Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (814)

Search Parameters:
Keywords = wood-based composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1261 KiB  
Article
Innovative Valorization of Wood Panel Waste into Activated Biochar for Efficient Phenol Adsorption
by Aziz Bentis, Laura Daniela Ceron Daza, Mamadou Dia, Ahmed Koubaa and Flavia Lega Braghiroli
Appl. Sci. 2025, 15(15), 8518; https://doi.org/10.3390/app15158518 (registering DOI) - 31 Jul 2025
Abstract
Construction and demolition byproducts include substantial amounts of wood panel waste (WPW) that pose environmental challenges. They also create opportunities for sustainable resource recovery. This study investigates the potential of WPW-derived biochar as an efficient adsorbent for phenol removal from aqueous solutions. Biochar [...] Read more.
Construction and demolition byproducts include substantial amounts of wood panel waste (WPW) that pose environmental challenges. They also create opportunities for sustainable resource recovery. This study investigates the potential of WPW-derived biochar as an efficient adsorbent for phenol removal from aqueous solutions. Biochar was produced via pyrolysis at 450 °C and subsequent activation at 750, 850, and 950 °C. The biochar’s physicochemical properties, including surface area, pore volume, and elemental composition, were characterized using advanced methods, including BET analysis, elemental analysis, and adsorption isotherm analysis. Activated biochar demonstrated up to nine times higher adsorption capacity than raw biochar, with a maximum of 171.9 mg/g at 950 °C under optimal conditions: pH of 6 at 25 °C, initial phenol concentration of 200 mg/L, and biochar dosage of 1 g/L of solution for 48 h. Kinetic and isotherm studies revealed that phenol adsorption followed a pseudo-second-order model and fit the Langmuir isotherm, indicating chemisorption and monolayer adsorption mechanisms. Leaching tests confirmed the biochar’s environmental safety, with heavy metal concentrations well below regulatory limits. Based on these findings, WPW biochar offers a promising, eco-friendly solution for wastewater treatment in line with circular economy and green chemistry principles. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

24 pages, 56885 KiB  
Article
Bio-Crafting Architecture: Experiences of Growing Mycelium in Minimal Surface Molds
by Anca-Simona Horvath, Alina Elena Voinea and Radu Adrian Arieșan
Sustainability 2025, 17(15), 6835; https://doi.org/10.3390/su17156835 - 28 Jul 2025
Viewed by 253
Abstract
Mycelium is a living material that has gained popularity over the last decade in both architecture and design. Apart from understanding the physical behaviour of novel materials, it is also important to grasp how designers and the general audience perceive them. On the [...] Read more.
Mycelium is a living material that has gained popularity over the last decade in both architecture and design. Apart from understanding the physical behaviour of novel materials, it is also important to grasp how designers and the general audience perceive them. On the one hand, this study investigated mycelium growth in 3D-printed minimal surface shapes using a wood-based filament, and on the other hand, it examined how both designers and the general public experience interacting with mycelium. Using a material-driven design research method, a workshop with architecture students was conducted where various triply periodic minimal surfaces were designed and 3D printed. These shapes were used as molds and impregnated with mycelium, and the growth of mycelium was analyzed visually and photographically. Data on the experiences of the 30 workshop participants of working with mycelium was collected through a survey and analyzed qualitatively. After exhibiting results of the workshop in a public-facing exhibition, semi-structured interviews with members of the general public about their perceptions of mycelium were conducted. Three-dimensionally printed minimal surfaces with wood-based filaments can function as structural cores for mycelium-based composites, and the density of the minimal surface appears to influence mycelium growth, which binds to wood-based filaments. Students exhibited stronger feelings for living materials compared to non-living ones, displaying both biophilia and, to a lesser extent, biophobia. Introducing hands-on workshops with living and experimental materials in design studio settings can help future generations of designers develop sensibilities for, and a critical approach towards, the impact of their design decisions on the environment and sustainability. The study also contributes empirical data on how members of the general public perceive mycelium as a material for design. Full article
Show Figures

