, metabolic state, and functional persistence of chimeric antigen receptor (CAR)-T cells. However, how different culture systems regulate CAR-T cell metabolism and thereby influence their long-term antitumor activity remains poorly understood. In this study, we compared dynamic cultivation using a wave bioreactor with static expansion systems (gas-permeable and conventional T-flasks) for the production of CD99-specific CAR-T cells. CAR-T cells expanded by the wave bioreactor exhibited faster proliferation and stronger cytotoxicity during culture. Upon repeated antigen stimulation, they retained these enhanced functional properties and showed the reduced expression of immune checkpoint molecules, preferentially preserved memory-like subsets, and displayed transcriptional features consistent with memory maintenance and exhaustion resistance. Targeted metabolomic profiling revealed enhanced Tricarboxylic Acid (TCA) cycle activity and features consistent with sustained oxidative phosphorylation, supporting mitochondrial-centered metabolic reprogramming. In a Ewing sarcoma xenograft model, wave bioreactor-cultured CAR-T cells showed a greater percentage of memory-like tumor-infiltrating lymphocytes. Collectively, these results indicate that wave bioreactor-based dynamic cultivation promotes mitochondrial metabolic reprogramming, which is characterized by an enhanced TCA cycle and sustained oxidative phosphorylation, thereby sustaining CAR-T cell functionality and providing a robust platform for the manufacturing of potent and durable cellular therapeutics. Full article
(This article belongs to the Special Issue Chimeric Antigen Receptors Against Cancers and Autoimmune Diseases)
Show Figures

Figure 1

19 pages, 3327 KB  
Article
Ovulation-Derived Fibronectin Promotes Peritoneal Seeding of High-Grade Serous Carcinoma Precursor Cells via Integrin β1 Signaling
by Che-Fang Hsu, Liang-Yuan Wang, Vaishnavi Seenan, Pao-Chu Chen and Tang-Yuan Chu
Cells 2026, 15(1), 80; https://doi.org/10.3390/cells15010080 - 4 Jan 2026
Viewed by 135
Abstract
High-grade serous ovarian carcinoma (HGSC) is predominantly diagnosed at advanced stages with extensive peritoneal metastasis. A pivotal early event in HGSC development is the peritoneal seeding of tumor cells originating from the fallopian tube epithelial (FTE) precursor lesions. Ovulation releases follicular fluid (FF), [...] Read more.
High-grade serous ovarian carcinoma (HGSC) is predominantly diagnosed at advanced stages with extensive peritoneal metastasis. A pivotal early event in HGSC development is the peritoneal seeding of tumor cells originating from the fallopian tube epithelial (FTE) precursor lesions. Ovulation releases follicular fluid (FF), which is known to contain oncogenic factors that promote FTE cell transformation. However, the specific mechanisms and factors within FF that drive the early metastatic seeding of precancerous FTE cells remain poorly defined. We investigated the role of FF in the peritoneal dissemination of FTE-derived cells, and the abundance of fibronectin (FN) as a potential key mediator. Functional assays were performed using FN-depleted FF to assess its impact on migration, invasion, anchorage-independent growth, and peritoneal attachment. The role of the fibronectin receptor, integrin β1 (ITGB1), and the signaling pathways were evaluated via knockdown studies. In vivo xenograft models were used to quantify peritoneal seeding, and mechanistic studies elucidated the involved signaling pathways. We identified FN as a critical component of FF, present at high concentrations (~210 µg/mL), that potently drives FTE cell migration, invasion, and peritoneal seeding. Depletion of FN from FF abrogated the majority of these pro-metastatic activities in vitro and led to a dramatic 82% reduction in peritoneal tumor seeding in vivo. Knockdown of ITGB1 similarly impaired seeding. Mechanistically, FF-derived FN activates the ITGB1/FAK-SRC signaling pathway to promote tumor cell motility and colonization. Our study establishes FF-fibronectin as an important regulator of the early peritoneal seeding of HGSC precursor cells. These findings reveal a direct link between ovulation and HGSC development, suggesting that targeting the FN-ITGB1 signaling axis may offer a novel preventive strategy for high-risk individuals. Full article
(This article belongs to the Special Issue Genomics and Cellular Mechanisms in Ovarian Cancer)
Show Figures

