Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (692)

Search Parameters:
Keywords = winter balance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 586 KB  
Article
Performance of Twelve Apple Cultivars Grafted onto SH40 Dwarf Interstock: Comprehensive Fruit Quality Evaluation and Selection of Adapted Varieties in Lingwu, Ningxia
by Zhikai Zhang, Yu Wang, Wenyan Ma, Jiayi Zhai, Xuelian Huang, Wenjing Xue, Jun Zhou, Jing Wang, Xin Zhang, Binbin Si, Lan Luo and Wendi Xu
Agriculture 2026, 16(3), 303; https://doi.org/10.3390/agriculture16030303 - 25 Jan 2026
Viewed by 45
Abstract
This study evaluated the fruit quality of 12 apple cultivars grafted onto the cold-resistant dwarfing interstock SH40 in the arid region of Lingwu, Ningxia, to identify well-adapted varieties for local production. A total of 21 indicators were measured, encompassing three major aspects: external [...] Read more.
This study evaluated the fruit quality of 12 apple cultivars grafted onto the cold-resistant dwarfing interstock SH40 in the arid region of Lingwu, Ningxia, to identify well-adapted varieties for local production. A total of 21 indicators were measured, encompassing three major aspects: external quality (e.g., fruit size, shape index, peel color), internal flavor (e.g., soluble solids, soluble sugars, titratable acids, vitamin C content), and textural attributes (e.g., hardness, crispness, chewiness), and data were analyzed using principal component analysis and membership function methodology. The cultivars exhibited distinct quality profiles under identical management: ‘Red General’ performed well in fruit size, weight, and sugar–acid balance; ‘Yanfu 6’ showed the highest firmness and crispness; ‘Shengli’ had the greatest soluble solids content; and ‘Granny Smith’ was richest in vitamin C. Four principal components were extracted, explaining 80.06% of the total variance and simplifying the quality evaluation system. Based on the comprehensive membership function scores, ‘Red General’, ‘White Winter Pearmain’, and ‘Huashuo’ ranked highest in overall fruit quality. In conclusion, these three cultivars perform excellently on SH40 and are recommended for promotion, whereas ‘Red Delicious’ is not recommended due to poor performance. These findings offer a practical reference for selecting apple cultivars paired with SH40 in similar arid regions. Full article
(This article belongs to the Special Issue Fruit Quality Formation and Regulation in Fruit Trees)
Show Figures

Figure 1

21 pages, 3143 KB  
Article
Effects of Basal Fertilization Supplemented with Graphene and/or Microbial Inoculants on Growth and Fruit Quality of Winter Jujube Based on Metabolomics Analysis
by Bingxin Chen, Dengyang Lu, Hengzhou Yuan, Xiaofeng Zhou, Yan Wang and Cuiyun Wu
Horticulturae 2026, 12(2), 133; https://doi.org/10.3390/horticulturae12020133 - 25 Jan 2026
Viewed by 109
Abstract
Winter jujube is highly favored by consumers, and improving both the fruit quality and yield during cultivation is a key issue in horticultural research. Fertilization is a critical measure regulating growth. This study aimed to evaluate the effects of basal fertilizer combined with [...] Read more.
Winter jujube is highly favored by consumers, and improving both the fruit quality and yield during cultivation is a key issue in horticultural research. Fertilization is a critical measure regulating growth. This study aimed to evaluate the effects of basal fertilizer combined with two novel synergistic additives—graphene and microbial inoculants—on the growth, fruit quality, and metabolic profiles of winter jujube, providing new fertilization strategies. The selected doses of graphene (0.38 g/plant) and microbial inoculant (0.26 g/plant) were based on the previous literature to balance efficacy, cost, and environmental safety. The graphene used was functionalized graphene oxide provided by Shanxi Datong University, chosen for its enhanced dispersibility and plant compatibility. Although this study focused on physiological and metabolic responses, the economic feasibility and potential environmental implications of these additives are discussed in the context of sustainable jujube production. Six-year-old winter jujube trees were treated with four fertilization regimes: basal fertilizer + graphene (T1), basal fertilizer + microbial fertilizer (T2), basal fertilizer + graphene + microbial fertilizer (T3), and basal fertilizer only (CK). Growth indices, mineral element contents in different organs, and fruit quality traits were measured. Widely targeted metabolomics was used to analyze metabolic variations among treatments. Compared with CK, all three synergistic fertilizer treatments tended to promote growth, increasing leaf area, chlorophyll content, and jujube bearing shoot length; contributed to the accumulation of P, K, Ca, Mg, and other minerals in various organs; and helped improve fruit quality by increasing the total sugars and flavonoids. T1 and T3 exhibited relatively better overall performance. Metabolomic analysis revealed significant differences in the metabolite profiles of winter jujube fruits across different treatments. Phenolic acids and flavonoids were closely associated with the improvement in fruit quality; further screening identified seven differential metabolites, predominantly belonging to phenolic acids. Basal fertilizer combined with graphene alone or with microbial inoculants may effectively promote growth and improve fruit quality by optimizing mineral uptake and regulating metabolic processes. These findings provide potential theoretical and practical support for high-quality, high-yield fertilization strategies for winter jujube. Full article
(This article belongs to the Special Issue New Insights into Breeding and Genetic Improvement of Fruit Crops)
Show Figures