Figure 1

18 pages, 2786 KiB  
Article
Performance of Oriented Strand Boards Made with Jack Pine Strands Produced by an Innovative Strander-Canter
by Rosilei Garcia, Alain Cloutier, Irsan Alipraja, Roger E. Hernández and Ahmed Koubaa
Forests 2025, 16(8), 1227; https://doi.org/10.3390/f16081227 - 25 Jul 2025
Viewed by 121
Abstract
Canadian sawmills commonly use chipper-canters to process softwood logs into squared lumber and wood chips for pulp mills. However, the declining demand for newsprint and print paper has led to an oversupply of wood chips, resulting in economic losses and environmental concerns. To [...] Read more.
Canadian sawmills commonly use chipper-canters to process softwood logs into squared lumber and wood chips for pulp mills. However, the declining demand for newsprint and print paper has led to an oversupply of wood chips, resulting in economic losses and environmental concerns. To address this issue, a strander-canter capable of producing both softwood cants and strands for oriented strand board (OSB) presents a promising alternative. This study evaluates the feasibility of using jack pine strands generated by a novel strander-canter equipped with a cutterhead for OSB strand production. Strands were generated from frozen and unfrozen logs under varying cutting parameters and incorporated in the core layer of the panels. Industrial aspen strands were used for the surface layers. OSB panels were assessed for mechanical and physical properties following the CSA O325:21 standard. Strand size distribution and vertical density profiles were also analyzed. The results indicated that panels made from jack pine strands demonstrated bending and internal bond properties that were either comparable to or superior to those of the control panels. However, including jack pine strands in the core layer increased the thickness swelling of the panels. Full article
(This article belongs to the Special Issue Properties and Uses of Value-Added Wood-Based Products and Composites)
Show Figures

Graphical abstract

29 pages, 42729 KiB  
Article
Sustainable and Functional Polymeric Coating for Wood Preservation
by Ramona Marina Grigorescu, Rodica-Mariana Ion, Lorena Iancu, Sofia Slamnoiu-Teodorescu, Anca Irina Gheboianu, Elvira Alexandrescu, Madalina Elena David, Mariana Constantin, Iuliana Raut, Celina Maria Damian, Cristian-Andi Nicolae and Bogdan Trica
Coatings 2025, 15(8), 875; https://doi.org/10.3390/coatings15080875 - 25 Jul 2025
Viewed by 264
Abstract
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, [...] Read more.
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, the aim of the study was to obtain soda lignin particles, to graft ZnO nanoparticles onto their surface and to apply these hybrids, embedded into a biodegradable polymer matrix, as protection/preservation coating for oak wood. The organic–inorganic hybrids were characterized in terms of compositional, structural, thermal, and morphological properties that confirm the efficacy of soda lignin extraction and ZnO grafting by physical adsorption onto the decorating support and by weak interactions and coordination bonding between the components. The developed solution based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and lignin-ZnO was applied to oak wood specimens by brushing, and the improvement in hydrophobicity (evaluated by water absorption that decreased by 48.8% more than wood, humidity tests where the treated sample had a humidity of 4.734% in comparison with 34.911% for control, and contact angle of 97.8° vs. 80.5° for untreated wood) and UV and fungal attack protection, while maintaining the color and aspect of specimens, was sustained. L.ZnO are well dispersed into the polymer matrix, ensuring a smooth and less porous wood surface. According to the results, the obtained wood coating using both a biodegradable polymeric matrix and a waste-based preservative can be applied for protection against weathering degradation factors, with limited water uptake and swelling of the wood, UV shielding, reduced wood discoloration and photo-degradation, effective protection against fungi, and esthetic quality. Full article
Show Figures