Figure 1

16 pages, 2960 KB  
Article
A Novel MICB-Targeting CAR-NK Cells for the Treatment of Pancreatic Cancer
by Weiyang Jin, Mengying Wang, Jingwei Wang, Jinyi Fan, Jie Fang and Guanghua Yang
Int. J. Mol. Sci. 2026, 27(1), 500; https://doi.org/10.3390/ijms27010500 - 3 Jan 2026
Viewed by 177
Abstract
MICB-targeting CAR-NK (chimeric antigen receptor-modified natural killer cells) therapy may serve as off-the-shelf immunotherapy. We designed soluble Anti-MICB-scFv blocks tumor immune evasion targeting the MICB antigen, thereby enhancing CAR-NK cytotoxicity while reactivating endogenous immune attacks against malignancies. The Anti-MICB-CAR includes two Anti-MICB-scFv connected [...] Read more.
MICB-targeting CAR-NK (chimeric antigen receptor-modified natural killer cells) therapy may serve as off-the-shelf immunotherapy. We designed soluble Anti-MICB-scFv blocks tumor immune evasion targeting the MICB antigen, thereby enhancing CAR-NK cytotoxicity while reactivating endogenous immune attacks against malignancies. The Anti-MICB-CAR includes two Anti-MICB-scFv connected by an F2A linker, the CD8 hinge and transmembrane domain, the 4-1BB co-stimulatory domain, the CD3ζ activation domain, and IL-15. The expression efficiency of Anti-MICB-CAR in NK cells was investigated by flow cytometry; ELISA demonstrated that Anti-MICB-CAR-NK secreted free Anti-MICB-scFv and detected IL-15 secretion. Flow cytometry and CCK8 were utilized to study Anti-MICB-CAR-NK on tumor cell viability. The PANC-1 xenograft model was established in order to elucidate the anti-tumor effects of Anti-MICB-CAR-NK in vivo. In vitro investigations have demonstrated that the treatment of tumor cells with Anti-MICB-CAR-NK supernatant + NK cells or Anti-MICB-CAR-NK cells not only significantly increased the cytotoxic activity of tumor cells, but also secreted and produced higher levels of IL-15, IFN-γ, TNF-α, perforin, and granzyme B compared with NK cells. Anti-MICB-CAR-NK cells exhibit strong cytotoxic activity against tumor cells with high MICB expression. In vivo, Anti-MICB-CAR-NK cells exhibited a substantial inhibitory effect on tumor growth. The IHC results reveal that Anti-MICB-CAR-NK cells show a more pronounced ability to infiltrate the tumor. We demonstrated the successful expression of Anti-MICB-CAR in NK cells, which enhances the anti-tumor activity of NK cells both in vitro and in vivo. This stress ligand-targeting approach provides a promising strategy for solid tumors. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

