Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (306)

Search Parameters:
Keywords = winter floods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2046 KiB  
Article
Satellite-Measured Suspended Particulate Matter Flux and Freshwater Flux in the Yellow Sea and East China Sea
by Wei Shi and Menghua Wang
Remote Sens. 2025, 17(15), 2726; https://doi.org/10.3390/rs17152726 (registering DOI) - 6 Aug 2025
Abstract
Traditionally, the surface suspended particulate matter (SPM) and freshwater fluxes have been computed using in situ SPM, salinity, and current measurements or through the numerical modeling. In this study, satellite-derived SPM concentration, ocean current, and sea surface salinity (SSS) are used to demonstrate [...] Read more.
Traditionally, the surface suspended particulate matter (SPM) and freshwater fluxes have been computed using in situ SPM, salinity, and current measurements or through the numerical modeling. In this study, satellite-derived SPM concentration, ocean current, and sea surface salinity (SSS) are used to demonstrate the capability to characterize and quantify the surface SPM flux and freshwater flux in the Yellow Sea (YS) and East China Sea (ECS). The different routes for SPM and freshwater to transport from the coastal region to the interior ECS are identified. The seasonal and interannual SPM and freshwater fluxes from the coastal region of the ECS are further characterized and quantified. The average SPM flux reaches ~0.3–0.4 g m−2 s−1 along the route. The SPM and the freshwater fluxes in the region show different seasonality. The intensified SPM flux from the ECS coast to the offshore in winter is one order higher than the SPM flux in summer, while the offshore freshwater flux peaks in summer and weakens significantly in winter. Particularly, we found that the SPM and SSS features in the ECS changed in response to the 2020 summer Yangtze River flood event. These spatial and temporal changes for SPM and SSS in the ECS in the 2020 summer and early autumn were attributed to the anomalous surface SPM and freshwater fluxes in the same period. Full article
(This article belongs to the Special Issue Remote Sensing for Ocean-Atmosphere Interaction Studies)
27 pages, 16782 KiB  
Article
Response of Grain Yield to Extreme Precipitation in Major Grain-Producing Areas of China Against the Background of Climate Change—A Case Study of Henan Province
by Keding Sheng, Rui Li, Fengqiuli Zhang, Tongde Chen, Peng Liu, Yanan Hu, Bingyin Li and Zhiyuan Song
Water 2025, 17(15), 2342; https://doi.org/10.3390/w17152342 - 6 Aug 2025
Abstract
Based on the panel data of daily meteorological stations and winter wheat yield in Henan Province from 2000 to 2023, this study comprehensively used the Mann–Kendall trend test, wavelet coherence analysis (WTC), and other methods to reveal the temporal and spatial evolution of [...] Read more.
Based on the panel data of daily meteorological stations and winter wheat yield in Henan Province from 2000 to 2023, this study comprehensively used the Mann–Kendall trend test, wavelet coherence analysis (WTC), and other methods to reveal the temporal and spatial evolution of extreme precipitation and its multi-scale stress mechanism on grain yield. The results showed the following: (1) Extreme precipitation showed the characteristics of ‘frequent fluctuation-gentle trend-strong spatial heterogeneity’, and the maximum daily precipitation in spring (RX1DAY) showed a significant uplift. The increase in rainstorm events (R95p/R99p) in the southern region during the summer is particularly prominent; at the same time, the number of consecutive drought days (CDDs > 15 d) in the middle of autumn was significantly prolonged. It was also found that 2010 is a significant mutation node. Since then, the synergistic effect of ‘increasing drought days–increasing rainstorm frequency’ has begun to appear, and the short-period coherence of super-strong precipitation (R99p) has risen to more than 0.8. (2) The spatial pattern of winter wheat in Henan is characterized by the three-level differentiation of ‘stable core area, sensitive transition zone and shrinking suburban area’, and the stability of winter wheat has improved but there are still local risks. (3) There is a multi-scale stress mechanism of extreme precipitation on winter wheat yield. The long-period (4–8 years) drought and flood events drive the system risk through a 1–2-year lag effect (short-period (0.5–2 years) medium rainstorm intensity directly impacted the production system). This study proposes a ‘sub-scale governance’ strategy, using a 1–2-year lag window to establish a rainstorm warning mechanism, and optimizing drainage facilities for high-risk areas of floods in the south to improve the climate resilience of the agricultural system against the background of climate change. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation, 2nd Edition)
Show Figures

