Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (313)

Search Parameters:
Keywords = winter road

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 27453 KiB  
Article
Natural and Anthropogenic Influence on the Physicochemical Characteristics of Spring Water: The Case Study of Medvednica Mountain (Central Croatia)
by Ivan Martinić and Ivan Čanjevac
Limnol. Rev. 2025, 25(3), 36; https://doi.org/10.3390/limnolrev25030036 - 1 Aug 2025
Viewed by 76
Abstract
During the period from 2020 to 2024, 900 springs were mapped on the southern slopes of Medvednica Mountain Nature Park. Physicochemical parameters (temperature, pH, and electrical conductivity) were measured at 701 of these springs using a portable multimeter, and results were analyzed in [...] Read more.
During the period from 2020 to 2024, 900 springs were mapped on the southern slopes of Medvednica Mountain Nature Park. Physicochemical parameters (temperature, pH, and electrical conductivity) were measured at 701 of these springs using a portable multimeter, and results were analyzed in relation to local lithology and human activities. This research provides the first results of this kind in this study area, aiming to expand the knowledge on local springs and to support the future protection and management of spring ecosystems. Springs on the Medvednica mountain showed substantial variation in measured parameters. The temperature ranged from 3.4 to 18.9 °C, reflecting local hydrological conditions, aquifer characteristics, and seasonal variability. Electrical conductivity (EC) ranged between 41 μS/cm and 2062 μS/cm, determined by both hydrogeological settings and anthropogenic impacts such as winter road salting. The pH values showed moderate variability, remaining mostly within neutral levels. These results emphasize the importance of continued monitoring and further research of Medvednica springs, in order to highlight their importance and to preserve their ecological and hydrological roles. Full article
Show Figures

Graphical abstract

5 pages, 1355 KiB  
Proceeding Paper
Development of Detection and Prediction Response Technology for Black Ice Using Multi-Modal Imaging
by Seong-In Kang and Yoo-Seong Shin
Eng. Proc. 2025, 102(1), 8; https://doi.org/10.3390/engproc2025102008 - 29 Jul 2025
Viewed by 176
Abstract
As traffic accidents caused by black ice during the winter continue to occur, there is a growing need for technologies that enable drivers to recognize and respond to black ice in advance. In particular, to reduce major accidents and associated casualties, it is [...] Read more.
As traffic accidents caused by black ice during the winter continue to occur, there is a growing need for technologies that enable drivers to recognize and respond to black ice in advance. In particular, to reduce major accidents and associated casualties, it is essential to provide timely information and prevent incidents through accurate prediction. This paper proposes an artificial intelligence (AI) technology capable of detecting and predicting black ice using multimodal data. The study aims to enable a preemptive response in the field of digital disaster safety and discusses the applicability and effectiveness of the proposed approach in real-world road environments. Full article
Show Figures

Figure 1

18 pages, 5469 KiB  
Article
Site Application of Thermally Conductive Concrete Pavement: A Comparison of Its Thermal Effectiveness with Normal Concrete Pavement
by Joo-Young Kim and Jae-Suk Ryou
Materials 2025, 18(15), 3444; https://doi.org/10.3390/ma18153444 - 23 Jul 2025
Viewed by 279
Abstract
In this study, the thermal effectiveness of thermally conductive concrete pavements (TCPs) using silicon carbide (SiC) as a fine aggregate replacement was investigated, compared with that of ordinary Portland cement pavements (OPCPs). The most important purpose of this study is to improve the [...] Read more.
In this study, the thermal effectiveness of thermally conductive concrete pavements (TCPs) using silicon carbide (SiC) as a fine aggregate replacement was investigated, compared with that of ordinary Portland cement pavements (OPCPs). The most important purpose of this study is to improve the thermal performance of concrete pavement. Additionally, this study utilized improved thermal properties to enhance the efficiency of pavement heating to prevent icing and snow stacking. Both mixtures met the Korean standards for air content (4.5–6%) and slump (80–150 mm), demonstrating adequate workability. TCP exhibited a higher mechanical performance, with average compressive and flexural strengths of 42.88 MPa and 7.35 MPa, respectively, exceeding the required targets of a 30 MPa compressive strength and a 4.5 MPa flexural strength. The improved strength was mainly attributed to the filler effect and partly due to the van der Waals interactions of the SiC particles. Thermal conductivity tests showed a significant improvement in the TCP (3.20 W/mK), which was approximately twice that of OPCP (1.59 W/mK), indicating an enhanced heat transfer efficiency. In winter field tests, TCP effectively maintained high surface temperatures, overcoming heat loss and outperforming the OPCP. In the site experiment, thermal efficiency was clearly shown in the temperature at the center of the TCP, which was 3.5 °C higher than at the center of the OPCP at the coldest time. These improvements suggest that SiC-reinforced concrete pavements can be practically utilized for effective snow removal and ice mitigation in road systems. Full article
Show Figures