Figure 1

18 pages, 5643 KB  
Article
Chemical Characteristics and Source Identification of PM2.5 in Industrial Complexes, Korea
by Hyeok Jang, Shin-Young Park, Ji-Eun Moon, Young-Hyun Kim, Joong-Bo Kwon, Jae-Won Choi and Cheol-Min Lee
Toxics 2026, 14(2), 111; https://doi.org/10.3390/toxics14020111 - 23 Jan 2026
Viewed by 186
Abstract
The composition of air pollutants in industrial complexes differs from that of general urban areas, often containing more hazardous substances that pose significant health risks to both workers and residents nearby. In this study, PM2.5 and its 29 chemical components (eight ions, [...] Read more.
The composition of air pollutants in industrial complexes differs from that of general urban areas, often containing more hazardous substances that pose significant health risks to both workers and residents nearby. In this study, PM2.5 and its 29 chemical components (eight ions, two carbon species, and 19 trace elements) were measured and analyzed at five monitoring sites adjacent to the Yeosu and Gwangyang industrial complexes from August 2020 to December 2024. Chemical characterization and source identification were conducted. The average PM2.5 concentration was 18.63 ± 9.71 μg/m3, with notably higher levels observed during winter and spring. A low correlation (R = 0.56) between elemental carbon (EC) and organic carbon (OC) suggests a dominance of secondary aerosols. The charge balance analysis of [NH4+] with [SO42−], [NO3], and [Cl] showed slopes below the 1:1 line, indicating that NH4+ is capable of neutralizing these anions. Positive matrix factorization (PMF) identified eight contributing sources—biomass burning (10.4%), sea salt (11.8%), suspended particles (7.1%), industrial sources (4.6%), Asian dust (5.2%), steel industry (21.8%), secondary nitrate (16.4%), and secondary sulfate (22.7%). These findings provide valuable insights for the development of targeted mitigation strategies and the establishment of effective emission control policies in industrial regions. Full article
(This article belongs to the Section Air Pollution and Health)
17 pages, 1938 KB  
Article
Optimal Scheduling of a Park-Scale Virtual Power Plant Based on Thermoelectric Coupling and PV–EV Coordination
by Ruiguang Ma, Tiannan Ma, Yanqiu Hou, Hao Luo, Jieying Liu, Luoyi Li, Yueping Xiang, Liqing Liao and Dan Tang
Eng 2026, 7(1), 54; https://doi.org/10.3390/eng7010054 - 21 Jan 2026
Viewed by 64
Abstract
This paper presents a closed-loop price–dispatch framework for park-scale virtual power plants (VPPs) with coupled electric–thermal processes under high penetrations of photovoltaics (PVs) and electric vehicles (EVs). The outer layer clears time-varying prices for operator electricity, operator heat, and user feed-in using an [...] Read more.
This paper presents a closed-loop price–dispatch framework for park-scale virtual power plants (VPPs) with coupled electric–thermal processes under high penetrations of photovoltaics (PVs) and electric vehicles (EVs). The outer layer clears time-varying prices for operator electricity, operator heat, and user feed-in using an improved particle swarm optimizer with adaptive coefficients and velocity clamping. Given these prices, the inner layer executes a lightweight linear source decomposition with feasibility projection that enforces transformer limits, combined heat-and-power (CHP) and boiler constraints, ramping, energy balances, and EV state-of-charge requirements. PV uncertainty is represented by a small set of scenarios and a conditional value-at-risk (CVaR) term augments the welfare objective to control tail risk. On a typical winter day case, the coordinated setting aligns EV charging with solar hours, reduces evening grid imports, and improves a social welfare proxy while maintaining interpretable price signals. Measured outcomes include 99.17% PV utilization (95.14% self-consumption and 4.03% routed to EV charging) and a reduction in EV charging cost from CNY 304.18 to CNY 249.87 (−17.9%) compared with an all-from-operator benchmark; all transformer, CHP/boiler, and EV constraints are satisfied. The price loop converges within several dozen iterations without oscillation. Sensitivity studies show that increasing risk weight lowers CVaR with modest welfare trade-offs, while wider price bounds and higher EV availability raise welfare until physical limits bind. The results demonstrate an effective, interpretable, and reproducible pathway to integrate market signals with engineering constraints in park VPP operations. Full article
Show Figures