Figure 1

24 pages, 3226 KiB  
Article
The Environmental Impacts of Façade Renovation: A Case Study of an Office Building
by Patrik Štompf, Rozália Vaňová and Stanislav Jochim
Sustainability 2025, 17(15), 6766; https://doi.org/10.3390/su17156766 - 25 Jul 2025
Viewed by 375
Abstract
Renovating existing buildings is a key strategy for achieving the EU’s climate targets, as over 75% of the current building stock is energy inefficient. This study evaluates the environmental impacts of three façade renovation scenarios for an office building at the Technical University [...] Read more.
Renovating existing buildings is a key strategy for achieving the EU’s climate targets, as over 75% of the current building stock is energy inefficient. This study evaluates the environmental impacts of three façade renovation scenarios for an office building at the Technical University in Zvolen (Slovakia) using a life cycle assessment (LCA) approach. The aim is to quantify and compare these impacts based on material selection and its influence on sustainable construction. The analysis focuses on key environmental indicators, including global warming potential (GWP), abiotic depletion (ADE, ADF), ozone depletion (ODP), toxicity, acidification (AP), eutrophication potential (EP), and primary energy use (PERT, PENRT). The scenarios vary in the use of insulation materials (glass wool, wood fibre, mineral wool), façade finishes (cladding vs. render), and window types (aluminium vs. wood–aluminium). Uncertainty analysis identified GWP, AP, and ODP as robust decision-making categories, while toxicity-related results showed lower reliability. To support integrated and transparent comparison, a composite environmental index (CEI) was developed, aggregating characterisation, normalisation, and mass-based results into a single score. Scenario C–2, featuring an ETICS system with mineral wool insulation and wood–aluminium windows, achieved the lowest environmental impact across all categories. In contrast, scenarios with traditional cladding and aluminium windows showed significantly higher impacts, particularly in fossil fuel use and ecotoxicity. The findings underscore the decisive role of material selection in sustainable renovation and the need for a multi-criteria, context-sensitive approach aligned with architectural, functional, and regional priorities. Full article
Show Figures

Figure 1

36 pages, 5042 KiB  
Review
The Fungus Among Us: Innovations and Applications of Mycelium-Based Composites
by Zahra Parhizi, John Dearnaley, Kate Kauter, Deirdre Mikkelsen, Priya Pal, Tristan Shelley and Paulomi (Polly) Burey
J. Fungi 2025, 11(8), 549; https://doi.org/10.3390/jof11080549 - 23 Jul 2025
Viewed by 452
Abstract
Mycelium-based composites (MBCs) are an emerging category of cost-effective and environmentally sustainable materials that are attracting significant research and commercial interest across various industries, including construction, manufacturing, agriculture, and biomedicine. These materials harness the natural growth of fungi as a low-energy bio-fabrication method, [...] Read more.
Mycelium-based composites (MBCs) are an emerging category of cost-effective and environmentally sustainable materials that are attracting significant research and commercial interest across various industries, including construction, manufacturing, agriculture, and biomedicine. These materials harness the natural growth of fungi as a low-energy bio-fabrication method, converting abundant agricultural by-products and waste into sustainable alternatives to energy-intensive synthetic construction materials. Their affordability and eco-friendly characteristics make them attractive for both research and commercialisation. Currently, mycelium-based foams and sandwich composites are being actively developed for applications in construction. These materials offer exceptional thermal insulation, excellent acoustic absorption, and superior fire safety compared to conventional building materials like synthetic foams and engineered wood. As a result, MBCs show great potential for applications in thermal and acoustic insulation. However, their foam-like mechanical properties, high water absorption, and limited documentation of material properties restrict their use to non- or semi-structural roles, such as insulation, panelling, and furniture. This paper presents a comprehensive review of the fabrication process and the factors affecting the production and performance properties of MBCs. It addresses key elements such as fungal species selection, substrate choice, optimal growth conditions, dehydration methods, post-processing techniques, mechanical and physical properties, termite resistance, cost comparison, and life cycle assessment. Full article
Show Figures

Figure 1

13 pages, 6838 KiB  
Article
Preparation and Bonding Properties of Fabric Veneer Plywood
by Ziyi Yuan, Limei Cheng, Chengsheng Gui and Lu Fang
Coatings 2025, 15(8), 864; https://doi.org/10.3390/coatings15080864 - 23 Jul 2025
Viewed by 274
Abstract
Fabric veneer panels were prepared using ethylene-vinyl acetate copolymer film (EVA) as the intermediate layer and poplar plywood as the substrate. Eight fabrics with different compositions were selected for evaluation to screen out fabric materials suitable for poplar plywood veneer. The fabrics were [...] Read more.
Fabric veneer panels were prepared using ethylene-vinyl acetate copolymer film (EVA) as the intermediate layer and poplar plywood as the substrate. Eight fabrics with different compositions were selected for evaluation to screen out fabric materials suitable for poplar plywood veneer. The fabrics were objectively analyzed by bending and draping, compression, and surface roughness, and subjectively evaluated by establishing seven levels of semantic differences. ESEM, surface adhesive properties, and peel resistance tests were used to characterize the microstructure and physical–mechanical properties of the composites. The results show that cotton and linen fabrics and corduroy fabrics are superior to other fabrics in performance, and they are suitable for decorative materials. Because the fibers of the doupioni silk fabric are too thin, and the fibers of felt fabric are randomly staggered, they are not suitable for the surface decoration materials of man-made panels. The acetate veneer surface gluing performance was 1.31 MPa, and the longitudinal peel resistance was 20.98 N, significantly exceeding that of other fabric veneers. Through the subjective and objective analysis of fabrics and gluing performance tests, it was concluded that, compared with fabrics made of natural fibers, man-made fiber fabrics are more suitable for use as surface finishing materials for wood-based panels. The results of this study provide a theoretical basis and process reference for the development of environmentally friendly decorative panels, which can be expanded and applied to furniture, interior decoration, and other fields. Full article
(This article belongs to the Special Issue Innovations in Functional Coatings for Wood Processing)
Show Figures

