Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,122)

Search Parameters:
Keywords = wood species

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9308 KiB  
Article
Profiling Climate Risk Patterns of Urban Trees in Wuhan: Interspecific Variation and Species’ Trait Determinants
by Wenli Zhu, Ming Zhang, Li Zhang, Siqi Wang, Lu Zhou, Xiaoyi Xing and Song Li
Forests 2025, 16(8), 1358; https://doi.org/10.3390/f16081358 - 21 Aug 2025
Abstract
Climate change poses significant threats to urban tree health and survival worldwide. This study evaluates climate suitability risks for 12 common tree species in Wuhan, a Chinese metropolis facing escalating climate challenges. We analyzed risk dynamics and interspecific variations across three periods, the [...] Read more.
Climate change poses significant threats to urban tree health and survival worldwide. This study evaluates climate suitability risks for 12 common tree species in Wuhan, a Chinese metropolis facing escalating climate challenges. We analyzed risk dynamics and interspecific variations across three periods, the baseline (1981–2022), near future (2023–2050), and distant future (2051–2100), quantifying climate risk as differences between local climate conditions and species’ climatic niches. We further examined how species’ geographic distribution and functional traits influence these climate risks. The results revealed significant warming trends in Wuhan during the baseline period (p < 0.05), with projected increases in temperature and precipitation under future scenarios (p < 0.05). The most prominent risk factors included the precipitation of the driest month (PDM), annual mean temperature (AMT), and maximum temperature of the warmest month (MTWM), indicating intensifying drought–heat stress in this region. Among the studied species, Cedrus deodara (Roxb.) G. Don, Platanus acerifolia (Aiton) Willd., Metasequoia glyptostroboides Hu & W.C.Cheng, and Ginkgo biloba L. faced significantly higher hydrothermal risks (p < 0.05), whereas Koelreuteria bipinnata Franch. and Osmanthus fragrans (Thunb.) Lour. exhibited lower current risks but notable future risk increases (p < 0.05). Regarding the factors driving these interspecific variation patterns, the latitude of species’ distribution centroids showed significant negative correlations with the risk values of the minimum temperature of the coldest month (MTCM) (p < 0.05). Among functional traits, the wood density (WD) and xylem vulnerability threshold (P50) were negatively correlated with precipitation-related risks (p < 0.05), while the leaf dry matter content (LDMC) and specific leaf area (SLA) were positively associated with temperature-related risks (p < 0.05). These findings provide scientific foundations for developing climate-adaptive species selection and management strategies that enhance urban forest resilience under climate change in central China. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

13 pages, 5959 KiB  
Article
A Remarkable New Species of the Genus Paraglenea Bates from China, with Notes on the Genus Malloderma Lacordaire (Coleoptera: Cerambycidae: Lamiinae: Saperdini)
by Mei-Ying Lin, Ren-Jie You and Ling-Yun Wang
Insects 2025, 16(8), 867; https://doi.org/10.3390/insects16080867 - 21 Aug 2025
Viewed by 48
Abstract
This study contributes to the taxonomic research on the tribe Saperdini, focusing on two genera, Paraglenea Bates and Malloderma Lacordaire. A new species, Paraglenea dairanxingorum Lin, You & Wang, sp. nov., is described from Hunan and Hubei Provinces, China. The new species is [...] Read more.
This study contributes to the taxonomic research on the tribe Saperdini, focusing on two genera, Paraglenea Bates and Malloderma Lacordaire. A new species, Paraglenea dairanxingorum Lin, You & Wang, sp. nov., is described from Hunan and Hubei Provinces, China. The new species is distinguished by its purplish-blue scales and median long, whitish, erect hairs on whole body. The type specimens were collected primarily using a sweeping net in wooded mountains in Fangziyacun, Madiyixiang, Yuanling County, Huaihua City, Hunan Province, as well as in Wudangshan, Shiyan City, Hubei Province. Although it resembles Malloderma kuegleri Holzschuh, 2010 in hair and scale morphology, it differs in male claw structure, elytral apex and puncture density. Additionally, Paraglenea jianfenglingensis Hua, 1985 is newly combined as Malloderma jianfenglingense (Hua, 1985) comb. nov., with a new distribution record from Guangxi, China. Malloderma pascoei Lacordaire, 1872, is recorded from Myanmar for the first time. Detailed comparisons between P. dairanxingorum Lin, You & Wang, sp. nov. and Malloderma kuegleri Holzschuh, 2010; Malloderma jianfenglingense (Hua, 1985) comb. nov. and Malloderma pascoei Lacordaire, 1872, are provided. Full article
Show Figures