Figure 1

18 pages, 3256 KB  
Article
Macroaggregate–Microaggregate Interactions Drive Soil Carbon and Nitrogen Stabilization Under Rotational Tillage in Dryland Farming
by Sha Yang, Zhigang Wang, Jin Tong, Jing Xu, Juan Bai, Xingxing Qiao, Meichen Feng, Lujie Xiao, Xiaoyan Song, Meijun Zhang, Guangxin Li, Fahad Shafiq, Jiancheng Zhang, Chao Wang and Wude Yang
Agriculture 2026, 16(2), 264; https://doi.org/10.3390/agriculture16020264 - 21 Jan 2026
Viewed by 82
Abstract
Soil total carbon (TC) and total nitrogen (TN) are key indicators of soil fertility and ecosystem stability, particularly in dryland agroecosystems. However, how rotational tillage combined with straw return affects aggregate formation and aggregate-associated TC and TN stabilization remains insufficiently understood. In this [...] Read more.
Soil total carbon (TC) and total nitrogen (TN) are key indicators of soil fertility and ecosystem stability, particularly in dryland agroecosystems. However, how rotational tillage combined with straw return affects aggregate formation and aggregate-associated TC and TN stabilization remains insufficiently understood. In this study, we aimed to clarify how rotational tillage affects aggregate structure, stability, and the spatial distribution of TC and TN, thereby revealing internal processes driving nutrient stabilization in dryland farming systems. A long-term field experiment was conducted at the Shenfeng site of Shanxi Agricultural University, China, including three rotational tillage systems with straw return: T1 (two years of no tillage (NT) + one year of deep tillage (DT)), T2 (two years of conventional tillage (CT) + one year of DT), and T3 (two years of DT + one year of CT). Soil aggregates were separated into total mechanical aggregate (TMA), 0.25–2 mm MA, and 2–10 mm MA, and they were further fractionated into water-stable aggregates (WM, Wm, and Wf) for TC and TN analysis. The results showed that aggregate stability, TC, and TN were positively correlated and decreased with soil depth, indicating strong surface enrichment. TC was mainly enriched in 0.25–2 mm MA, whereas TN was concentrated in 2–10 mm MA, and water-stable macroaggregates (WM) acted as the dominant reservoirs for RC and RN. Relative to the 2016 baseline (CK), TC in 2022 tended to be higher under rotational tillage with straw return, while NT-containing systems better maintained TN across the 0–60 cm profile. Among the treatments, T1 provided the most balanced performance, with a higher MWD and GMD, lower D, and improved aggregate-associated TC and TN retention. These findings suggest that rotational tillage with straw return, particularly the NT–NT–DT sequence, can support aggregate stability and is associated with improved aggregate-mediated TC and TN retention in the Loess Plateau dryland winter wheat system. Full article
(This article belongs to the Topic Sustainable Energy Systems)
Show Figures