Graphical abstract

27 pages, 36926 KiB  
Article
Comparison of Additive Manufacturing and Injection Molding of Biocomposites Reinforced with Alkali-Treated Wood Flour Derived from Recycled Wooden Pallets
by Mehmet Demir, Nilgül Çetin and Nasır Narlıoğlu
Polymers 2025, 17(15), 2004; https://doi.org/10.3390/polym17152004 - 22 Jul 2025
Viewed by 338
Abstract
Biodegradable polymer composites offer promising alternatives to petroleum-based plastics, supporting the principles of a zero waste and circular economy. This study investigates the reinforcing potential of alkali-treated wood flour derived from recycled pine (Pinus brutia Ten.) and poplar (Populus alba L.) [...] Read more.
Biodegradable polymer composites offer promising alternatives to petroleum-based plastics, supporting the principles of a zero waste and circular economy. This study investigates the reinforcing potential of alkali-treated wood flour derived from recycled pine (Pinus brutia Ten.) and poplar (Populus alba L.) waste wooden pallets in poly(lactic acid) (PLA) biocomposites. Wood flour was initially recovered through grinding and screening during recycling, followed by alkali treatment via a green chemistry approach to enhance interfacial bonding with the PLA matrix. The impact of alkali concentration and two fabrication methods—additive manufacturing (AM) and injection molding (IM)—on the properties of developed biocomposite materials was assessed through mechanical, physical, morphological, and thermal analyses. IM samples outperformed AM counterparts, with the IM PLA containing 30 wt% wood flour (alkali-treated with 10% solution) showing the highest mechanical gains: tensile (+71.35%), flexural (+64.74%), and hardness (+2.62%) compared to untreated samples. Moreover, the AM sample with 10 wt% wood flour and 10% alkali treatment showed a 49.37% decrease in water absorption compared to the untreated sample, indicating improved hydrophobicity. Scanning electron microscopy confirmed that alkali treatment reduced void content and enhanced morphological uniformity, while thermal properties remained consistent across fabrication methods. This work introduces a green composite using non-toxic materials and treatments, facilitating eco-friendly production aligned with zero waste and circular economy principles throughout the manufacturing lifecycle. Full article
(This article belongs to the Special Issue Polymer Composites: Structure, Properties and Processing, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 594 KiB  
Article
Influence of In Situ Polymerization on the Compressive Strength of Scots Pine (Pinus sylvestris L.) Recovered from Demolition Timber and Two Forest-Sourced Species: European Beech (Fagus sylvatica) and Black Alder (Alnus glutinosa)
by Emil Żmuda and Kamil Roman
Materials 2025, 18(15), 3439; https://doi.org/10.3390/ma18153439 - 22 Jul 2025
Viewed by 143
Abstract
This study investigated the effect of in situ polymerization on the compressive strength of demolition-derived Scots pine, European beech, and black alder wood. The treatment applied was based on previously confirmed in situ polymerization systems in wood, which are known to lead to [...] Read more.
This study investigated the effect of in situ polymerization on the compressive strength of demolition-derived Scots pine, European beech, and black alder wood. The treatment applied was based on previously confirmed in situ polymerization systems in wood, which are known to lead to polymer formation and composite-like structures. In this study, we assumed similar behavior and focused on a mechanical evaluation of the modified wood. Three different polymer systems were applied to evaluate differences in performance. After modification, the compressive strength levels increased by 60% in beech, 119% in alder, and 150% in pine, with corresponding increases in density and weight percent gain (WPG). The highest relative improvement was observed in the least dense species, pine. The findings suggest that polymer treatment can significantly enhance the mechanical properties, likely due to the incorporation of polymer into the wood matrix; however, this inference is based on indirect physical evidence. Full article
Show Figures