Figure 1

19 pages, 1563 KiB  
Article
Effects of Biochar Application on Nitrogen Fixation and Water Use Efficiency of Understorey Acacia Species as well as Soil Carbon and Nitrogen Pools in a Subtropical Native Forest
by Ashrafun Nessa, Shahla Hosseini Bai, Zakaria Karim, Jiaping Yang and Zhihong Xu
Forests 2025, 16(8), 1350; https://doi.org/10.3390/f16081350 - 19 Aug 2025
Viewed by 192
Abstract
This study aimed to examine how biochar and Acacia species would affect biological nitrogen fixation (BNF) and water use efficiency (WUE) of understorey Acacia species as well as soil carbon (C) and nitrogen (N) pools 15 months after biochar application in the suburban [...] Read more.
This study aimed to examine how biochar and Acacia species would affect biological nitrogen fixation (BNF) and water use efficiency (WUE) of understorey Acacia species as well as soil carbon (C) and nitrogen (N) pools 15 months after biochar application in the suburban native forest of subtropical Australia. This experiment was established with wood biochar applied at 0, 5, and 10 t ha−1 at 20 months after prescribed burning. We collected foliar and soil samples 15 months after biochar application and used N isotope composition (δ15N) and carbon isotope composition (δ13C) to assess the BNF and WUE of two understorey Acacia species (Acacia leiocalyx and Acacia disparrima). We also characterised soil C and N pools and their δ15N and δ13C. Biochar did not influence Acacia plant BNF and WUE 15 months after biochar application. However, the BNF of A. leiocalyx was significantly greater compared with that of A. disparrima. The soil under A. leiocalyx had greater NH4+-N (i.e., 10–20 cm) but lower δ15N than A. disparrima. This study represents one of the few attempts to apply the 15N natural abundance (δ15N) techniques to quantify the soil–plant–microbe interactions for N cycling in a native forest ecosystem. Understorey A. leiocalyx was more effective in improving N recovery post-fire via BNF. Soil under A. leiocalyx had greater N availability with lower δ15N, influencing plant available N sources and δ15N. Thus, A. leiocalyx would be able to fix more N2 from the air compared with that of A. disparrima in the suburban native forest ecosystem subject to periodical fuel reduction prescribed burning. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

23 pages, 9589 KiB  
Article
An Interpretable Approach to Wood Species Identification Based on Anatomical Features in Microscopic Images
by Lei Liu, Jian Qiu, Yong Cao, Qiying Li, Songping Qian and Yongke Sun
Forests 2025, 16(8), 1328; https://doi.org/10.3390/f16081328 - 15 Aug 2025
Viewed by 362
Abstract
Wood recognition plays a vital role in the trade and conservation of rare wood species. However, the computer vision-based methods classify the wood species by the features that are not used within the framework of wood anatomy, leading to results that are not [...] Read more.
Wood recognition plays a vital role in the trade and conservation of rare wood species. However, the computer vision-based methods classify the wood species by the features that are not used within the framework of wood anatomy, leading to results that are not interpretable. This study proposes a novel wood recognition method that detects anatomical structures such as vessels, wood rays, and parenchyma in wood microscopic images. These structures are quantified and mapped to the International Association of Wood Anatomists (IAWA) features, which are then used for species classification. Experimental results on 32 wood species demonstrate the effectiveness of the approach, achieving an accuracy of 94.1%, precision of 92.6%, recall of 93.3%, and an F1-score of 92.7%. In addition to its recognition performance, the method may offer interpretable IAWA-based classification criteria in wood science. These findings suggest that the method could serve as an anatomically interpretable framework for wood species identification, contributing to the regulation of the rare timber trade and supporting the conservation of endangered tree species. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