Figure 1

14 pages, 1342 KiB  
Article
Mitigating Deicer-Induced Salinity Through Activated Carbon and Salt-Tolerant Grass Integration: A Case of Pennisetum alopecuroides
by Jae-Hyun Park, Hyo-In Lim, Myung-Hun Lee, Yong-Han Yoon and Jin-Hee Ju
Environments 2025, 12(7), 250; https://doi.org/10.3390/environments12070250 - 20 Jul 2025
Viewed by 577
Abstract
The use of chloride-based deicing salts, particularly sodium chloride (NaCl) and calcium chloride (CaCl2), is a common practice in cold regions for maintaining road safety during winter. However, the accumulation of salt residues in adjacent soils poses serious environmental threats, including [...] Read more.
The use of chloride-based deicing salts, particularly sodium chloride (NaCl) and calcium chloride (CaCl2), is a common practice in cold regions for maintaining road safety during winter. However, the accumulation of salt residues in adjacent soils poses serious environmental threats, including reduced pH, increased electrical conductivity (EC), disrupted soil structure, and plant growth inhibition. This study aimed to evaluate the combined effect of activated carbon (AC) and Pennisetum alopecuroides, a salt-tolerant perennial grass, in alleviating salinity stress under deicer-treated soils. A factorial greenhouse experiment was conducted using three fixed factors: (i) presence or absence of Pennisetum alopecuroides, (ii) deicer type (NaCl or CaCl2), and (iii) activated carbon mixing ratio (0, 1, 2, 5, and 10%). Soil pH, EC, and ion concentrations (Na+, Cl, Ca2+) were measured, along with six plant growth indicators. The results showed that increasing AC concentrations significantly increased pH and reduced EC and ion accumulation, with the 5% AC treatment being optimal in both deicer systems. Plant physiological responses were improved in AC-amended soils, especially under CaCl2 treatment, indicating less ion toxicity and better root zone conditions. The interaction effects between AC, deicer type, and plant presence were statistically significant (p < 0.05), supporting a synergistic remediation mechanism involving both adsorption and biological uptake. Despite the limitations of short-term controlled conditions, this study offers a promising phytomanagement strategy using natural adsorbents and salt-tolerant plants for sustainable remediation of salt-affected soils in road-adjacent and urban environments. Full article
Show Figures