Figure 1

17 pages, 900 KiB  
Review
Cellulose Nanofibril-Based Biodegradable Polymers from Maize Husk: A Review of Extraction, Properties, and Applications
by Nthabiseng Motshabi, Gaofetoge Gobodiwang Lenetha, Moipone Alice Malimabe and Thandi Patricia Gumede
Polymers 2025, 17(14), 1947; https://doi.org/10.3390/polym17141947 - 16 Jul 2025
Viewed by 335
Abstract
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with [...] Read more.
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with cellulose nanofibrils (CNFs) has shown promise, yet most research focuses on conventional sources like wood pulp and cotton, neglecting agricultural residues. This review addresses the potential of maize husk, a lignocellulosic waste abundant in South Africa, as a source of CNFs. It evaluates the literature on the structure, extraction, characterisation, and integration of maize husk-derived CNFs into biodegradable polymers. The review examines the chemical composition, extraction methods, and key physicochemical properties that affect performance when blended with PLA, PBS, or PCL. However, high lignin content and heterogeneity pose extraction and dispersion challenges. Optimised maize husk CNFs can enhance the mechanical strength, barrier properties, and thermal resistance of biopolymer systems. This review highlights potential applications in packaging, biomedical, and agricultural sectors, aligning with South African bioeconomic goals. It concludes by identifying research priorities for improving compatibility and processing at an industrial scale, paving the way for maize husk CNFs as effective, locally sourced reinforcements in green material innovation. Full article
Show Figures

Figure 1

16 pages, 5222 KiB  
Article
Rock Physics Characteristics and Modeling of Deep Fracture–Cavity Carbonate Reservoirs
by Qifei Fang, Juntao Ge, Xiaoqiong Wang, Junfeng Zhou, Huizhen Li, Yuhao Zhao, Tuanyu Teng, Guoliang Yan and Mengen Wang
Energies 2025, 18(14), 3710; https://doi.org/10.3390/en18143710 - 14 Jul 2025
Viewed by 285
Abstract
The deep carbonate reservoirs in the Tarim Basin, Xinjiang, China, are widely developed with multi-scale complex reservoir spaces such as fractures, pores, and karst caves under the coupling of abnormal high pressure, diagenesis, karst, and tectonics and have strong heterogeneity. Among them, fracture–cavity [...] Read more.
The deep carbonate reservoirs in the Tarim Basin, Xinjiang, China, are widely developed with multi-scale complex reservoir spaces such as fractures, pores, and karst caves under the coupling of abnormal high pressure, diagenesis, karst, and tectonics and have strong heterogeneity. Among them, fracture–cavity carbonate reservoirs are one of the main reservoir types. Revealing the petrophysical characteristics of fracture–cavity carbonate reservoirs can provide a theoretical basis for the log interpretation and geophysical prediction of deep reservoirs, which holds significant implications for deep hydrocarbon exploration and production. In this study, based on the mineral composition and complex pore structure of carbonate rocks in the Tarim Basin, we comprehensively applied classical petrophysical models, including Voigt–Reuss–Hill, DEM (Differential Effective Medium), Hudson, Wood, and Gassmann, to establish a fracture–cavity petrophysical model tailored to the target block. This model effectively characterizes the complex pore structure of deep carbonate rocks and addresses the applicability limitations of conventional models in heterogeneous reservoirs. The discrepancies between the model-predicted elastic moduli, longitudinal and shear wave velocities (Vp and Vs), and laboratory measurements are within 4%, validating the model’s reliability. Petrophysical template analysis demonstrates that P-wave impedance (Ip) and the Vp/Vs ratio increase with water saturation but decrease with fracture density. A higher fracture density amplifies the fluid effect on the elastic properties of reservoir samples. The Vp/Vs ratio is more sensitive to pore fluids than to fractures, whereas Ip is more sensitive to fracture density. Regions with higher fracture and pore development exhibit greater hydrocarbon storage potential. Therefore, this petrophysical model and its quantitative templates can provide theoretical and technical support for predicting geological sweet spots in deep carbonate reservoirs. Full article
(This article belongs to the Special Issue New Progress in Unconventional Oil and Gas Development: 2nd Edition)
Show Figures