21 pages, 2752 KiB  
Article
Endophytic Bacterial and Fungal Communities of Spruce Picea jezoensis in the Russian Far East
by Nikolay N. Nityagovsky, Alexey A. Ananev, Andrey R. Suprun, Alina A. Dneprovskaya, Konstantin V. Kiselev and Olga A. Aleynova
Plants 2025, 14(16), 2534; https://doi.org/10.3390/plants14162534 - 14 Aug 2025
Viewed by 266
Abstract
A wide range of microorganisms, including endophytes, frequently interact with forest trees. The role of endophytes in industrial conifers has not been fully investigated. The Yezo spruce Picea jezoensis is widely used for logging in Russia and Japan. In this work, the endophytic [...] Read more.
A wide range of microorganisms, including endophytes, frequently interact with forest trees. The role of endophytes in industrial conifers has not been fully investigated. The Yezo spruce Picea jezoensis is widely used for logging in Russia and Japan. In this work, the endophytic communities of bacteria and fungi in healthy needles, branches, and fresh wood of P. jezoensis from Primorsky Territory were analyzed using metagenomic analysis. The results indicate that the diversity of endophytic communities in P. jezoensis is predominantly influenced by the specific tree parts (for both bacteria and fungi) and by different tree specimens (for fungi). The most abundant bacterial classes were Alphaproteobacteria, Gammaproteobacteria and Actinobacteria. Functional analysis of KEGG orthologs (KOs) in endophytic bacterial community using PICRUSt2 and the PLaBAse PGPT ontology revealed that 59.5% of the 8653 KOs were associated with plant growth-promoting traits (PGPTs), mainly, colonization, stress protection, bio-fertilization, bio-remediation, vitamin production, and competition. Metagenomic analysis identified a high abundance of the genera Pseudomonas and Methylobacterium-Methylorubrum in P. jezoensis, which are known for their potential growth-promoting activity in other coniferous species. The dominant fungal classes in P. jezoensis were Dothideomycetes, Sordariomycetes, and Eurotiomycetes. Notably, the genus Penicillium showed a pronounced increase in relative abundance within the fresh wood and needles of Yezo spruce, while Aspergillus displayed elevated abundance specifically in the fresh wood. It is known that some of these fungi exhibit antagonistic activity against phytopathogenic fungi. Thus, our study describes endophytic communities of the Yezo spruce and provides a basis for the production of biologicals with potential applications in forestry and agriculture. Full article
(This article belongs to the Special Issue Plant-Microbiome Interactions)
Show Figures