Figure 1

36 pages, 12955 KiB  
Article
Research on Dust Concentration and Migration Mechanisms on Open-Pit Coal Mining Roads: Effects of Meteorological Conditions and Haul Truck Movements
by Fisseha Gebreegziabher Assefa, Lu Xiang, Zhongao Yang, Angesom Gebretsadik, Abdoul Wahab, Yewuhalashet Fissha, N. Rao Cheepurupalli and Mohammed Sazid
Mining 2025, 5(3), 43; https://doi.org/10.3390/mining5030043 - 7 Jul 2025
Viewed by 418
Abstract
Dust emissions from unpaved haul roads in open-pit coal mining pose a significant risk to air quality, health, and operational efficiency of mining operations. This study integrated real-time field monitoring with numerical simulations using ANSYS Fluent 2023 R1 to investigate the generation, dispersion, [...] Read more.
Dust emissions from unpaved haul roads in open-pit coal mining pose a significant risk to air quality, health, and operational efficiency of mining operations. This study integrated real-time field monitoring with numerical simulations using ANSYS Fluent 2023 R1 to investigate the generation, dispersion, and migration of particulate matter (PM) at the Ha’erwusu open-pit coal mine under varying meteorological conditions. Real-time measurements of PM2.5, PM10, and TSP, along with meteorological variables (wind speed, wind direction, humidity, temperature, and air pressure), were collected and analyzed using Pearson’s correlation and multivariate linear regression analyses. Wind speed and air pressure emerged as dominant factors in winter, whereas wind and temperature were more influential in summer (R2 = 0.391 for temperature vs. PM2.5). External airflow simulations revealed that truck-induced turbulence and high wind speeds generated wake vortices with turbulent kinetic energy (TKE) peaking at 5.02 m2/s2, thereby accelerating particle dispersion. The dust migration rates reached 3.33 m/s within 6 s after emission and gradually decreased with distance. The particle settling velocities ranged from 0.218 m/s for coarse dust to 0.035 m/s for PM2.5, with dispersion extending up to 37 m downwind. The highest simulated dust concentration reached 4.34 × 10−2 g/m3 near a single truck and increased to 2.51 × 10−1 g/m3 under multiple-truck operations. Based on spatial attenuation trends, a minimum safety buffer of 55 m downwind and 45 m crosswind is recommended to minimize occupational exposure. These findings contribute to data-driven, weather-responsive dust suppression planning in open-pit mining operations and establish a validated modeling framework for future mitigation strategies in this field. Full article
Show Figures

Figure 1

24 pages, 5299 KiB  
Article
Landscape and Ecological Benefits Evaluation of Flowering Street Trees Based on Digital Technology: A Case Study in Shanghai’s Central Urban Area, China
by Xi Wang, Yanting Zhang, Yali Zhang, Benyao Wang, Yin Wu, Meixian Wang and Shucheng Feng
Forests 2025, 16(7), 1116; https://doi.org/10.3390/f16071116 - 5 Jul 2025
Viewed by 388
Abstract
Flowering street trees are important carriers of urban landscapes and ecological functions, as well as a significant boost to the construction of “Shanghai Flower City”. Most existing studies focus on the ornamental value or single ecological benefits, and there are insufficient systematic evaluations [...] Read more.
Flowering street trees are important carriers of urban landscapes and ecological functions, as well as a significant boost to the construction of “Shanghai Flower City”. Most existing studies focus on the ornamental value or single ecological benefits, and there are insufficient systematic evaluations of the landscape–ecology synergistic effect, especially as there are few quantitative studies on the landscape value during the flowering period and long-term ecological benefits. Scientific assessment of multiple benefits is of great significance for optimizing tree species allocation and enhancing the sustainability of road landscapes. Taking flowering street trees in Shanghai’s central urban area as a case study, this paper verifies the feasibility of using digital technology to evaluate their landscape and ecological benefits and explores ways to enhance these aspects. Landscape, ecological, and comprehensive benefits were quantitatively assessed using digital images, the i-Tree model, and the entropy-weighted method. Influencing factors for each aspect were also analyzed. The results showed the following: (1) Eleven species or cultivars of flowering street trees from six families and ten genera were identified, with the majority flowering in spring, fewer in summer and autumn, and none in winter. (2) The landscape benefits model was: Scenic Beauty Estimation (SBE) = −0.99 + 0.133 × Flowering branches+ 0.183 × Degree of flower display + 0.064 × Plant growth + 0.032 × Artistic conception + 0.091 × Visual harmony with surrounding elements. Melia azedarach L., Prunus × yedoensis ‘Somei-yoshino’, and Paulownia tomentosa (Thunb.) Steud. ranked highest in landscape benefits. (3) Catalpa bungei C. A. Mey., Koelreuteria bipinnata Franch., and Koelreuteria bipinnata ‘integrifoliola’ (Merr.) T.Chen had the highest plant height, diameter at breast height (DBH), and crown width among the studied trees, and ranked top in ecological benefits. (4) Koelreuteria bipinnata, Catalpa bungei, and Melia azedarach showed the best overall performance. The comprehensive benefits model was: Comprehensive Benefits = 0.6889 × Ecological benefits + 0.3111 × Landscape benefits. This study constructs a digital evaluation framework for flowering street trees, quantifies their landscape and ecological benefits, and provides optimization strategies for the selection and application of flowering trees in urban streets. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