Figure 1

23 pages, 2406 KB  
Article
Effects of Nitrogen Rates on Winter Wheat Growth, Yield and Water-Nitrogen Use Efficiency Under Sprinkler Irrigation and Dry-Hot Wind Stress
by Dongyang He, Tianyi Xu, Jingjing Wang, Yuncheng Xu and Haijun Yan
Agronomy 2026, 16(2), 238; https://doi.org/10.3390/agronomy16020238 - 20 Jan 2026
Viewed by 124
Abstract
This study investigates the effects of nitrogen application and sprinkler irrigation on winter wheat growth, water use efficiency (WUE), and yield formation under dry-hot wind stress. The primary aim was to understand how nitrogen levels influence canopy structure, soil water–nitrogen coupling, and yield [...] Read more.
This study investigates the effects of nitrogen application and sprinkler irrigation on winter wheat growth, water use efficiency (WUE), and yield formation under dry-hot wind stress. The primary aim was to understand how nitrogen levels influence canopy structure, soil water–nitrogen coupling, and yield components under varying irrigation conditions. Field experiments were conducted with different nitrogen rates (N1, N2, N3, N4, N5) and sprinkler irrigation under heat stress. Plant height, leaf area index (LAI), canopy interception, and stemflow were measured, along with soil moisture and nitrogen content in the root zone. Results indicate that moderate nitrogen application (212 kg N ha−2) optimized yield and WUE, with a significant enhancement in canopy structure and water interception. High nitrogen levels resulted in increased water consumption but decreased nitrogen use efficiency (NUE), while lower nitrogen treatments showed reduced yield stability under heat stress. The findings suggest that balanced nitrogen management, in combination with timely irrigation, is essential for improving winter wheat productivity under climate stress. This study highlights the importance of optimizing water and nitrogen inputs to achieve sustainable wheat production in regions facing increasing climate variability. Full article
Show Figures

Figure 1

21 pages, 388 KB  
Article
Evaluating Intercropping Indices in Grass–Clover Mixtures and Their Impact on Maize Silage Yield
by Marko Zupanič, Miran Podvršnik, Vilma Sem, Boštjan Kristan, Ludvik Rihter, Tomaž Žnidaršič and Branko Kramberger
Plants 2026, 15(2), 293; https://doi.org/10.3390/plants15020293 - 18 Jan 2026
Viewed by 182
Abstract
A field experiment was conducted in 2019–2020 and 2020–2021 at Rogoza, Fala, and Brežice in Slovenia to examine the biological viability of a mixed intercropping system and the effect of winter catch crops (WCCs) on maize growth parameters. The experiment included Italian ryegrass [...] Read more.
A field experiment was conducted in 2019–2020 and 2020–2021 at Rogoza, Fala, and Brežice in Slovenia to examine the biological viability of a mixed intercropping system and the effect of winter catch crops (WCCs) on maize growth parameters. The experiment included Italian ryegrass (IR) in pure stands, fertilized with nitrogen (N) in spring (70 kg N ha−1), mixtures of crimson clover and red clover 50:50 (C), and intercropping between IR and C (IR+C). Neither mixture was fertilized with N in spring. We evaluated different competition indices and biological efficiency. Relative crowding coefficient (RCC) and actual yield loss (AYL) exceeded 1, indicating a benefit of IR+C intercropping. The IR in intercropping was more aggressive, as indicated by positive aggressivity (A) and a competitive ratio (CR) > 1, and it dominated over C in IR+C (that had negative A values and CR < 1). The competitive balance index (Cb) differed from zero, the relative yield total (RYT) was 2.24, the land equivalent coefficient (LEC) exceeded 0.25, the area–time equivalent ratio (ATER) exceeded 1, and land use efficiency (LUE) exceeded 100%. IR+C exhibited the highest total aboveground dry matter yield of maize (29.22 t ha−1), the highest nitrogen content in dry matter grain yield of maize (206.35 kg ha−1), the highest nitrogen and potassium content in maize stover (105.7 and 105.7 kg ha−1, respectively), and the highest nitrogen and potassium content in the total aboveground dry matter of maize (312 and 267.3 kg ha−1, respectively). The C/N ratio in dry matter yield of IR was 45.35, and in IR+C it was 33.43, which means that the mixture had a positive effect on nutrient release in maize. The ryegrass–clover mixture, according to the calculated biological indices, had advantages over pure stands and had a positive effect on maize yield. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
20 pages, 7204 KB  
Article
Climate-Based Natural Suitability Index (CNSI) for Blueberry Cultivation in China: Spatiotemporal Evolution and Influencing Factors
by Yixuan Feng, Jing Chen, Jiayi Liu, Xinchun Wang, Jinying Li, Ying Wang, Junnan Wu, Lin Wu and Yanan Li
Agronomy 2026, 16(2), 211; https://doi.org/10.3390/agronomy16020211 - 15 Jan 2026
Viewed by 219
Abstract
Blueberries (Vaccinium spp.) are highly sensitive to winter chilling fulfillment, growing degree days above 7 °C (GDD7), and water balance (WB). By integrating a climate-based natural suitability index (CNSI), three-dimensional kernel density estimation, traditional and spatial Markov chains, and optimal geographic detector [...] Read more.
Blueberries (Vaccinium spp.) are highly sensitive to winter chilling fulfillment, growing degree days above 7 °C (GDD7), and water balance (WB). By integrating a climate-based natural suitability index (CNSI), three-dimensional kernel density estimation, traditional and spatial Markov chains, and optimal geographic detector analysis, this study examines the spatiotemporal evolution and driving mechanisms of blueberry climatic suitability realization in 19 major producing provinces in China during 2008–2023. Results show that CNSI exhibits a stable and moderately right-skewed distribution, with partial convergence and a narrowing interprovincial gap. Suitability realization is highest in the middle and lower Yangtze River rice-growing belt, whereas the northern dryland belt and the southern subtropical mountainous belt show persistent mismatches between climatic potential and production advantages. Markov results reveal path dependence and moderate mobility, with “low–low lock-in” and “high–high club” phenomena reinforced under neighborhood effects. GeoDetector results indicate that effective facility irrigation and fertilizer input are dominant factors explaining spatial variation in CNSI, while comprehensive transportation accessibility and agricultural labor act as stable complements. Interaction analysis suggests that multi-factor synergies, particularly irrigation-centered combinations, yield strong dual-factor enhancement and near-nonlinear enhancement. These findings highlight the importance of aligning climatic suitability with adaptive infrastructure investment and region-specific management to promote sustainable production-share advantages in China’s blueberry industry. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