Figure 1

25 pages, 5843 KiB  
Article
Scaling Plant Functional Strategies from Species to Communities in Regenerating Amazonian Forests: Insights for Restoration in Deforested Landscapes
by Carlos H. Rodríguez-León, Armando Sterling, Dorman D. Daza-Giraldo, Yerson D. Suárez-Córdoba and Lilia L. Roa-Fuentes
Diversity 2025, 17(8), 570; https://doi.org/10.3390/d17080570 - 14 Aug 2025
Viewed by 283
Abstract
Understanding how main plant functional strategies scale from species to communities is critical for guiding restoration in tropical disturbed areas by unsustainable livestock grazing; yet, the patterns and drivers of functional trait space along successional trajectories remain poorly understood. Here, we investigated functional [...] Read more.
Understanding how main plant functional strategies scale from species to communities is critical for guiding restoration in tropical disturbed areas by unsustainable livestock grazing; yet, the patterns and drivers of functional trait space along successional trajectories remain poorly understood. Here, we investigated functional trait space using principal component analyses (PCAs) based on eight traits related to leaf, stem, and seed morphology across 226 tree species and 33 forest communities along a chronosequence of natural regeneration following cattle ranching abandonment in deforested landscapes of the Colombian Amazon. We identified three species-level functional axes—namely, the ‘Structural–Reproductive Allocation Axis’, the ‘Mechanical Support and Tissue Investment Axis’, and the ‘Leaf Economics Axis’—and two community-level axes: the ‘Colonization–Longevity Axis’ and the ‘Persistence–Acquisition Axis’. These axes aligned with the life-history strategies of short-lived pioneers, long-lived pioneers, and old-growth species, and reflected their relationships with key environmental drivers. Community-level functional composition reflected species-level patterns, but was also shaped by soil properties, microclimate, and tree species richness. Forest age and precipitation promoted conservative strategies, while declining soil fertility suggested a decoupling between above- and belowground recovery. Functional richness and divergence were highest in mid-successional forests dominated by long-lived pioneers. Our findings highlight the role of environmental and successional filters in shaping functional trait space and emphasize the value of functionally diverse communities. Particularly, our results indicate that long-lived pioneers (LLP) such as Astrocaryum chambira Burret and Pouteria campanulata Baehni, with traits like large height, intermediate wood density, and larger seed size, represent ideal candidates for early enrichment strategies due to their facilitation roles in succession supporting restoration efforts in regenerating Amazonian forests. Full article
Show Figures

Figure 1

20 pages, 10994 KiB  
Article
Improving the Physical Characteristics and Durability of Wood Through a Combined Modification Process Using Thermal Treatment and Wax Impregnation in One Step
by Miklós Bak
Forests 2025, 16(8), 1317; https://doi.org/10.3390/f16081317 - 13 Aug 2025
Viewed by 286
Abstract
In this paper, a combined modification method using thermal modification and wax impregnation was investigated. The advantage of this method is that the two modification steps are completed in one step. Two different wood species, beech (Fagus sylvatica) and Scots pine [...] Read more.
In this paper, a combined modification method using thermal modification and wax impregnation was investigated. The advantage of this method is that the two modification steps are completed in one step. Two different wood species, beech (Fagus sylvatica) and Scots pine (Pinus sylvestris), were investigated. The effects of the treatments were tested regarding the wax uptake, mass loss, density, equilibrium moisture content, swelling, water contact angle, strength properties, and durability. Through the synergistic effect of the combined modification, it was possible to significantly improve the dimensional stability and decrease the hygroscopicity and equilibrium moisture content, while swelling anisotropy was not affected. It was proven that the wax uptake during this method is highly dependent on the treatment temperature, resulting in a large density increase. The treatment resulted in an obvious color change as well. Bending strength was not affected by the combined treatment, while impact bending, compression strength, and Brinell hardness were improved. High durability was observed after the combined modification method, indicating that lower treatment temperatures are enough to efficiently protect the wood. Full article
Show Figures