Figure 1

19 pages, 4534 KiB  
Article
Error Modeling and Error Control Study of PA/Pine Wood Biomass Composites
by Jiaming Dai, Yanling Guo and Haoyu Zhang
Polymers 2025, 17(14), 1920; https://doi.org/10.3390/polym17141920 - 11 Jul 2025
Viewed by 269
Abstract
Laser sintering (LS) technology is one of the most widely commercialized additive manufacturing technologies. However, the popularization of LS technology in civilian applications has long been constrained by accuracy-related issues. Polyamide (PA), as the most mature LS material, still faces challenges in controlling [...] Read more.
Laser sintering (LS) technology is one of the most widely commercialized additive manufacturing technologies. However, the popularization of LS technology in civilian applications has long been constrained by accuracy-related issues. Polyamide (PA), as the most mature LS material, still faces challenges in controlling part dimensional errors. Biomass materials, when used as fillers, can improve the printing accuracy of fabricated parts, demonstrating a technically feasible synergy between PA and biomass materials. Therefore, this study analyzes the fundamental material properties of PA/pine biomass composites and investigates error control methods for LS-fabricated parts using PA/biomass materials as feedstock. This study investigates the error modeling of LS-fabricated parts from two perspectives. First, a theoretical mathematical model is established to predict part errors by incorporating material properties, process parameters, and equipment factors. Second, a data-driven model is developed using BP neural network technology based on experimental data to correlate LS process parameters with part dimensional errors. Additionally, the predictive capabilities and compensation effects of both models are examined. The experimental results indicate that the nylon/pine wood biomass composite with a pine wood content of 3 wt% can produce molded parts with a tensile strength of 20 MPa. Additionally, this material exhibits a sintering preheating window range of 10 °C, which facilitates the production of parts with both favorable mechanical properties and dimensional accuracy. Both error prediction models are capable of predicting the dimensional deviations of the parts. The data-driven model demonstrates superior deviation prediction accuracy (approximately 81–91%) for LS parts compared to the theoretical mathematical model (approximately 62–73%). By applying compensation based on the error prediction models, the overall dimensional deviation can be reduced from 1.61–3.49% to 0.41–0.50%. Consequently, the part’s precision grade (according to ISO 2768) is improved from below Grade V to Grade C. Full article
Show Figures

Figure 1

16 pages, 1740 KiB  
Article
Reinforcing Urea–Formaldehyde Resins with Low-Cost, Mechanically Derived Nanocellulose: A Sustainable Approach
by Eleni A. Psochia, Emmanouil Karagiannidis, Eleftheria Athanasiadou and Konstantinos S. Triantafyllidis
Molecules 2025, 30(14), 2911; https://doi.org/10.3390/molecules30142911 - 10 Jul 2025
Viewed by 345
Abstract
In this work, we present the fabrication of low-cost, stable nanocellulose colloidal suspensions with an average particle size of approximately 160 nm, produced via a straightforward, solvent-free ultrasonication process that eliminates the need for corrosive chemicals or energy-intensive mechanical treatments. The resulting nanocellulose [...] Read more.
In this work, we present the fabrication of low-cost, stable nanocellulose colloidal suspensions with an average particle size of approximately 160 nm, produced via a straightforward, solvent-free ultrasonication process that eliminates the need for corrosive chemicals or energy-intensive mechanical treatments. The resulting nanocellulose suspensions were utilized as reinforcing additives in urea-formaldehyde (UF) resins, which were subsequently applied in the production of particle boards. This approach addresses the increasing EU regulatory constraints regarding low formaldehyde-to-urea (F/U) molar ratios and the broader need for biobased, eco-friendly alternatives in the wood adhesive industry. Mechanical testing of the nanocellulose reinforced boards revealed notable improvements in the internal bond strength and modulus of rupture, along with a significant decrease in formaldehyde release compared to boards produced with conventional UF resins. These findings highlight the potential of ultrasonication-derived nanocellulose as an environmentally friendly, cost-effective additive to enhance the mechanical performance and reduce the environmental impact of UF-based wood composites. Full article
(This article belongs to the Special Issue 10th Anniversary of Green Chemistry Section)
Show Figures