Figure 1

22 pages, 4692 KiB  
Article
Nonstationary Streamflow Variability and Climate Drivers in the Amur and Yangtze River Basins: A Comparative Perspective Under Climate Change
by Qinye Ma, Jue Wang, Nuo Lei, Zhengzheng Zhou, Shuguang Liu, Aleksei N. Makhinov and Aleksandra F. Makhinova
Water 2025, 17(15), 2339; https://doi.org/10.3390/w17152339 - 6 Aug 2025
Abstract
Climate-driven hydrological extremes and anthropogenic interventions are increasingly altering streamflow regimes worldwide. While prior studies have explored climate or regulation effects separately, few have integrated multiple teleconnection indices and reservoir chronologies within a cross-basin comparative framework. This study addresses this gap by assessing [...] Read more.
Climate-driven hydrological extremes and anthropogenic interventions are increasingly altering streamflow regimes worldwide. While prior studies have explored climate or regulation effects separately, few have integrated multiple teleconnection indices and reservoir chronologies within a cross-basin comparative framework. This study addresses this gap by assessing long-term streamflow nonstationarity and its drivers at two key stations—Khabarovsk on the Amur River and Datong on the Yangtze River—representing distinct hydroclimatic settings. We utilized monthly discharge records, meteorological data, and large-scale climate indices to apply trend analysis, wavelet transform, percentile-based extreme diagnostics, lagged random forest regression, and slope-based attribution. The results show that Khabarovsk experienced an increase in winter baseflow from 513 to 1335 m3/s and a notable reduction in seasonal discharge contrast, primarily driven by temperature and cold-region reservoir regulation. In contrast, Datong displayed increased discharge extremes, with flood discharges increasing by +71.9 m3/s/year, equivalent to approximately 0.12% of the mean flood discharge annually, and low discharges by +24.2 m3/s/year in recent decades, shaped by both climate variability and large-scale hydropower infrastructure. Random forest models identified temperature and precipitation as short-term drivers, with ENSO-related indices showing lagged impacts on streamflow variability. Attribution analysis indicated that Khabarovsk is primarily shaped by cold-region reservoir operations in conjunction with temperature-driven snowmelt dynamics, while Datong reflects a combined influence of both climate variability and regulation. These insights may provide guidance for climate-responsive reservoir scheduling and basin-specific regulation strategies, supporting the development of integrated frameworks for adaptive water management under climate change. Full article
(This article belongs to the Special Issue Risks of Hydrometeorological Extremes)
19 pages, 8896 KiB  
Article
Future Residential Water Use and Management Under Climate Change Using Bayesian Neural Networks
by Young-Ho Seo, Jang Hyun Sung, Joon-Seok Park, Byung-Sik Kim and Junehyeong Park
Water 2025, 17(15), 2179; https://doi.org/10.3390/w17152179 - 22 Jul 2025
Viewed by 227
Abstract
This study projects future Residential Water Use (RWU) under climate change scenarios using a Bayesian Neural Network (BNN) model that quantifies the relationship between observed temperatures and RWU. Eighteen Global Climate Models (GCMs) under the Shared Socioeconomic Pathway 5–8.5 (SSP5–8.5) scenario were used [...] Read more.
This study projects future Residential Water Use (RWU) under climate change scenarios using a Bayesian Neural Network (BNN) model that quantifies the relationship between observed temperatures and RWU. Eighteen Global Climate Models (GCMs) under the Shared Socioeconomic Pathway 5–8.5 (SSP5–8.5) scenario were used to assess the uncertainties across these models. The findings indicate that RWU in Republic of Korea (ROK) is closely linked to temperature changes, with significant increases projected in the distant future (F3), especially during summer. Under the SSP5–8.5 scenario, RWU is expected to increase by up to 10.3% by the late 21st century (2081–2100) compared to the historical baseline. The model achieved a root mean square error (RMSE) of 11,400 m3/month, demonstrating reliable predictive performance. Unlike conventional deep learning models, the BNN provides probabilistic forecasts with uncertainty bounds, enhancing its suitability for climate-sensitive resource planning. This study also projects inflows to the Paldang Dam, revealing an overall increase in future water availability. However, winter water security may decline due to decreased inflow and minimal changes in RWU. This study suggests enhancing summer precipitation storage while considering downstream flood risks. Demand management strategies are recommended for addressing future winter water security challenges. This research highlights the importance of projecting RWU under climate change scenarios and emphasizes the need for strategic water resource management in ROK. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