Figure 1

26 pages, 4023 KiB  
Article
Forest Habitat and Substrate Interactions Drive True Slime Mould Diversity Across Poland
by Tomasz Pawłowicz, Tomasz Oszako, Konrad Wilamowski, Monika Puchlik, Krzysztof Sztabkowski, Igor Żebrowski, Gabriel Michał Micewicz, Gabriel Kacper Malej and Oliwia Kudrycka
Forests 2025, 16(8), 1307; https://doi.org/10.3390/f16081307 - 11 Aug 2025
Viewed by 196
Abstract
True slime mould assemblages respond acutely to microhabitat structure, which may constitute potential indicators of forest dynamics; however, large-scale syntheses integrating habitat scale and substrate specificity remain exceedingly scarce. By collating 3085 occurrence records into eight ecologically coherent habitats and ten substrate guilds, [...] Read more.
True slime mould assemblages respond acutely to microhabitat structure, which may constitute potential indicators of forest dynamics; however, large-scale syntheses integrating habitat scale and substrate specificity remain exceedingly scarce. By collating 3085 occurrence records into eight ecologically coherent habitats and ten substrate guilds, we quantified richness, entropy, turnover and indicator strength via rarefaction, Chao1/ACE, Shannon–Simpson indices, β-diversity partitioning, NMDS, PERMANOVA and IndValg analysis. Broadleaved deciduous forests accounted for 37.9% of observations and hosted the most taxa, while lignicolous samples in both deciduous and bog–mire contexts dominated species counts; open grasslands were compositionally depauperate. Species replacement, not nestedness, structured assemblages (βSIM/βSOR0.82), and habitat plus substrate explained two-thirds of variance. Indicator analysis isolated six habitat-diagnostic genera (notably Cribraria, Hemitrichia and Licea) and, at species resolution, highlighted Diderma niveum, Fuligo septica and Ceratiomyxa fruticulosa as high-fidelity bioindicators of montane grassland, bog–mire and broadleaved forest conditions, respectively. Taken together, our findings lay the groundwork for employing true slime moulds to identify habitat types and assess their ecological condition, while underscoring the conservation value of dead wood retention and structural heterogeneity. The benchmarked indicator set we provide enables rapid assessments and establishes a temporal baseline for tracking climate- and management-driven change in Central European Eumycetozoa diversity. Full article
(This article belongs to the Special Issue Biodiversity Patterns and Ecosystem Functions in Forests)
Show Figures

Figure 1

26 pages, 449 KiB  
Review
The Science of Aging: Understanding Phenolic and Flavor Compounds and Their Influence on Alcoholic Beverages Aged with Alternative Woods
by Tainá Francisca Cordeiro de Souza, Bruna Melo Miranda, Julio Cesar Colivet Briceno, Joaquín Gómez-Estaca and Flávio Alves da Silva
Foods 2025, 14(15), 2739; https://doi.org/10.3390/foods14152739 - 5 Aug 2025
Viewed by 427
Abstract
Aging in wooden barrels is a proven technique that enhances the sensory complexity of alcoholic beverages by promoting the extraction of volatile and phenolic compounds. While oak has been traditionally used, there is a growing interest in exploring alternative wood species that can [...] Read more.
Aging in wooden barrels is a proven technique that enhances the sensory complexity of alcoholic beverages by promoting the extraction of volatile and phenolic compounds. While oak has been traditionally used, there is a growing interest in exploring alternative wood species that can impart distinct sensory characteristics and promote innovative maturation processes. This review examines the impact of alternative woods on the aging of beverages, such as wine, cachaça, tequila, and beer, focusing on their influence on aroma, flavor, color, and chemical composition. A bibliometric analysis highlights the increasing scientific attention toward wood diversification and emerging aging technologies, including ultrasound and micro-oxygenation, which accelerate maturation while preserving sensory complexity. The role of toasting techniques in modulating the release of phenolic and volatile compounds is also discussed, emphasizing their contribution to unique sensory profiles. Additionally, regulatory aspects and sustainability considerations are explored, suggesting that alternative woods can expand flavor possibilities while supporting environmentally sustainable practices. This review underscores the potential of non-traditional wood species to drive innovation in the aging of alcoholic beverages and provide new sensory experiences that align with evolving consumer preferences and market trends. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
17 pages, 1783 KiB  
Article
Nature-Based Solutions in Sustainable Cities: Trace Metal Accumulation in Urban Forests of Vienna (Austria) and Krakow (Poland)
by Mateusz Jakubiak, Ewa Panek, Krzysztof Urbański, Sónia Silva Victória, Stanisław Lach, Kamil Maciuk and Marek Kopacz
Sustainability 2025, 17(15), 7042; https://doi.org/10.3390/su17157042 - 3 Aug 2025
Viewed by 392
Abstract
Forests are considered one of the most valuable natural areas in metropolitan region landscapes. Considering the sensitivity and ecosystem services provided by trees, the definition of urban forest ecosystems is nowadays based on a comprehensive understanding of the entire urban ecosystem. The effective [...] Read more.
Forests are considered one of the most valuable natural areas in metropolitan region landscapes. Considering the sensitivity and ecosystem services provided by trees, the definition of urban forest ecosystems is nowadays based on a comprehensive understanding of the entire urban ecosystem. The effective capturing of particulate matter is one of the ecosystem services provided by urban forests. These ecosystems function as efficient biological filters. Plants accumulate pollutants passively via their leaves. Therefore, another ecosystem service provided by city forests could be the use of tree organs as bioindicators of pollution. This paper aims to estimate differences in trace metal pollution between the wooded urban areas of Vienna and Krakow using leaves of evergreen and deciduous trees as biomonitors. An additional objective of the research was to assess the ability of the applied tree species to act as biomonitors. Plant samples of five species—Norway spruce, Scots pine, European larch, common white birch, and common beech—were collected within both areas, in seven locations: four in the “Wienerwald” Vienna forest (Austria) and three in the “Las Wolski” forest in Krakow (Poland). Concentrations of Cr, Cu, Cd, Pb, and Zn in plant material were determined. Biomonitoring studies with deciduous and coniferous tree leaves showed statistically higher heavy metal contamination in the “Las Wolski” forest compared to the “Wienerwald” forest. Based on the conducted analyses and the literature study, it can be concluded that among the analyzed tree species, only two: European beech and common white birch can be considered potential indicators in environmental studies. These species appear to be suitable bioindicators, as both are widespread in urban woodlands of Central Europe and have shown the highest accumulation levels of trace metals. Full article
Show Figures