19 pages, 4066 KiB  
Article
Mechanical Response and Fatigue Life Analysis of Asphalt Pavements Under Temperature-Load Coupling Conditions
by Zhenzheng Liu, Le Zhang, Yuan Gao, Yanying Dong, Yuhang Liu and Bo Li
Appl. Sci. 2025, 15(13), 7441; https://doi.org/10.3390/app15137441 - 2 Jul 2025
Viewed by 212
Abstract
The effects of heavy traffic and complex natural environmental conditions have made the problem of the inadequate life expectancy of asphalt pavements increasingly pronounced. In this study, finite-element software was used to establish the three-dimensional analytical model of temperature-load coupling under different axial [...] Read more.
The effects of heavy traffic and complex natural environmental conditions have made the problem of the inadequate life expectancy of asphalt pavements increasingly pronounced. In this study, finite-element software was used to establish the three-dimensional analytical model of temperature-load coupling under different axial loads and calculate the distribution law of temperature-load coupling stress under the most unfavorable loading conditions. By comparing temperature and coupled stresses at different depths, the extent to which combined stress changes due to environmental factors affect different depths was determined. Finally, the fatigue life patterns of asphalt pavements under different seasons and axle loads were analyzed. The results showed that the temperature-load coupling stress varied periodically under different axial loads. Among them, the temperature stress had less influence on the coupling stress in spring and fall and more influence in winter. As the depth increases, the coupling stresses and their range of influence gradually decrease. Also, the farther away from the wheel load position, the smaller the traveling load disturbance and the closer the coupling stresses were to the temperature stresses. Under the most unfavorable loading conditions, the change rule of the degree of influence of environmental effects along the depth direction showed that the winter gradually decreased, the spring and fall seasons for the first time decreased and then increased, and the minimum influence on the road surface was at 9 cm. Overall, the degree of influence of environmental action at different axial loads was 70.53%, 41.90%, 27.13%, and 23.77% along the depth direction. Full article
Show Figures