21 pages, 13177 KiB  
Article
Links Between the Coastal Climate, Landscape Hydrology, and Beach Dynamics near Cape Vidal, South Africa
by Mark R. Jury
Coasts 2025, 5(3), 25; https://doi.org/10.3390/coasts5030025 - 18 Jul 2025
Viewed by 275
Abstract
Coastal climate processes that affect landscape hydrology and beach dynamics are studied using local and remote data sets near Cape Vidal (28.12° S, 32.55° E). The sporadic intra-seasonal pulsing of coastal runoff, vegetation, and winds is analyzed to understand sediment inputs and transport [...] Read more.
Coastal climate processes that affect landscape hydrology and beach dynamics are studied using local and remote data sets near Cape Vidal (28.12° S, 32.55° E). The sporadic intra-seasonal pulsing of coastal runoff, vegetation, and winds is analyzed to understand sediment inputs and transport by near-shore wind-waves and currents. River-borne sediments, eroded coral substrates, and reworked beach sand are mobilized by frequent storms. Surf-zone currents ~0.4 m/s instill the northward transport of ~6 105 kg/yr/m. An analysis of the mean annual cycle over the period of 1997–2024 indicates a crest of rainfall over the Umfolozi catchment during summer (Oct–Mar), whereas coastal suspended sediment, based on satellite red-band reflectivity, rises in winter (Apr–Sep) due to a deeper mixed layer and larger northward wave heights. Sediment input to the beaches near Cape Vidal exhibit a 3–6-year cycle of southeasterly waves and rainy weather associated with cool La Nina tropical sea temperatures. Beachfront sand dunes are wind-swept and release sediment at ~103 m3/yr/m, which builds tall back-dunes and helps replenish the shoreline, especially during anticyclonic dry spells. A wind event in Nov 2018 is analyzed to quantify aeolian transport, and a flood in Jan–Feb 2025 is studied for river plumes that meet with stormy seas. Management efforts to limit development and recreational access have contributed to a sustainable coastal environment despite rising tides and inland temperatures. Full article
Show Figures