41 pages, 6791 KB  
Article
Integrated Biogas–Hydrogen–PV–Energy Storage–Gas Turbine System: A Pathway to Sustainable and Efficient Power Generation
by Artur Harutyunyan, Krzysztof Badyda and Łukasz Szablowski
Energies 2026, 19(2), 387; https://doi.org/10.3390/en19020387 - 13 Jan 2026
Viewed by 285
Abstract
The increasing penetration of variable renewable energy sources intensifies grid imbalance and challenges the reliability of small-scale power systems. This study addresses these challenges by developing and analyzing a fully integrated hybrid energy system that combines biogas upgrading to biomethane, photovoltaic (PV) generation, [...] Read more.
The increasing penetration of variable renewable energy sources intensifies grid imbalance and challenges the reliability of small-scale power systems. This study addresses these challenges by developing and analyzing a fully integrated hybrid energy system that combines biogas upgrading to biomethane, photovoltaic (PV) generation, hydrogen production via alkaline electrolysis, hydrogen storage, and a gas-steam combined cycle (CCGT). The system is designed to supply uninterrupted electricity to a small municipality of approximately 4500 inhabitants under predominantly self-sufficient operating conditions. The methodology integrates high-resolution, full-year electricity demand and solar resource data with detailed process-based simulations performed using Aspen Plus, Aspen HYSYS, and PVGIS-SARAH3 meteorological inputs. Surplus PV electricity is converted into hydrogen and stored, while upgraded biomethane provides dispatchable backup during periods of low solar availability. The gas-steam combined cycle enables flexible and efficient electricity generation, with hydrogen blending supporting dynamic turbine operation and further reducing fossil fuel dependency. The results indicate that a 10 MW PV installation coupled with a 2.9 MW CCGT unit and a hydrogen storage capacity of 550 kg is sufficient to ensure year-round power balance. During winter months, system operation is sustained entirely by biomethane, while in high-solar periods hydrogen production and storage enhance operational flexibility. Compared to a conventional grid-based electricity supply, the proposed system enables near-complete elimination of operational CO2 emissions, achieving an annual reduction of approximately 8800 tCO2, corresponding to a reduction of about 93%. The key novelty of this work lies in the simultaneous and process-level integration of biogas, hydrogen, photovoltaic generation, energy storage, and a gas-steam combined cycle within a single operational framework, an approach that has not been comprehensively addressed in the recent literature. The findings demonstrate that such integrated hybrid systems can provide dispatchable, low-carbon electricity for small communities, offering a scalable pathway toward resilient and decentralized energy systems. Full article
(This article belongs to the Special Issue Transitioning to Green Energy: The Role of Hydrogen)
Show Figures