Figure 1

31 pages, 8652 KiB  
Article
Study on Road Performance and Ice-Breaking Effect of Rubber Polyurethane Gel Mixture
by Yuanzhao Chen, Zhenxia Li, Tengteng Guo, Chenze Fang, Jingyu Yang, Peng Guo, Chaohui Wang, Bing Bai, Weiguang Zhang, Deqing Tang and Jiajie Feng
Gels 2025, 11(7), 505; https://doi.org/10.3390/gels11070505 - 29 Jun 2025
Viewed by 371
Abstract
Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of [...] Read more.
Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of roads and ensure the safety of winter pavements. A pavement material with high efficiency, low carbon and environmental friendliness for active snow melting and ice breaking is developed. Firstly, NaOH, NaClO and KH550 were used to optimize the treatment of rubber particles. The hydrophilic properties, surface morphology and phase composition of rubber particles before and after optimization were studied, and the optimal treatment method of rubber particles was determined. Then, the optimized rubber particles were used to replace the natural aggregate in the polyurethane gel mixture by the volume substitution method, and the optimum polyurethane gel dosages and molding and curing processes were determined. Finally, the influence law of the road performance of RPGM was compared and analyzed by means of an indoor test, and the ice-breaking effect of RPGM was explored. The results showed that the contact angles of rubber particles treated with three solutions were reduced by 22.5%, 30.2% and 36.7%, respectively. The surface energy was improved, the element types on the surface of rubber particles were reduced and the surface impurities were effectively removed. Among them, the improvement effect of the KH550 solution was the most significant. With the increase in rubber particle content from 0% to 15%, the dynamic stability of the mixture gradually increases, with a maximum increase of 23.5%. The maximum bending strain increases with the increase in its content. The residual stability increases first and then decreases with the increase in rubber particle content, and the increase ranges are 1.4%, 3.3% and 0.5%, respectively. The anti-scattering performance increases with the increase in rubber content, and an excessive amount will lead to an increase in the scattering loss rate, but it can still be maintained below 5%. The fatigue life of polyurethane gel mixtures with 0%, 5%, 10% and 15% rubber particles is 2.9 times, 3.8 times, 4.3 times and 4.0 times higher than that of the AC-13 asphalt mixture, respectively, showing excellent anti-fatigue performance. The friction coefficient of the mixture increases with an increase in the rubber particle content, which can be increased by 22.3% compared with the ordinary asphalt mixture. RPGM shows better de-icing performance than traditional asphalt mixtures, and with an increase in rubber particle content, the ice-breaking ability is effectively improved. When the thickness of the ice layer exceeds 9 mm, the ice-breaking ability of the mixture is significantly weakened. Mainly through the synergistic effect of stress coupling, thermal effect and interface failure, the bonding performance of the ice–pavement interface is weakened under the action of driving load cycle, and the ice layer is loosened, broken and peeled off, achieving efficient de-icing. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

14 pages, 4510 KiB  
Article
Analysis of the Suitability of 3D-Printed Road Surface Replicas for Laboratory Testing of Rolling Resistance
by Wojciech Owczarzak, Sławomir Sommer and Grzegorz Ronowski
Coatings 2025, 15(7), 766; https://doi.org/10.3390/coatings15070766 - 28 Jun 2025
Viewed by 358
Abstract
This study investigates the influence of the method and materials used for creating road surface replicas on the evaluation of rolling resistance using the oscillatory method. While casting resin is commonly employed for this purpose, the research explores 3D printing as a viable [...] Read more.
This study investigates the influence of the method and materials used for creating road surface replicas on the evaluation of rolling resistance using the oscillatory method. While casting resin is commonly employed for this purpose, the research explores 3D printing as a viable alternative. To assess the effectiveness of the proposed approach, replicas of three road surfaces with differing rolling resistance characteristics were created using both techniques. The conventional resin-based replicas served as a reference. A range of tires—summer, winter, and all-season—were tested on the prepared samples. The results were compared to evaluate the consistency between the two replica fabrication methods and to determine the suitability of 3D-printed surfaces as substitutes for those made with casting resin. Full article
Show Figures

Figure 1

14 pages, 5734 KiB  
Article
Rheological Behaviors of Rubber-Modified Asphalt Under Complicated Environment
by Xia Wu, Chunfeng Zhu, Zhenyu Wang, Lei Yang, Fang Liu, Jianxin Chen, Khusniddin Nuriddinov, Shukhrat Giyasov, Natalia Borisovna Morozova, Wenqing Shi, Chao Lu, Anastassios Papageorgiou and Di Tie
Polymers 2025, 17(13), 1753; https://doi.org/10.3390/polym17131753 - 25 Jun 2025
Viewed by 345
Abstract
While crumb rubber powder has demonstrated effectiveness in enhancing the mechanical properties of asphalt binders, its viscoelastic behavior under freeze–thaw conditions in clean water and de-icing salt, typically urban road conditions in winter, remains insufficiently explored. This study systematically investigated the microstructural evolution, [...] Read more.
While crumb rubber powder has demonstrated effectiveness in enhancing the mechanical properties of asphalt binders, its viscoelastic behavior under freeze–thaw conditions in clean water and de-icing salt, typically urban road conditions in winter, remains insufficiently explored. This study systematically investigated the microstructural evolution, compositional changes, and mechanical behavior of asphalt modified with rubber under the influence of freeze–thaw conditions in clean water and de-icing salt. The findings revealed that rubber powder incorporation accelerates the precipitation of oil, enhancing material stability in both aqueous and saline environments. Notably, asphalt containing 10% crumb rubber powder (Asphalt-10% RP) and 20% crumb rubber powder (Asphalt-20% RP) exhibit creep recovery rates 50.53% and 28.94% higher, respectively, under de-icing salt freeze–thaw cycles than under clean water freeze–thaw cycles. Therefore, in regions with extremely low temperatures and frequent snowfall, rubber powder exhibits significant research potential, providing theoretical support for the design of asphalt pavements in cold climates. Full article
Show Figures