Figure 1

29 pages, 3584 KiB  
Review
Energy Efficiency in Buildings Through the Application of Phase Change Materials: An In-Depth Analysis of the Integration of Spent Coffee Grounds (SCGs)
by Abir Hmida, Fouad Erchiqui, Abdelkader Laafer and Mahmoud Bourouis
Energies 2025, 18(14), 3629; https://doi.org/10.3390/en18143629 - 9 Jul 2025
Viewed by 503
Abstract
Energy demand in the building sector has drastically increased due to rising occupant comfort requirements, accounting for 30% of the world’s final energy consumption and 26% of global carbon emissions. Thus, to improve building efficiency in heating and cooling applications, phase change material [...] Read more.
Energy demand in the building sector has drastically increased due to rising occupant comfort requirements, accounting for 30% of the world’s final energy consumption and 26% of global carbon emissions. Thus, to improve building efficiency in heating and cooling applications, phase change material (PCM)-based passive thermal management techniques have been considered due to their energy storage capabilities. This study provides a comprehensive review of the research on PCM applications, types, and encapsulation forms. Various solutions have been proposed to enhance PCM performance. In this review, the authors suggest new methods to improve PCM efficiency by using the multilayered wall technique, which involves employing two layers of a hybrid bio-composite—specifically, the hybrid hemp/wood fiber-reinforced composite with a polypropylene (PP) matrix—along with a layer of PCM made from spent coffee grounds (SCGs). Previous studies have shown that oil extracted from SCGs demonstrates good thermal and chemical stability, as it contains approximately 60–80% fatty acids, with a phase transition temperature of approximately 4.5 ± 0.72 °C and latent heat values of 51.15 ± 1.46 kJ/kg. Full article
Show Figures

Figure 1

24 pages, 3167 KiB  
Article
Effects of Vegetation Heterogeneity on Butterfly Diversity in Urban Parks: Applying the Patch–Matrix Framework at Fine Scales
by Dan Han, Cheng Wang, Junying She, Zhenkai Sun and Luqin Yin
Sustainability 2025, 17(14), 6289; https://doi.org/10.3390/su17146289 - 9 Jul 2025
Viewed by 259
Abstract
(1) Background: Urban parks play a critical role in conserving biodiversity within city landscapes, yet the effects of fine-scale microhabitat heterogeneity remain poorly understood. This study examines how land cover and vegetation unit type within parks influence butterfly diversity. (2) Methods: From July [...] Read more.
(1) Background: Urban parks play a critical role in conserving biodiversity within city landscapes, yet the effects of fine-scale microhabitat heterogeneity remain poorly understood. This study examines how land cover and vegetation unit type within parks influence butterfly diversity. (2) Methods: From July to September 2019 and June to September 2020, adult butterflies were surveyed in 27 urban parks across Beijing. We classified vegetation into units based on vertical structure and management intensity, and then applied the patch–matrix framework and landscape metrics to quantify fine-scale heterogeneity in vegetation unit composition and configuration. Generalized linear models (GLM), generalized additive models (GAM), and random forest (RF) models were applied to identify factors influencing butterfly richness (Chao1 index) and abundance. (3) Results: In total, 10,462 individuals representing 37 species, 28 genera, and five families were recorded. Model results revealed that the proportion of park area covered by spontaneous herbaceous areas (SHA), wooded spontaneous meadows (WSM), and the Shannon diversity index (SHDI) of vegetation units were positively associated with butterfly species richness. In contrast, butterfly abundance was primarily influenced by the proportion of park area covered by cultivated meadows (CM) and overall green-space coverage. (4) Conclusions: Fine-scale vegetation patch composition within urban parks significantly influences butterfly diversity. Our findings support applying the patch–matrix framework at intra-park scales and suggest that integrating spontaneous herbaceous zones—especially wooded spontaneous meadows—with managed flower-rich meadows will enhance butterfly diversity in urban parks. Full article
Show Figures

Figure 1

Back to TopTop