13 pages, 1637 KB  
Article
Recovery of IR700 Fluorescence After Near-Infrared Photoimmunotherapy: Discovery and Mechanistic Insights
by Hideki Tanaka, Shuhei Okuyama, Ken Shirota, Mayumi Sugahara, Akiko Banba, Akihiro Ishikawa, Nobuhisa Minakata, Hirobumi Fuchigami, Masahiro Yasunaga and Tomonori Yano
Cancers 2026, 18(1), 162; https://doi.org/10.3390/cancers18010162 - 2 Jan 2026
Viewed by 172
Abstract
Background/Objectives: Near-infrared photoimmunotherapy (NIR-PIT) is a molecularly targeted cancer therapy that employs antibody–photoabsorber conjugates (APCs) comprising the photosensitizer IRDye700DX (IR700) and tumor-specific antibodies. Following near-infrared (NIR) light irradiation, IR700 undergoes structural modification, inducing selective and rapid necrotic cell death. In mouse tumor [...] Read more.
Background/Objectives: Near-infrared photoimmunotherapy (NIR-PIT) is a molecularly targeted cancer therapy that employs antibody–photoabsorber conjugates (APCs) comprising the photosensitizer IRDye700DX (IR700) and tumor-specific antibodies. Following near-infrared (NIR) light irradiation, IR700 undergoes structural modification, inducing selective and rapid necrotic cell death. In mouse tumor models, we observed that IR700 fluorescence decreased during irradiation but recovered immediately afterward. This study aimed to characterize this novel phenomenon, named “early fluorescence recovery,” and explore its therapeutic implications. Methods: Cetuximab-IR700 (Cet-IR700) was synthesized and administered to A431 and FaDu-Luc2 xenograft female BALB/c-nu/nu mouse models. In vivo fluorescence imaging was conducted using LIGHTVISION during and after NIR irradiation (690 nm, 50 J/cm2). Reactive oxygen species involvement was examined via intraperitoneal administration of L-sodium ascorbate. Tumor blood flow changes were assessed via indocyanine green (ICG) imaging, and therapeutic efficacy was compared between single and divided irradiation protocols. Results: Tumor fluorescence markedly decreased during NIR-PIT but rapidly recovered within 10 min after irradiation. This recovery was significantly inhibited by L-sodium ascorbate (p < 0.01) and accompanied by increased ICG fluorescence (p < 0.01), suggesting enhanced tumor perfusion. Divided irradiation performed after fluorescence recovery tended to yield greater tumor suppression than did single irradiation, although the difference was not statistically significant. Conclusions: Early fluorescence recovery after NIR-PIT reflects transient reactivation of photoactive APCs through oxygen-dependent molecular and vascular mechanisms. Exploiting this brief recovery window with divided irradiation may improve therapeutic efficacy and guide optimization of NIR-PIT protocols. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Graphical abstract

24 pages, 6410 KB  
Article
Optical Coherence Tomography, Stereomicroscopic, and Histological Aspects of Bone Regeneration on Rat Calvaria in the Presence of Bovine Xenograft or Titanium-Reinforced Hydroxyapatite
by Andrei Radu, Antonia Samia Khaddour, Mihaela Ionescu, Cristina Maria Munteanu, Eugen Osiac, Oana Gîngu, Cristina Teișanu, Valentin Octavian Mateescu, Cristina Elena Andrei and Sanda Mihaela Popescu
J. Funct. Biomater. 2026, 17(1), 26; https://doi.org/10.3390/jfb17010026 - 1 Jan 2026
Viewed by 271
Abstract
Background: Alveolar ridge preservation (ARP) techniques have evolved with implantology development. In clinical practice, biomaterials for ARP are tested in laboratory animals, and rat calvaria is a standard option. The study aimed to evaluate biomaterial osteointegration in defects created in the rat calvaria, [...] Read more.
Background: Alveolar ridge preservation (ARP) techniques have evolved with implantology development. In clinical practice, biomaterials for ARP are tested in laboratory animals, and rat calvaria is a standard option. The study aimed to evaluate biomaterial osteointegration in defects created in the rat calvaria, comparing an experimental synthetic biomaterial with a bovine xenograft and natural healing. Methods: The study included six groups of animals: two negative control groups with natural healing (2 months (M) and 4 M), two positive control groups with bovine xenograft (2 M and 4 M), and two study groups with nanohydroxyapatite titanium reinforced (2M and 4M). After creating and grafting the defects, healing was expected to take 2 or 4 months, after which bone fragments were harvested, prepared, and then analyzed. OCT, stereomicroscopy, and histology techniques were used for bone fragments analysis, and the obtained images were evaluated using Image J 1.54p software. Results: The results obtained from the three analyses provided information about the healing pattern of bone defects and the degree of new bone formation. Histological analysis of the samples confirmed what the stereomicroscopy and OCT images showed: that the bovine xenograft elicited a better tissue response than the synthetic biomaterial, being incorporated into the bone tissue more than the synthetic biomaterial. Conclusions: Both the bovine xenograft and the synthetic nanocomposite based on hydroxyapatite reinforced with titanium particles favored bone healing, but their integration into the bone was limited for the analyzed period. Full article
(This article belongs to the Special Issue Biomaterials in Bone Reconstruction)
Show Figures