Figure 1

18 pages, 8354 KB  
Article
Assessment of Water Balance and Future Runoff in the Nitra River Basin, Slovakia
by Pavla Pekárová, Igor Leščešen, Ján Pekár, Zbyněk Bajtek, Veronika Bačová Mitková and Dana Halmová
Water 2026, 18(2), 208; https://doi.org/10.3390/w18020208 - 13 Jan 2026
Viewed by 167
Abstract
This study integrates 90 years of hydrometeorological observations (1930/31–2019/20) with end-century projections (2080–2099) to evaluate climate-driven changes in the water balance of the Nitra River basin (2094 km2), Slovakia. Despite a modest 2–3% increase in annual precipitation from 1930/31–1959/60 to 1990/91–2019/20, [...] Read more.
This study integrates 90 years of hydrometeorological observations (1930/31–2019/20) with end-century projections (2080–2099) to evaluate climate-driven changes in the water balance of the Nitra River basin (2094 km2), Slovakia. Despite a modest 2–3% increase in annual precipitation from 1930/31–1959/60 to 1990/91–2019/20, mean annual runoff declined from 229 mm to 201 mm (≈−12%), primarily due to enhanced evapotranspiration stemming from a +1.08 °C basin-wide temperature increase. An empirical regression from 90 hydrological years shows that +100 mm in precipitation boosts runoff by ≈41 mm, while +1 °C in temperature reduces it by ≈13 mm. The BILAN monthly water balance model was calibrated for 1930/31–2019/20 to decompose runoff components. Over the 90-year period, the modeled annual runoff averaged 222 mm, comprising a 112 mm baseflow (50.4%), a 91 mm interflow (41.0%), and a 19 mm direct runoff (8.6%), underscoring the key role of groundwater and subsurface flows in sustaining streamflow. In the second part of our study, the monthly water balance model BILAN was recalibrated for 1995–2014 to simulate future runoff under three CMIP6 Shared Socioeconomic Pathways. Under the sustainability pathway SSP1-1.9 (+0.88 °C; +1.1% precipitation), annual runoff decreases by 8.9%. The middle-of-the-road scenario SSP2-4.5 (+2.6 °C; +3.1% precipitation) projects a 17.5% decline in annual runoff, with particularly severe reductions in autumn months (September −32.3%, October −35.8%, December −40.4%). The high-emission pathway SSP5-8.5 (+5.1 °C; +0.4% precipitation) yields the most dramatic impact with a 35.2% decrease in annual runoff and summer deficits exceeding 45%. These results underline the extreme sensitivity of a mid-sized Central European basin to temperature-driven evapotranspiration and the critical importance of emission mitigation, emphasizing the urgent need for adaptive water management strategies, including new storage infrastructure to address both winter floods and intensifying summer droughts. Full article
Show Figures

Graphical abstract

23 pages, 2465 KB  
Article
Biodegradable Polybutylene Adipate Terephthalate (PBAT) Microplastics Cause More Toxic Effects on Winter Wheat in the Presence of Trichoderma citrinoviride and 2,4-D than Low-Density Polyethylene (LDPE)
by Anna Jasińska, Mirosława Słaba, Sylwia Różalska, Anastasiia Kubera, Hermann J. Heipieper and Przemysław Bernat
Agronomy 2026, 16(2), 182; https://doi.org/10.3390/agronomy16020182 - 11 Jan 2026
Viewed by 318
Abstract
The increasing contamination of agricultural soils with microplastics (MPs) represents an emerging environmental challenge. While conventional plastics such as low-density polyethylene (LDPE) persist for decades, biodegradable alternatives like polybutylene adipate terephthalate (PBAT) are promoted as eco-friendly solutions. However, their environmental safety for crop [...] Read more.
The increasing contamination of agricultural soils with microplastics (MPs) represents an emerging environmental challenge. While conventional plastics such as low-density polyethylene (LDPE) persist for decades, biodegradable alternatives like polybutylene adipate terephthalate (PBAT) are promoted as eco-friendly solutions. However, their environmental safety for crop plants and soil microbiota remains poorly understood. In this study, we evaluated the effects of LDPE and PBAT microplastics (1% w/w) on the growth and physiological state of winter wheat (Triticum aestivum L.) cultivated in soil, either alone or in combination with the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and the plant-beneficial fungus Trichoderma citrinoviride. Growth parameters (root and shoot length and mass), germination index, chlorophyll content, antioxidant enzyme activity, and lipidomic profiles of wheat were assessed. PBAT stimulated biomass accumulation but simultaneously triggered oxidative stress and remodeled membrane phospholipids, indicating physiological disturbance. T. citrinoviride enhanced wheat growth and mitigated oxidative stress under non-contaminated conditions; however, its beneficial effect was generally suppressed in the presence of PBAT and/or 2,4-D. The results suggest that, despite its biodegradability, PBAT may pose a higher phytotoxic potential than conventional LDPE, particularly by altering oxidative balance and membrane lipid composition in wheat. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