Figure 1

17 pages, 3781 KiB  
Article
Railway and Road Infrastructure in Saiga Antelope Range in Kazakhstan
by Nazerke Bizhanova, Alexey Grachev, Nurkuisa Rametov, Yerlik Baidavletov, Saltore Saparbayev, Maxim Bespalov, Sergey Bespalov, Indira Kumayeva, Yerzhan Toishibekov, Anna Khamchukova and Yuri Grachev
Diversity 2025, 17(6), 431; https://doi.org/10.3390/d17060431 - 19 Jun 2025
Viewed by 1111
Abstract
The saiga antelope (Saiga tatarica), a keystone migratory species of the Central Asian steppes and deserts, is increasingly threatened by habitat fragmentation due to the rapidly expanding transport infrastructure in Kazakhstan, which hosts approximately 95% of the species’ global population. This [...] Read more.
The saiga antelope (Saiga tatarica), a keystone migratory species of the Central Asian steppes and deserts, is increasingly threatened by habitat fragmentation due to the rapidly expanding transport infrastructure in Kazakhstan, which hosts approximately 95% of the species’ global population. This study provides a spatial assessment of railway and road infrastructure across the contemporary ranges of the Betpaqdala, Ustyurt, and Ural saiga populations. Using the literature and our field data from the 1980s to the present day, combined with geographic information system (GIS)-based analysis of 80,427 km of roads and 4021 km of railways, we have quantified infrastructure densities and identified critical barriers to saiga migration using kernel density and minimum convex polygons (MCP) estimations. The results reveal a negative connection between infrastructure density and occurrences of saiga herds, particularly in the Ustyurt population, where a high railway density coincides with severely reduced migratory activity and a reduction in this population’s winter range by 79.84% since 2015. Major railways such as Sekseuildi–Zhezqazgan, Zhezqazgan–Zharyk, and Shalqar–Beineu intersect essential migratory pathways and have contributed to significant range contraction, subpopulation isolation, and northward shifts in seasonal habitats. In contrast, the Ural population (subject to minimal railway infrastructure interference) has shown robust demographic recovery. While roads are more widespread, their impact is less severe due to greater permeability. However, upcoming projects such as the China–Europe transit corridor and the “Center–West” regional development corridor could amplify future threats. We recommend immediately implementing wildlife-friendly infrastructure, including overpasses and ecological corridors, to preserve the connectivity of saiga ranges and support the long-term conservation of this ungulate species. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Graphical abstract