Figure 1

17 pages, 8464 KiB  
Article
Spatiotemporal Variations in Observed Rain-on-Snow Events and Their Intensities in China from 1978 to 2020
by Zhiwei Yang, Rensheng Chen, Xiongshi Wang, Zhangwen Liu, Xiangqian Li and Guohua Liu
Water 2025, 17(14), 2114; https://doi.org/10.3390/w17142114 - 16 Jul 2025
Viewed by 268
Abstract
The spatiotemporal changes and driving mechanisms of rain-on-snow (ROS) events and their intensities are crucial for responding to disasters triggered by such events. However, there is currently a lack of detailed assessment of the seasonal variations and driving mechanisms of ROS events and [...] Read more.
The spatiotemporal changes and driving mechanisms of rain-on-snow (ROS) events and their intensities are crucial for responding to disasters triggered by such events. However, there is currently a lack of detailed assessment of the seasonal variations and driving mechanisms of ROS events and their intensities in China. Therefore, this study utilized daily meteorological data and daily snow depth data from 513 stations in China during 1978–2020 to investigate spatiotemporal variations of ROS events and their intensities. Also, based on the detrend and partial correlation analysis model, the driving factors of ROS events and their intensity were explored. The results showed that ROS events primarily occurred in northern Xinjiang, the Qinghai–Tibet Plateau, Northeast China, and central and eastern China. ROS events frequently occurred in the middle and lower Yangtze River Plain in winter but were easily overlooked. The number and intensity of ROS events increased significantly (p < 0.05) in the Changbai Mountains in spring and the Altay Mountains and the southeast part of the Qinghai–Tibet Plateau in winter, leading to heightened ROS flood risks. However, the number and intensity of ROS events decreased significantly (p < 0.05) in the middle and lower Yangtze River Plain in winter. The driving mechanisms of the changes for ROS events and their intensities were different. Changes in the number of ROS events and their intensities in snow-rich regions were driven by rainfall days and quantity of rainfall, respectively. In regions with more rainfall, these changes were driven by snow cover days and snow water equivalent, respectively. Air temperature had no direct impact on ROS events and their intensities. These findings provide reliable evidence for responding to disasters and changes triggered by ROS events. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

17 pages, 1939 KiB  
Article
Comprehensive Assessment of Water Quality of China’s Largest Freshwater Lake Under the Impact of Extreme Floods and Droughts
by Zhiyu Mao, Junxiang Cheng, Ligang Xu, Mingliang Jiang and Hailin You
Hydrology 2025, 12(7), 192; https://doi.org/10.3390/hydrology12070192 - 14 Jul 2025
Viewed by 776
Abstract
Poyang Lake, a large floodplain lake, plays a crucial role in the ecological safety and quality of life in surrounding areas. Over the past decade (2013–2022), amid economic development and environmental changes, the water environment of Poyang Lake has encountered complex challenges. This [...] Read more.
Poyang Lake, a large floodplain lake, plays a crucial role in the ecological safety and quality of life in surrounding areas. Over the past decade (2013–2022), amid economic development and environmental changes, the water environment of Poyang Lake has encountered complex challenges. This study evaluated the water quality of Poyang Lake in a recent 10-year span by the water quality index (WQI), trophic level index (TLI) and a newly constructed comprehensive evaluation index, and it analyzed the trend of water quality change under extreme events. Meanwhile, the main factors affecting the water quality of Poyang Lake were analyzed by partial least squares (PLS), a multivariate statistical method that accounts for multicollinearity. The results indicate that: (1) The water quality of Poyang Lake in summer and autumn is slightly worse than that in spring and winter. Each water quality index reflects the distinct states of the water environment in Poyang Lake. (2) Each water quality evaluation index responds differently to influencing factors. (3) Extreme flood and drought events have markedly different impacts on the water environment of Poyang Lake, exhibiting significant spatial heterogeneity. Domestic sewage discharge and total water resources have a relatively great impact on the water environment of Poyang Lake. The results of this study provide important insights for water quality management and policy formulation in Poyang Lake, supporting sustainable regional development. Full article
Show Figures

Figure 1

20 pages, 7401 KiB  
Article
Measurement of Suspended Sediment Concentration at the Outlet of the Yellow River Canyon: Using Sentinel-2 Images and Machine Learning
by Genxin Song, Youjing Jiang, Xinyu Lei and Shiyan Zhai
Remote Sens. 2025, 17(14), 2424; https://doi.org/10.3390/rs17142424 - 12 Jul 2025
Viewed by 321
Abstract
The remote sensing inversion of the Suspended Sediment Concentration (SSC) at the Yellow River estuary is crucial for regional sediment management and the advancement of monitoring techniques for highly turbid waters. Traditional in situ methods and low-resolution imagery are no longer sufficient for [...] Read more.
The remote sensing inversion of the Suspended Sediment Concentration (SSC) at the Yellow River estuary is crucial for regional sediment management and the advancement of monitoring techniques for highly turbid waters. Traditional in situ methods and low-resolution imagery are no longer sufficient for high-accuracy studies. Using SSC data from the Longmen Hydrological Station (2019–2020) and Sentinel-2 imagery, multiple models were compared, and the random forest regression model was selected for its superior performance. A non-parametric regression model was developed based on optimal band combinations to estimate the SSC in high-sediment rivers. Results show that the model achieved a high coefficient of determination (R2 = 0.94) and met accuracy requirements considering the maximum SSC, MAPE, and RMSE. The B4, B7, B8A, and B9 bands are highly sensitive to high-concentration sediment rivers. SSC exhibited significant seasonal and spatial variation, peaking above 30,000 mg/L in summer (July–September) and dropping below 1000 mg/L in winter, with a positive correlation with discharge. Spatially, the SSC was higher in the gorge section than in the main channel during the flood season and higher near the banks than in the river center during the dry season. Overall, the random forest model outperformed traditional methods in SSC prediction for sediment-laden rivers. Full article
Show Figures