Figure 1

26 pages, 3200 KB  
Article
A Novel Quinolone JH62 (E-2-(Tridec-4-en-1-yl)-quinolin-4(1H)-one) from Pseudomonas aeruginosa Exhibits Potent Anticancer Activity
by Qunyi Chen, Jianhe Wang, Xiaoyan Wu, Lantu Xiong, Lianhui Zhang and Zining Cui
Microorganisms 2026, 14(1), 78; https://doi.org/10.3390/microorganisms14010078 - 30 Dec 2025
Viewed by 321
Abstract
Cancer remains a leading cause of mortality worldwide, and new chemical leads are essential for developing potent anticancer therapies. Evidence suggests that Pseudomonas aeruginosa (Pa) may suppress tumorigenesis, although the underlying mechanisms remain largely unclear. This study characterized a novel small [...] Read more.
Cancer remains a leading cause of mortality worldwide, and new chemical leads are essential for developing potent anticancer therapies. Evidence suggests that Pseudomonas aeruginosa (Pa) may suppress tumorigenesis, although the underlying mechanisms remain largely unclear. This study characterized a novel small molecule quinolone, JH62 (E-2-(tridec-4-en-1-yl)-quinolin-4(1H)-one, C22H31NO), from Pa. JH62 exhibited broad-spectrum anticancer activity, inhibiting the proliferation of A549 lung cancer cells in a time- and dose-dependent manner with an IC50 of 15 μM, while showed low cytotoxicity toward normal cells. In xenograft mice model, treatment with JH62 (10 mg/kg) reduced tumor weight and volume by 73% and 79%, respectively. Mechanistically, treatment with JH62 induced structural and functional disruption of mitochondria in cancer cells, triggered autophagic cell death, and did not cause DNA damage. Genetic analysis confirmed that JH62 biosynthesis depends on the pqsABCDE gene cluster and that JH62 positively regulates its own production. ADMET profiling further indicated promising drug-like properties for future development. These findings establish JH62 as a promising anticancer lead compound derived from microbial metabolism. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

38 pages, 40522 KB  
Article
Synthesis and Biological Evaluation of a Caffeic Acid Phenethyl Ester Derivatives as Anti-Hepatocellular Carcinoma Agents via Inhibition of Mitochondrial Respiration and Disruption of Cellular Metabolism
by Hao Dong, Yuan Gao, Dongyue Jiang, Chenjie Feng, Xinyue Gu, Xiyunyi Cai, Yulin Liu, Guangyu Zhang, Jiacheng Wen, Weiwei Diao, Ying Zhou, Ruixin Li, Dayang Xu, Weijia Xie and Liang Wu
Cancers 2026, 18(1), 92; https://doi.org/10.3390/cancers18010092 - 27 Dec 2025
Viewed by 200
Abstract
Background: In this study, 28 caffeic acid phenethyl ester (CAPE) derivatives were designed and synthesized, and their anti-proliferative activities were evaluated against two representative human hepatocellular carcinoma (HCC) cell lines. The half-maximal inhibitory concentration (IC50) was used as the activity metric. [...] Read more.
Background: In this study, 28 caffeic acid phenethyl ester (CAPE) derivatives were designed and synthesized, and their anti-proliferative activities were evaluated against two representative human hepatocellular carcinoma (HCC) cell lines. The half-maximal inhibitory concentration (IC50) was used as the activity metric. Among these derivatives, compound WX006 displayed the most potent anti-proliferative effect, with IC50 values of 3.332 μM and 3.764 μM after 48 h of treatment, significantly lower than those of the parent compound CAPE. Consequently, WX006 was selected for further investigation into its antitumor efficacy and underlying mechanisms. Methods: To investigate the pharmacological mechanism of WX006, we employed a combination of high-throughput transcriptomics, metabolomics, and mitochondrial function analysis to elucidate its intracellular mechanisms of action. Results: WX006 disrupts cytoplasmic-mitochondrial metal ion homeostasis, triggering ferroptosis and cuproptosis through iron-copper dysregulation. Computational modeling revealed that WX006 selectively inhibits mitochondrial NDUFS2 subunit of respiratory chain complex I, which may induce NAD+ exhaustion and consequent energy metabolism collapse in tumor cells. These “metabolism & metal homeostasis” dual mechanisms collectively underpin its robust anti-tumor effects. Therapeutic efficacy of WX006 was further validated in murine H22 ectopic xenograft and Hepa1-6-Luc orthotopic xenograft models, where WX006 exhibited superior tumor suppression compared to sorafenib, alongside favorable safety profiles. Conclusions: Our findings establish a foundational rationale for further pharmaceutical development of CAPE derivates as a promising therapeutic candidate for hepatocellular carcinoma. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Graphical abstract