Figure 1

20 pages, 11402 KiB  
Article
Identification and Characterization of NAC Transcription Factors Involved in Pine Wilt Nematode Resistance in Pinus massoniana
by Zhengping Zhao, Jieyun Lei, Min Zhang, Jiale Li, Chungeng Pi, Jinxiu Yu, Xuewu Yan, Kun Luo and Yonggang Xia
Plants 2025, 14(15), 2399; https://doi.org/10.3390/plants14152399 - 3 Aug 2025
Viewed by 328
Abstract
Pinus massoniana Lamb. is an economically important conifer native to China. However, it is highly susceptible to the pine wood nematode (Bursaphelenchus xylophilus, PWN), the causal agent of pine wilt disease (PWD), resulting in substantial ecological and economic losses. To elucidate [...] Read more.
Pinus massoniana Lamb. is an economically important conifer native to China. However, it is highly susceptible to the pine wood nematode (Bursaphelenchus xylophilus, PWN), the causal agent of pine wilt disease (PWD), resulting in substantial ecological and economic losses. To elucidate potential molecular defense mechanisms, 50 NAC (NAM, ATAF1/2, and CUC2) transcription factors (PmNACs) were identified in the P. massoniana genome. Phylogenetic analysis divided these PmNACs into seven subfamilies, and motif analysis identified ten conserved motifs associated with stress responses. Twenty-three genes were selected for expression analysis in various tissues and under exogenous salicylic acid (SA), methyl jasmonate (MeJA), and PWN infection. Six genes (PmNAC1, PmNAC8, PmNAC9, PmNAC17, PmNAC18, and PmNAC20) were significantly up-regulated by both hormonal treatment and PWN infection, implying their involvement in JA/SA-mediated immune pathways. Functional characterization showed PmNAC8 is a nuclear-localized transcription factor with autoactivation activity. Furthermore, transient overexpression of PmNAC8 in Nicotiana benthamiana induced reactive oxygen species (ROS) accumulation and necrotic lesions. Collectively, these results elucidate NAC-mediated defense responses to PWN infection in P. massoniana and identify candidate genes for developing PWD-resistant pine varieties. Full article
Show Figures