Figure 1

15 pages, 2181 KiB  
Article
The Impact of Shifts in Both Precipitation Pattern and Temperature Changes on River Discharge in Central Japan
by Bing Zhang, Jingyan Han, Jianbo Liu and Yong Zhao
Hydrology 2025, 12(7), 187; https://doi.org/10.3390/hydrology12070187 - 9 Jul 2025
Viewed by 467
Abstract
Rivers play a crucial role in the hydrological cycle and serve as essential freshwater resources for both human populations and ecosystems. Climate change significantly alters precipitation patterns and river discharge variability. However, the impact of precipitation patterns (rainfall and snowfall) and air temperature [...] Read more.
Rivers play a crucial role in the hydrological cycle and serve as essential freshwater resources for both human populations and ecosystems. Climate change significantly alters precipitation patterns and river discharge variability. However, the impact of precipitation patterns (rainfall and snowfall) and air temperature on river discharge in coastal zones remains inadequately understood. This study focused on Toyama Prefecture, located along the Sea of Japan, as a representative coastal area. We analyzed over 30 years of datasets, including air temperature, precipitation, snowfall, and river discharge, to assess the effects of climate change on river discharge. Trends in hydroclimatic datasets were assessed using the rescaled adjusted partial sums (RAPS) method and the Mann–Kendall (MK) non-parametric test. Furthermore, a correlation analysis and the Structural Equation Model (SEM) were applied to construct a relationship between precipitation, temperature, and river discharge. Our findings indicated a significant increase in air temperature at a rate of 0.2 °C per decade, with notable warming observed in late winter (January and February) and early spring (March). The average river fluxes for the Jinzu, Oyabe, Kurobe, Shou, and Joganji rivers were 182.52 m3/s, 60.37 m3/s, 41.40 m3/s, 38.33 m3/s, and 18.72 m3/s, respectively. The tipping point for snowfall decline occurred in 1992, marked by an obvious decrease in snowfall depth. The SEM showed that, although rainfall dominated the changes in river discharge (loading = 0.94), the transition from solid (snow) to liquid (rain) precipitation may alter the river discharge regime. The percentage of flood occurrence increased from 19% (1940–1992) to 41% (1993–2020). These changes highlight the urgent need to raise awareness about the impacts of climate change on river floods and freshwater resources in global coastal regions. Full article
Show Figures