14 pages, 2366 KB  
Article
Design of Anti-Tumor RNA Nanoparticles and Their Inhibitory Effect on Hep3B Liver Cancer
by Shuyi Sun, Ling Yan, Zhekai Liu and Weibo Jin
Biomolecules 2026, 16(1), 45; https://doi.org/10.3390/biom16010045 - 26 Dec 2025
Viewed by 234
Abstract
RNA interference (RNAi) holds promise as a gene-silencing therapy for liver cancer but faces challenges related to siRNA instability, short half-life, and inefficient cellular uptake. In this study, we designed a self-assembling RNA nanoparticle targeting three oncogenes—hTERT, BIRC5, and FGFR1 [...] Read more.
RNA interference (RNAi) holds promise as a gene-silencing therapy for liver cancer but faces challenges related to siRNA instability, short half-life, and inefficient cellular uptake. In this study, we designed a self-assembling RNA nanoparticle targeting three oncogenes—hTERT, BIRC5, and FGFR1—key drivers of cancer progression. These RNA nanoparticles demonstrated enhanced stability and specificity, eliminating the need for conventional toxic delivery carriers. Functional assays revealed that the nanoparticles effectively suppressed the proliferation, migration, tumor growth and apoptosis of a Hepatocellular carcinoma cell line, Hep3B. The nanoparticles exhibited excellent safety and efficacy in xenograft model mice, without off-target toxicity. This work introduces a scalable, biocompatible RNA nanoparticle platform with multi-targeting capability, paving the way for improved RNAi-based therapeutics. Our findings offer a promising strategy for advancing personalized cancer therapies and underscore the broader potential of RNA nanotechnology in addressing complex malignancies. Full article
(This article belongs to the Special Issue The Role of Non-Coding RNAs in Health and Disease)
Show Figures

Figure 1

17 pages, 2300 KB  
Article
Furin Drives Colorectal Cancer Progression and Chemoresistance Through the TGF-β/ERK Signaling Pathway
by Pratheesh Kumar Poyil, Abdul K. Siraj, Sandeep Kumar Parvathareddy, Rafia Begum, Padmanaban Annaiyappa Naidu, Saravanan Thangavel, Khadija Alobaisi, Saud Azam, Fouad Al-Dayel and Khawla S. Al-Kuraya
Cells 2026, 15(1), 43; https://doi.org/10.3390/cells15010043 - 25 Dec 2025
Viewed by 340
Abstract
Colorectal cancer (CRC) remains one of the most lethal malignancies worldwide, with 5-fluorouracil (5-Fu) as a mainstay of treatment. However, intrinsic and acquired resistance to 5-Fu significantly limits therapeutic success. Furin, a proprotein convertase, is known to activate multiple substrates critical for tumor [...] Read more.
Colorectal cancer (CRC) remains one of the most lethal malignancies worldwide, with 5-fluorouracil (5-Fu) as a mainstay of treatment. However, intrinsic and acquired resistance to 5-Fu significantly limits therapeutic success. Furin, a proprotein convertase, is known to activate multiple substrates critical for tumor progression, yet its precise role in CRC remains unclear. In this study, we examined furin expression in a large cohort of CRC patient samples and performed functional analyses in CRC cell lines and xenograft models. Furin overexpression was seen in 46.9% (530/1131) of CRC cases and was significantly correlated with TGF-β and ERK1/2 activation. In vitro, induced furin overexpression enhanced proliferation and clonogenicity, accompanied by upregulation of TGF-β and ERK1/2 phosphorylation, whereas furin silencing attenuated tumor cell growth and TGF-β/ERK signaling. Manipulation of TGF-β revealed a reciprocal regulatory loop, whereby TGF-β upregulated furin expression, establishing a feed-forward circuit that augmented ERK signaling and tumor growth. Notably, 5-Fu-resistant CRC cell lines displayed elevated furin, TGF-β, and phospho-ERK1/2, while furin knockdown restored drug sensitivity. In vivo, furin overexpression enhanced tumor growth in xenografts, whereas its depletion markedly reduced tumor burden and TGF-β/ERK signaling activity. Collectively, these findings demonstrate that furin promotes CRC progression and chemoresistance through a positive feedback loop with TGF-β that sustains ERK activation. Targeting furin, alone or in combination with TGF-β/ERK inhibitors, may offer a promising therapeutic strategy for CRC. Full article
Show Figures