27 pages, 2653 KiB  
Article
Temporal and Machine Learning-Based Principal Component and Clustering Analysis of VOCs and Their Role in Urban Air Pollution and Ozone Formation
by Balendra V. S. Chauhan, Maureen J. Berg, Ajit Sharma, Kirsty L. Smallbone and Kevin P. Wyche
Atmosphere 2025, 16(6), 724; https://doi.org/10.3390/atmos16060724 - 15 Jun 2025
Viewed by 608
Abstract
This study investigates the temporal dynamics, sources, and photochemical behaviour of key volatile organic compounds (VOCs) along Marylebone Road, London (1 January 2015–1 January 2023), a heavily trafficked urban area. Hourly measurements of benzene, toluene, ethylbenzene, ethene, propene, isoprene, propane, and ethyne, alongside [...] Read more.
This study investigates the temporal dynamics, sources, and photochemical behaviour of key volatile organic compounds (VOCs) along Marylebone Road, London (1 January 2015–1 January 2023), a heavily trafficked urban area. Hourly measurements of benzene, toluene, ethylbenzene, ethene, propene, isoprene, propane, and ethyne, alongside ozone (O3) and meteorological data, were analysed using correlation matrices, regression, cross-correlation, diurnal/seasonal analysis, wind-sector analysis, PCA (Principal Component Analysis), and clustering. Strong inter-VOC correlations (e.g., benzene–ethylbenzene: r = 0.86, R2 = 0.75; ethene–propene: r = 0.68, R2 = 0.53) highlighted dominant vehicular sources. Diurnal peaks of benzene, toluene, and ethylbenzene aligned with rush hours, while O3 minima occurred in early mornings due to NO titration. VOCs peaked in winter under low mixing heights, whereas O3 was highest in summer. Wind-sector analysis revealed dominant VOC emissions from SSW (south-southwest)–WSW (west-southwest) directions; ethyne peaked from the E (east)/ENE (east-northeast). O3 concentrations were highest under SE (southeast)–SSE (south-southeast) flows. PCA showed 39.8% of variance linked to traffic-related VOCs (PC1) and 14.8% to biogenic/temperature-driven sources (PC2). K-means clustering (k = 3) identified three regimes: high VOCs/low O3 in stagnant, cool air; mixed conditions; and low VOCs/high O3 in warmer, aged air masses. Findings highlight complex VOC–O3 interactions and stress the need for source-specific mitigation strategies in urban air quality management. Full article
(This article belongs to the Special Issue Air Pollution: Emission Characteristics and Formation Mechanisms)
Show Figures

Figure 1

12 pages, 1718 KiB  
Case Report
Description of Acute and Chronic Cases of Poisoning by Oxalis pes-caprae
by Luigia Pinna, Daniela Mandas, Davide Pintus, Bruna Zulato, Marina Frongia, Maria Maurichi and Annamaria Coccollone
Animals 2025, 15(11), 1668; https://doi.org/10.3390/ani15111668 - 5 Jun 2025
Viewed by 397
Abstract
Oxalis pes-caprae is one of the most widespread invasive plants in the Mediterranean areas, especially in central and southern Italy, Sicily, and Sardinia. It is an herbaceous species of South African origin, very common in uncultivated areas, in meadows, and at the edges [...] Read more.
Oxalis pes-caprae is one of the most widespread invasive plants in the Mediterranean areas, especially in central and southern Italy, Sicily, and Sardinia. It is an herbaceous species of South African origin, very common in uncultivated areas, in meadows, and at the edges of roads but also in vegetable gardens and fields, where it can become a weed. Its negative impact on the economic sector is significant due to the presence of large quantities of oxalates, which are toxic and dangerous for grazing livestock; the ingestion of high amounts of oxalates causes the accumulation of oxalate crystals, which can lead to kidney failure and anuria. This work represents a descriptive, field-based case report of epidemiological relevance, describing two cases of acute and chronic poisoning by Oxalis pes-caprae found in two different sheep farms in southern Sardinia. In February 2024, the sudden death of about 40 animals was reported in a sheep farm. On another farm, seven animals died (between March and July 2024), while others showed poisoning symptoms such as weight loss, submandibular edema, and a barrel-shaped abdomen. This manuscript aims to highlight the damage caused by poor attention in pasture management and the importance of seasonal risk management; it is necessary to pay attention to the herbaceous species present in pastures, especially in our region, where climatic temperatures no longer respect seasonality and herbaceous species that normally grow in spring are easily found also in the winter months. Full article
(This article belongs to the Special Issue Ruminant Health: Management, Challenges, and Veterinary Solutions)
Show Figures