Figure 1

25 pages, 2786 KiB  
Article
Xylem Functional Anatomy of Pure-Species and Interspecific Hybrid Clones of Eucalyptus Differing in Drought Resistance
by José Gándara, Matías Nión, Silvia Ross, Jaime González-Tálice, Paolo Tabeira and María Elena Fernández
Forests 2025, 16(8), 1267; https://doi.org/10.3390/f16081267 - 2 Aug 2025
Viewed by 342
Abstract
Climate extremes threaten the resilience of Eucalyptus plantations, yet hybridization with drought-tolerant species may enhance stress tolerance. This study analyzed xylem anatomical and functional drought responses in commercial Eucalyptus grandis (GG) clones and hybrids: E. grandis × camaldulensis (GC), E. grandis × tereticornis [...] Read more.
Climate extremes threaten the resilience of Eucalyptus plantations, yet hybridization with drought-tolerant species may enhance stress tolerance. This study analyzed xylem anatomical and functional drought responses in commercial Eucalyptus grandis (GG) clones and hybrids: E. grandis × camaldulensis (GC), E. grandis × tereticornis (GT), and E. grandis × urophylla (GU1, GU2). We evaluated vessel traits (water transport), fibers (mechanical support), and wood density (D) in stems and branches. Theoretical stem hydraulic conductivity (kStheo), vessel lumen fraction (F), vessel composition (S), and associations with previous hydraulic and growth data were assessed. While general drought responses occurred, GC had the most distinct xylem profile. This may explain it having the highest performance in different irrigation conditions. Red gum hybrids (GC, GT) maintained kStheo under drought, with stable F and a narrower vessel size, especially in branches. Conversely, GG and GU2 reduced F and S; and stem kStheo declined for a similar F in these clones, indicating vascular reconfiguration aligning the stem with the branch xylem. Almost all clones increased D under drought in any organ, with the highest increase in red gum hybrids. These results reveal diverse anatomical adjustments to drought among clones, partially explaining their growth responses. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Graphical abstract

21 pages, 1379 KiB  
Article
Stream Temperature, Density Dependence, Catchment Size, and Physical Habitat: Understanding Salmonid Size Variation Across Small Streams
by Kyle D. Martens and Warren D. Devine
Fishes 2025, 10(8), 368; https://doi.org/10.3390/fishes10080368 - 1 Aug 2025
Viewed by 415
Abstract
The average body size (fork length) of juvenile salmonids in small streams varies across landscapes and can be influenced by stream temperature, density dependence, catchment size, and physical habitat. In this study, we compared sets of 16 mixed-effects linear models representing these four [...] Read more.
The average body size (fork length) of juvenile salmonids in small streams varies across landscapes and can be influenced by stream temperature, density dependence, catchment size, and physical habitat. In this study, we compared sets of 16 mixed-effects linear models representing these four potentially influencing indicators for three species/age classes to assess the relative importance of their influences on body size. The global model containing all indicators was the most parsimonious model for juvenile coho salmon (Oncorhynchus kisutch; R2m = 0.4581, R2c = 0.5859), age-0 trout (R2m = 0.4117, R2c = 0.5968), and age-1 or older coastal cutthroat trout (O. clarkii; R2m = 0.2407, R2c = 0.5188). Contrary to expectations, salmonid density, catchment size, and physical habitat metrics contributed more to the top models for both coho salmon and age-1 or older cutthroat trout than stream temperature metrics. However, a stream temperature metric, accumulated degree days, had the only significant relationship (positive) of the indicators with body size in age-0 trout (95% CI 1.58 to 23.04). Our analysis identifies complex relationships between salmonid body size and environmental influences, such as the importance of physical habitat such as pool size and boulders. However, management or restoration actions aimed at improving or preventing anticipated declines in physical habitat such as adding instream wood or actions that may lead to increasing pool area have potential to ensure a natural range of salmonid body sizes across watersheds. Full article
(This article belongs to the Special Issue Habitat as a Template for Life Histories of Fish)
Show Figures