Figure 1

35 pages, 5474 KB  
Article
BRG1 (SMARCA4) Status Dictates the Response to EGFR Inhibitors in Wild-Type EGFR Non-Small Cell Lung Cancer
by Rebaz Ahmed, Ranganayaki Muralidharan, Narsireddy Amreddy, Akhil Srivastava, Meghna Mehta, Janani Panneerselvam, Rodrigo Orlandini de Castro, William L. Berry, Susmita Ghosh, Murali Ragothaman, Pawan Acharya, Yan D. Zhao, Roberto Jose Pezza, Anupama Munshi and Rajagopal Ramesh
Cancers 2026, 18(1), 62; https://doi.org/10.3390/cancers18010062 - 24 Dec 2025
Viewed by 281
Abstract
Background: Epidermal growth factor receptor (EGFR)-targeted tyrosine kinase inhibitors (TKIs) have exhibited efficacy in EGFR-mutant non-small cell lung cancer (NSCLC) patients. However, the response is modest in patients with wild-type (wt)-EGFR, and approximately 30–40% of patients develop TKI resistance. Recently, a role [...] Read more.
Background: Epidermal growth factor receptor (EGFR)-targeted tyrosine kinase inhibitors (TKIs) have exhibited efficacy in EGFR-mutant non-small cell lung cancer (NSCLC) patients. However, the response is modest in patients with wild-type (wt)-EGFR, and approximately 30–40% of patients develop TKI resistance. Recently, a role for BRG1 (SMARCA4) in regulating gene expression and its frequent alteration in various cancers, including NSCLC, has been reported. Yet, its specific function in response to EGFR-TKI therapy remains elusive. Herein, we investigated the role of BRG1 in EGFR-TKI response in vitro and in vivo using lung cancer models. Methods: In vitro, A549, H358, and HCC827 cell lines that varied in their EGFR and BRG1 status were assessed for response to EGFR-TKI upon overexpression or gene silencing of BRG1 through cell viability, cell migration, and Western blotting assays. In vivo, A549 and H358 tumor xenografts that overexpressed BRG1 or had BRG1 silenced were investigated for tumor growth response to EGFR-TKI. Results: EGFRwt/BRG1mt (A549) cells were resistant to TKI, and restoration of wt-BRG1 expression reverted them to TKI sensitivity both in vitro and in vivo. In contrast, silencing of BRG1wt in H358 cells showed a tendency toward TKI resistance. Additionally, wt-EGFR and pAKTSer473 protein complex formation in A549 cells was disrupted with an AKT inhibitor (MK2206), resulting in enhanced cytotoxicity in vitro. Conclusions: Our study demonstrates that EGFR-TKI response in wt-EGFR cells is dictated by BRG1 status. These findings propose screening of wt-EGFR NSCLC patients for BRG1 status for identifying individuals likely to benefit from EGFR-TKI therapy versus patients who will benefit from AKT inhibitor treatment. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