Figure 1

26 pages, 5129 KiB  
Article
HEC-RAS-Based Evaluation of Water Supply Reliability in the Dry Season of a Cold-Region Reservoir in Mudanjiang, Northeast China
by Peng-Fei Lu, Chang-Lei Dai, Yuan-Ming Wang, Xiao Yang and Xin-Yu Wang
Sustainability 2025, 17(14), 6302; https://doi.org/10.3390/su17146302 - 9 Jul 2025
Viewed by 331
Abstract
Under the influence of global climate change, water conservancy projects located in the high-latitude cold regions of the world are facing severe challenges. This study addresses the contradiction between water supply stability and ecological flow during the dry season in cold regions. Taking [...] Read more.
Under the influence of global climate change, water conservancy projects located in the high-latitude cold regions of the world are facing severe challenges. This study addresses the contradiction between water supply stability and ecological flow during the dry season in cold regions. Taking Linhai Reservoir as the core, it integrates the HEC-RAS hydrodynamic model with multi-source data such as basin topography, hydro-meteorological data, and water conservancy project parameters to construct a multi-scenario water supply scheduling model during the dry season. The aim is to provide scientific recommendations for different reservoir operation strategies in response to varying frequencies of upstream inflow, based on simulations conducted after the reservoir’s completion. Taking into account winter runoff reduction characteristics and engineering parameters, we simulated the relationships between water level and flow, ecological flow requirements, and urban water shortages. The results indicate that in both flood and normal years, dynamic coordination of storage and discharge can achieve a daily water supply of 120,000 cubic meters, with 100% compliance for the ecological flow rate. For mild and moderate drought years, additional water diversion becomes necessary to achieve 93.5% and 89% supply reliability, respectively. During severe and extreme droughts, significantly reduced reservoir inflows lower ecological compliance rates, necessitating emergency measures, such as utilizing dead storage capacity and exploring alternative water sources. The study proposes operational strategies tailored to different drought intensities: initiating storage adjustments in September for mild droughts and implementing peak-shifting measures by mid-October for extreme droughts. These approaches enhance storage efficiency and mitigate ice blockage risks. This research supports the water supply security and river ecological health of urban and rural areas in Mudanjiang City and Hailin City and provides a certain scientific reference basis for the multi-objective coordinated operation of reservoirs in the same type of high-latitude cold regions. Full article
Show Figures

Figure 1

18 pages, 3145 KiB  
Article
Precipitation Changes and Future Trend Predictions in Typical Basin of the Loess Plateau, China
by Beilei Liu, Qi Liu, Peng Li, Zhanbin Li, Jiajia Guo, Jianye Ma, Bo Wang and Xiaohuang Liu
Sustainability 2025, 17(14), 6267; https://doi.org/10.3390/su17146267 - 8 Jul 2025
Viewed by 317
Abstract
This study analyzes precipitation patterns and future trends in the Kuye River Basin in the context of climate change, providing a scientific foundation for water resource management and ecological protection. Using methods such as the Mann–Kendall test, Pettitt test, and complex Morlet wavelet [...] Read more.
This study analyzes precipitation patterns and future trends in the Kuye River Basin in the context of climate change, providing a scientific foundation for water resource management and ecological protection. Using methods such as the Mann–Kendall test, Pettitt test, and complex Morlet wavelet analysis, this study examines both interannual and intra-annual variability in historical precipitation data, identifying abrupt changes and periodic patterns. Future projections are based on CMIP5 models under RCP4.5 and RCP8.5 scenarios, forecasting changes over the next 30 years (2023–2052). The results reveal significant spatiotemporal variability in precipitation, with 88.16% concentrated in the summer and flood seasons, while only 1.07% falls in winter. The basin’s multi-year average precipitation is 445 mm, exhibiting stable interannual variability, but with a significant increase starting in 2006. Projections indicate that the average annual precipitation will rise to 524.69 mm from 2023 to 2052, with a notable change point in 2043. Precipitation is expected to increase spatially from northwest to southeast. This research underscores the importance of understanding precipitation dynamics in managing drought and flood risks. It highlights the role of soil and water conservation and vegetation restoration in improving water resource efficiency, supporting sustainable development, and guiding climate adaptation strategies. Full article
(This article belongs to the Special Issue Ecological Water Engineering and Ecological Environment Restoration)
Show Figures