Figure 1

19 pages, 5918 KiB  
Article
Distinct Patterns of Co-Evolution Among Protist Symbionts of Neoisoptera Termites
by Serena G. Aguilar, Jordyn Shevat, Daniel E. Jasso-Selles, Kali L. Swichtenberg, Carlos D. Vecco-Giove, Jan Šobotník, David Sillam-Dussès, Francesca De Martini and Gillian H. Gile
Diversity 2025, 17(8), 537; https://doi.org/10.3390/d17080537 - 31 Jul 2025
Viewed by 444
Abstract
Obligate symbionts often exhibit some degree of co-speciation with their hosts. One prominent example is the symbiosis between termites and their wood-feeding hindgut protists. This symbiosis is mutually obligate, vertically inherited by anal feeding, and it predates the emergence of termites from their [...] Read more.
Obligate symbionts often exhibit some degree of co-speciation with their hosts. One prominent example is the symbiosis between termites and their wood-feeding hindgut protists. This symbiosis is mutually obligate, vertically inherited by anal feeding, and it predates the emergence of termites from their cockroach ancestors. Termites and their symbiotic protists might therefore be expected to have congruent phylogenies, but symbiont loss, transfer, and independent diversification can impact the coevolutionary history to varying degrees. Here, we have characterized the symbiotic protist communities of eight Neoisoptera species from three families in order to gauge the phylogenetic congruence between each lineage of protists and their hosts. Using microscopy and 18S rRNA gene sequencing of individually isolated protist cells, we identified protists belonging to the Parabasalia genera Pseudotrichonympha, Holomastigotoides, Cononympha, and Cthulhu. Pseudotrichonympha were present in all of the investigated termites, with a strong pattern of codiversification with hosts, consistent with previous studies. The phylogeny of Holomastigotoides indicates several instances of diversification that occurred independently of the hosts’ diversification, along with lineage-specific symbiont loss. Cononympha occurs only in Heterotermitidae and Psammotermes. Surprisingly, the small flagellate Cthulhu is widespread and exhibits cophylogeny with its hosts. This study demonstrates that different symbiont lineages can show different coevolutionary patterns, even within the same host. Full article
(This article belongs to the Special Issue Diversity and Ecology of Termites)
Show Figures

Figure 1

30 pages, 924 KiB  
Review
Wood-Based Panels and Volatile Organic Compounds (VOCs): An Overview on Production, Emission Sources and Analysis
by Fátima Daniela Gonçalves, Luísa Hora Carvalho, José António Rodrigues and Rui Miguel Ramos
Molecules 2025, 30(15), 3195; https://doi.org/10.3390/molecules30153195 - 30 Jul 2025
Viewed by 585
Abstract
The emission and presence of volatile organic compounds (VOCs) in the indoor air of houses and factories has been a growing topic of debate in the industry and related research fields. Given the extended times people in modern society spend indoors, monitoring VOCs [...] Read more.
The emission and presence of volatile organic compounds (VOCs) in the indoor air of houses and factories has been a growing topic of debate in the industry and related research fields. Given the extended times people in modern society spend indoors, monitoring VOCs is crucial due to the associated potential health hazards, with formaldehyde being particularly noteworthy. Wood and wood-based panels (WBPs) (the latter constituting a significant segment of the wood-transforming industry, being widely used in furniture, construction, and other applications) are known sources for the emission of VOCs to indoor air. In the case of the WBPs, the emission of VOCs depends on the type and species of wood, together with industrial processing and addition of additives. This review integrates perspectives on the production processes associated with WBPs, together with the evolving global regulations, and thoroughly examines VOC sources associated with WBPs, health risks from exposure, and current analytical methods utilized for VOC detection. It comprises an overview of the WBP industry, providing relevant definitions, descriptions of manufacturing processes and adhesive use, analysis of legal constraints, and explanations of VOC source identification and describing analysis techniques utilized for VOCs in WBPs. Full article
Show Figures

Figure 1

Back to TopTop