17 pages, 2279 KB  
Article
L19-Conjugated Gold Nanoparticles for the Specific Targeting of EDB-Containing Fibronectin in Neuroblastoma
by Chiara Barisione, Silvia Ortona, Veronica Bensa, Caterina Ivaldo, Eleonora Ciampi, Simonetta Astigiano, Michele Cilli, Luciano Zardi, Mirco Ponzoni, Domenico Palombo, Giovanni Pratesi, Pier Francesco Ferrari and Fabio Pastorino
Pharmaceutics 2026, 18(1), 24; https://doi.org/10.3390/pharmaceutics18010024 - 24 Dec 2025
Viewed by 311
Abstract
Background/Objectives: Neuroblastoma (NB) is the most common extracranial solid tumor in children and accounts for 12–15% of pediatric cancer-related deaths. Current multimodal therapies lack specific cellular targets, causing systemic toxicity and drug resistance. The development of innovative tumor-targeted nanoformulations might represent a [...] Read more.
Background/Objectives: Neuroblastoma (NB) is the most common extracranial solid tumor in children and accounts for 12–15% of pediatric cancer-related deaths. Current multimodal therapies lack specific cellular targets, causing systemic toxicity and drug resistance. The development of innovative tumor-targeted nanoformulations might represent a promising approach to enhance NB diagnosis and antitumor efficacy, while decreasing off targets side effects. Fibronectin extra-domain B (FN-EDB) is upregulated in the tumor microenvironment. Methods: FN-EDB expression was evaluated by immunohistochemical staining in cell line-derived and tumor patient-derived animal models of NB. A gold nanoparticle, decorated with an antibody (Ab) recognizing FN-EDB (L19-AuNP) was developed by the company Nano Flow and its tumor binding was tested by ELISA in vitro and in patient-derived xenograft (PDX) models of NB by photoacoustic imaging in vivo. Results: All animal models of NB used have been shown to express FN-EDB. L19 Ab demonstrated excellent binding specificity to FN-EDB both when used in free form and after conjugation to AuNP. Compared to the non-functionalized (no Ab L19-coupled) AuNP, which showed an increase in PDI and zeta potential over time, making them unsuitable for use in in vivo studies, L19-AuNP demonstrated good stability. In vivo, L19-AuNP specifically homed into PDX models of NB, accumulating better in tumors expressing higher levels of FN-EDB. Negligible distribution to healthy organs occurred. Conclusions: In this preliminary study, L19-AuNP was shown to be a novel diagnostic tool specifically for binding NB expressing FN-EDB, paving the way for the development of theranostic nanoformulations co-encapsulating gold moiety and standard-of-care therapy for NB. Full article
(This article belongs to the Special Issue Nanomedicine and Nanotechnology: Recent Advances and Applications)
Show Figures

Graphical abstract

23 pages, 3734 KB  
Article
Evaluation of the Functional Suitability of Carboxylate Chlorin e6 Derivatives for Use in Radionuclide Diagnostics
by Mariia Larkina, Anastasia Demina, Nikita Suvorov, Petr Ostroverkhov, Evgenii Plotnikov, Ruslan Varvashenya, Vitalina Bodenko, Gleb Yanovich, Anastasia Prach, Viktor Pogorilyy, Sergey Tikhonov, Alexander Popov, Maxim Usachev, Beatrice Volel, Yuriy Vasil’ev, Mikhail Belousov and Mikhail Grin
Pharmaceutics 2026, 18(1), 23; https://doi.org/10.3390/pharmaceutics18010023 - 23 Dec 2025
Viewed by 342
Abstract
Radionuclide-based molecular imaging modalities are active and developing areas of functional and molecular diagnosis. Among the radionuclides used for SPECT imaging in oncology, 99mTc is a leading candidate for radiolabeling. At present, a sufficient number of complexons for 99mTc have been [...] Read more.
Radionuclide-based molecular imaging modalities are active and developing areas of functional and molecular diagnosis. Among the radionuclides used for SPECT imaging in oncology, 99mTc is a leading candidate for radiolabeling. At present, a sufficient number of complexons for 99mTc have been described; however, the development of effective delivery systems for this isotope to the area of interest is a complex research task. The use of tumor-targeting molecules as carriers for radioactive tracers is an effective strategy that has enabled the development of many novel radiopharmaceuticals for cancer imaging. Background: To date, a number of studies have shown tumorotropicity of tetrapyrrole compounds to tumor tissues, in particular derivatives of natural chlorophyll A. Methods: Purification was performed using solid-phase extraction. Assessment of radiochemical yield and purity was performed via radio-ITLC. The in vitro tumor cell accumulation was assessed using SKOV-3 and A-431 cell lines. Dose-dependent biodistribution was evaluated in Nu/J mice bearing epidermoid carcinoma (A-431) xenografts. Results: In this work, we obtained complexes with 99mTc based on water-soluble carboxylate chlorin e6 derivatives in order to evaluate their potential for use as SPECT radiopharmaceuticals. We performed radiolabelling optimization of a series of the novel chlorins and primary preclinical studies, including an assessment of the effect of their lipophilicity and charge on tumor uptake. Conclusions: Modification of the periphery of the chlorin macrocycle with chelating groups allows for complexing a wide range of metals, including 99mTc, which can be used for targeted delivery of the radionuclide to the area of interest. Full article
Show Figures