Figure 1

34 pages, 2078 KiB  
Systematic Review
Extreme Climate Events and Energy Market Vulnerability: A Systematic Global Review
by César Dubbier Castro Hernandez, Lina Montuori, Manuel Alcázar-Ortega and Piotr Olczak
Appl. Sci. 2025, 15(11), 6210; https://doi.org/10.3390/app15116210 - 31 May 2025
Viewed by 935
Abstract
This research study deals with the analysis of climate catastrophes that have occurred worldwide and in what measure they have affected communities, in an economic and social point of view, and energy markets in general over time. A chronological sweep across Europe has [...] Read more.
This research study deals with the analysis of climate catastrophes that have occurred worldwide and in what measure they have affected communities, in an economic and social point of view, and energy markets in general over time. A chronological sweep across Europe has been carried out in order to evaluate the different consequences that phenomena such as hurricanes, winter storms, and floods have had, especially on the energy prices. Moreover, the effects of the variability of renewable generation during climate disasters not only in Europe but also in North America, Australia, and Latin America have been discussed. Furthermore, best practices and novel strategies for climate adaptations have been identified in different countries, and the results show how energy planning integrated within a systematic diversification of energy sources and investment in infrastructure and advanced technologies such as distributed generation and digital twins can be crucial to enhance the reliability of energy systems. Full article
(This article belongs to the Special Issue Challenges and Opportunities of Microgrids)
Show Figures

Figure 1

24 pages, 10659 KiB  
Article
Spatiotemporal Dynamics of Drought–Flood Abrupt Alternations and Their Delayed Effects on Vegetation Growth in Heilongjiang River Basin
by Haoyuan Ma, Jianyu Jing, Changlei Dai, Yijun Xu, Peng Qi and Hao Song
Water 2025, 17(10), 1419; https://doi.org/10.3390/w17101419 - 8 May 2025
Cited by 2 | Viewed by 872
Abstract
Drought–flood abrupt alternations (DFAAs) have a greater impact on ecosystems and socioeconomic environments than lone droughts or floods. Despite the significant impact of DFAAs, research has paid little attention to their evolutionary characteristics, particularly in relation to vegetation growth in the Heilongjiang River [...] Read more.
Drought–flood abrupt alternations (DFAAs) have a greater impact on ecosystems and socioeconomic environments than lone droughts or floods. Despite the significant impact of DFAAs, research has paid little attention to their evolutionary characteristics, particularly in relation to vegetation growth in the Heilongjiang River Basin. Therefore, this study focuses on the Heilongjiang River Basin and employs the DFAA Index to identify and analyze abrupt alternation events from 1970 to 2019. It also examines the annual and interannual distributions of vegetation growth changes from 2000 to 2019, based on the Normalized Difference Vegetation Index. Lastly, it utilizes correlation analysis to investigate the responsive relationship between vegetation growth and DFAA events. The results indicate the following: (1) Within the Heilongjiang River Basin, the number of drought-to-flood events increased over time, whereas the number of flood-to-drought events decreased over time. The frequency of mutation was relatively high in the northern region, low in the eastern region, elevated in spring and summer, and reduced in winter. (2) The Normalized Difference Vegetation Index was lowest in January, highest in July, and approximately 0 during the winter. The vegetation coverage reached its peak during the summer. (3) Vegetation changes in response to DFAAs exhibited a significant time lag. Vegetation changes in spring–summer lagged behind DFAA events by 3–4 months, while in summer–autumn, the lag was approximately 3 months. These results are of great significance for the early warning and prevention of DFAAs in the Heilongjiang River Basin. Full article
(This article belongs to the Special Issue Climate Change and Hydrological Processes, 2nd Edition)
Show Figures