Figure 1

19 pages, 8176 KiB  
Article
Interference of Shallow Landslides in Overconsolidated Clays on the Functionality of an Important Internal Road Infrastructure
by Maurizio Ziccarelli
Geosciences 2025, 15(6), 209; https://doi.org/10.3390/geosciences15060209 - 3 Jun 2025
Viewed by 492
Abstract
The paper presents a case study on the impact of a shallow landslide in overconsolidated clays, which was triggered during the winter of 2004–2005 due to exceptionally high pore pressures, on the operativity and serviceability of a key road artery in Sicily. During [...] Read more.
The paper presents a case study on the impact of a shallow landslide in overconsolidated clays, which was triggered during the winter of 2004–2005 due to exceptionally high pore pressures, on the operativity and serviceability of a key road artery in Sicily. During the period from 2004 to 2021, the landslide experienced several reactivations, particularly during the winter months when increased rainfall led to rising pore water pressures. These recurrent events resulted in temporary road closures and continuous restoration efforts, causing significant inconvenience for local communities and substantial economic losses for commercial, tourism, and agricultural activities in the area. In 2018, a comprehensive study was launched to reconstruct the detailed geotechnical model of the landslide, analysing its mechanical and kinematic characteristics, pore pressure regime, the depth and geometry of the sliding surface, and the causes of the landslide. The study indicates that the primary causes of both the initial landslide and its subsequent reactivations were the poor mechanical properties of the involved soils and seasonal fluctuations in pore water pressures. To ensure long-term stabilisation, the most suitable interventions were identified as the permanent reduction of pore pressures through the installation of drainage trenches and the construction of a road embankment using gabions, which also serve as drainage structures. These measures are highly effective, relatively cost-efficient, easy to implement, and environmentally sustainable. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

15 pages, 2295 KiB  
Article
Parameters of Medium-Size Wood Deliveries Depending on the Season, Moisture Content and Assortment of the Load
by Grzegorz Trzciński and Łukasz Tymendorf
Forests 2025, 16(6), 897; https://doi.org/10.3390/f16060897 - 27 May 2025
Viewed by 301
Abstract
In the years 2022 to 2023, the harvesting of medium-sized round wood by the State Forests Service in Poland was estimated at between 22.2 and 23.6 million solid cubic meters per year. This is a significant amount of timber to be transported by [...] Read more.
In the years 2022 to 2023, the harvesting of medium-sized round wood by the State Forests Service in Poland was estimated at between 22.2 and 23.6 million solid cubic meters per year. This is a significant amount of timber to be transported by road. It is a challenge for both transport companies and round wood buyers. The high variability of wood density depending on the species in combination with its moisture content is a significant issue in logistics operations. This study focuses on the influence of the absolute moisture content on selected parameters of wood deliveries, taking into account the differences in the seasons. The total weight of a transport set (GVW) and empty set (Tare) and the weight of the load (Net) were determined on the basis of weighing the transports on stationary scales at the recipient. The moisture content of each wood load was determined using the dryer-weigher method for sawdust taken from the cutting of several logs from the delivery. This study analyzed a total of 13,602 transports of ten tree species and two wood assortments of pulpwood (S2a) and industrial wood (S2ap) in four seasons in the years 2020–2022. Pine was the dominant species in 5352 deliveries, and spruce was the dominant species in 3161. In terms of seasons, 3983 transports were recorded in the summer, 3650 were recorded in the spring, and 3492 were recorded in the autumn. The lowest number of 2475 was in winter. The mean volume of delivered wood (from 13,602 transports) was 28.18 m3, with a range of results from 19.00 to 51.29 m3 and SD = 2.40. The mean weight of the shipment was 24.95 Mg, with SD = 3.36. The range was from 13.92 Mg to 38.20 Mg. The mean absolute moisture content (AMC) of all wood loads (regardless of species and quality) was 42.91%. The results varied significantly (SD = 6.41). The minimum value was 15.64%, and the maximum value was 66.79%. The absolute moisture content of round wood is related to the season, species and assortment of transported wood. Loads of hardwood have lower average solid cubic meter values than softwood. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

Back to TopTop