Figure 1

18 pages, 2012 KB  
Article
Fab Antibody Fragments to Dog Leukocyte Antigen DR (DLA-DR) Directly Suppress Canine Lymphoma Cell Line Growth In Vitro and in Murine Xenotransplant Model
by Aleksandra Studzińska, Marek Pieczka, Angelika Kruszyńska, Leszek Moniakowski, Anna Urbaniak, Andrzej Rapak and Arkadiusz Miazek
Cancers 2026, 18(1), 48; https://doi.org/10.3390/cancers18010048 - 23 Dec 2025
Viewed by 177
Abstract
Background/Objectives: Canine Diffuse Large B-cell Lymphoma (cDLBCL) is characterized by a high prevalence of MHC II DR (DLA-DR) antigen overexpression. Murine anti-pan-DLA-DR monoclonal antibodies (mAbs) B5 and E11 have been previously observed to promote death of cDLBCL cells in vitro and in vivo. [...] Read more.
Background/Objectives: Canine Diffuse Large B-cell Lymphoma (cDLBCL) is characterized by a high prevalence of MHC II DR (DLA-DR) antigen overexpression. Murine anti-pan-DLA-DR monoclonal antibodies (mAbs) B5 and E11 have been previously observed to promote death of cDLBCL cells in vitro and in vivo. Consequently, DLA-DR antigens are considered a prospective target for passive immunotherapy aside from CD20. While infusion of anti-pan MHC II mAbs has demonstrated tumor suppression in cDLBCL xenografted immunodeficient mice, the relative contributions of direct cellular versus immune-mediated mechanisms to this therapeutic effect remain undefined. This study aimed to dissect these potential mechanisms of mAb E11. Methods: Canine lymphoma and leukemia cell lines CLBL1 and CLB70 were incubated with full E11 antibody or its F(ab′)2 and Fab fragments and cell viability was assessed with sub-G1 assay then, NOD-SCID mice were xenotransplanted with 1.5 × 107 canine CLBL1 cells expressing nanoluciferase and were infused either with mAb E11 or its fragments, each at 1 mg/kg body mass, twice weekly for three consecutive weeks. Tumor burden was monitored by assessing body weight, nanoluciferase activity in blood, and by flow cytometric analyses of bone marrow tumor cell content. Time to tumor progression (TTP) was calculated based on weight loss and luminescence measurements. Results: We observed cytotoxic activity of monovalent E11-Fab fragments in vitro and in vivo. The mean TTP for mice treated with irrelevant mouse IgG antibodies was 9.8 ± 4.65 days. In contrast, treatment with E11 Fab fragments resulted in a TTP of 19.1 ± 2.67 days, which was similar to that achieved with the full E11 mAb (19.5 ± 1.73 days) and E11 F(ab′)2 fragments (18.1 ± 2.9 days). Conclusions: Our findings demonstrate a potent antibody cytotoxicity mechanism that operates in vivo and is independent of cell surface MHC II crosslinking or Fc engagement. These data support the promising potential of E11-Fab fragments for further clinical development as a therapeutic agent in canine lymphoma. Full article
(This article belongs to the Special Issue Advances in B-Cell Lymphoma: From Diagnostics to Cure)
Show Figures

Figure 1

Back to TopTop