Figure 1

15 pages, 2715 KiB  
Article
Overcoming Forage Challenges in Mesophytic Grasslands—The Advantages of Lotus tenuis
by María Elena Vago, Paula Virginia Fernández, Juan Pedro Ezquiaga, Santiago Javier Maiale, Andrés Alberto Rodriguez, Juan Manuel Acosta, Maximiliano Gortari, Oscar Adolfo Ruiz and Marina Ciancia
Grasses 2025, 4(2), 19; https://doi.org/10.3390/grasses4020019 - 7 May 2025
Viewed by 615
Abstract
Previous studies in the Salado River Basin (Argentina) demonstrated that the introduced forage species, Lotus tenuis Waldst. & Kit. ex Wild. (Fabaceae), possesses high tolerance to abiotic stresses—including flooding, alkalinity, salinity, and drought. The efficient biological fixation of nitrogen in a region [...] Read more.
Previous studies in the Salado River Basin (Argentina) demonstrated that the introduced forage species, Lotus tenuis Waldst. & Kit. ex Wild. (Fabaceae), possesses high tolerance to abiotic stresses—including flooding, alkalinity, salinity, and drought. The efficient biological fixation of nitrogen in a region with a scarce presence of native legumes is one of its advantages. Despite these qualities, a year-long characterization of cell wall (CW) polysaccharides in Lotus tenuis and their relationship with the high nutritional quality is missing. In this study, seasonal parametric investigations of L. tenuis, regarding its photosynthetic and ionic status, modifications in CW composition, and concomitant nutritional quality, were performed. Our results demonstrate the high plant digestibility and protein content of this legume, even in summer, when most accompanying species reduce their forage quality. Regarding gas production kinetics (in vitro production is a proxy for the animal rumen’s output), spring biomass had the highest values. The CW material yields are similar throughout the year, but with differences in polysaccharide composition. In summer and winter, pectins predominate, while in the regrowth periods (spring and autumn), pectins and β-glucans are found in similar amounts. This work confirms that Lotus tenuis can help optimize grassland productivity in challenging mesophytic terrains to increase livestock productivity through environmentally friendly services. Full article
Show Figures

Graphical abstract

20 pages, 11450 KiB  
Article
Glacier Recession and Climate Change in Chitral, Eastern Hindu Kush Mountains of Pakistan, Between 1992 and 2022
by Zahir Ahmad, Farhana Altaf, Ulrich Kamp, Fazlur Rahman and Sher Muhammad Malik
Geosciences 2025, 15(5), 167; https://doi.org/10.3390/geosciences15050167 - 7 May 2025
Viewed by 1265
Abstract
Mountain regions are particularly sensitive and vulnerable to the impacts of climate change. Over the past three decades, mountain temperatures have risen significantly faster than those in lowland areas. The Hindu Kush–Karakoram–Himalaya region, often referred to as the “water tower of Asia”, is [...] Read more.
Mountain regions are particularly sensitive and vulnerable to the impacts of climate change. Over the past three decades, mountain temperatures have risen significantly faster than those in lowland areas. The Hindu Kush–Karakoram–Himalaya region, often referred to as the “water tower of Asia”, is the largest freshwater source outside the polar regions. However, it is currently undergoing cryospheric degradation as a result of climatic change. In this study, the Normalized Difference Glacier Index (NDGI) was calculated using Landsat and Sentinel satellite images. The results revealed that glaciers in Chitral, located in the Eastern Hindu Kush Mountains of Pakistan, lost 816 km2 (31%) of their total area between 1992 and 2022. On average, 27 km2 of glacier area was lost annually, with recession accelerating between 1997 and 2002 and again after 2007. Satellite analyses also indicated a significant increase in both maximum (+7.3 °C) and minimum (+3.6 °C) land surface temperatures between 1992 and 2022. Climate data analyses using the Mann–Kendall test, Theil–Sen Slope method, and the Autoregressive Integrated Moving Average (ARIMA) model showed a clear increase in air temperatures from 1967 to 2022, particularly during the summer months (June, July, and August). This warming trend is expected to continue until at least 2042. Over the same period, annual precipitation decreased, primarily due to reduced snowfall in winter. However, rainfall may have slightly increased during the summer months, further accelerating glacial melting. Additionally, the snowmelt season began consistently earlier. While initial glacier melting may temporarily boost water resources, it also poses risks to communities and economies, particularly through more frequent and larger floods. Over time, the remaining smaller glaciers will contribute only a fraction of the former runoff, leading to potential water stress. As such, monitoring glaciers, climate change, and runoff patterns is critical for sustainable water management and strengthening resilience in the region. Full article
(This article belongs to the Section Cryosphere)
Show Figures

Figure 1

Back to TopTop