24 pages, 5284 KB  
Article
Performance Prediction of Condensation Dehumidification System Utilizing Natural Cold Resources in Cold Climate Regions Using Physical-Based Model and Stacking Ensemble Learning Models
by Ping Zheng, Jicheng Zhang, Qiuju Xie, Chaofan Ma and Xuan Li
Agriculture 2026, 16(2), 185; https://doi.org/10.3390/agriculture16020185 - 11 Jan 2026
Viewed by 178
Abstract
Maintaining optimal humidity in livestock buildings during winter is a major challenge in cold climate regions due to the conflict between moisture-removing ventilation and the need for heat preservation. To address this issue, a novel condensation dehumidification system is proposed that utilizes the [...] Read more.
Maintaining optimal humidity in livestock buildings during winter is a major challenge in cold climate regions due to the conflict between moisture-removing ventilation and the need for heat preservation. To address this issue, a novel condensation dehumidification system is proposed that utilizes the natural low temperature of cold winters. An integrated energy consumption model, coupling moisture and thermal balances, was developed to evaluate room temperature drop, dehumidification rate (DR), and the internal circulation coefficient of performance (IC-COP). The model was calibrated and validated with experimental data comprising over 150 operational cycles under varied operation conditions, including initial temperature differences (ranging from −20 to −5 °C), air flow rates (0.6–1.5 m/s), refrigerant flow rates (3–7 L/min), and high-humidity conditions (>90% RH). Correlation analysis showed that higher indoor humidity improved both DR and IC-COP. Four machine learning models—Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Random Forest (RF), and Multilayer Perceptron (MLP)—were developed and compared with a stacking ensemble learning model. Results demonstrated that the stacking model achieved superior prediction accuracy, with the best R2 reaching 0.908, significantly outperforming individual models. This work provides an energy-saving dehumidification solution for enclosed livestock housing and a case study on the application of machine learning for energy performance prediction and optimization in agricultural environmental control. Full article
Show Figures

Figure 1

24 pages, 10050 KB  
Article
Temporal and Spatial Variation Pattern of Groundwater Storage and Response to Environmental Changes in Shandong Province
by Yanyang Bi and Xiucui Tan
Water 2026, 18(2), 189; https://doi.org/10.3390/w18020189 - 10 Jan 2026
Viewed by 232
Abstract
Based on GRACE RL06 data, this study reconstructs a monthly Terrestrial Water Storage Anomaly (TWSA) series in Shandong Province (2003–2024) using Singular Spectrum Analysis (SSA) and derives Groundwater Storage Anomaly (GWSA) via the water balance equation. The spatiotemporal evolution characteristics of GWSA were [...] Read more.
Based on GRACE RL06 data, this study reconstructs a monthly Terrestrial Water Storage Anomaly (TWSA) series in Shandong Province (2003–2024) using Singular Spectrum Analysis (SSA) and derives Groundwater Storage Anomaly (GWSA) via the water balance equation. The spatiotemporal evolution characteristics of GWSA were systematically examined, and the relative contributions of climatic factors and human activities to groundwater storage changes were quantitatively assessed, with the aim of contributing to the development, utilization, and protection of groundwater in Shandong Province. The results indicate that temporally, GWSA in Shandong Province exhibited a statistically significant decreasing trend at a rate of −8.45 mm/a (p < 0.01). The maximum GWSA value of 17.15 mm was recorded in 2006, while the Mann–Kendall abrupt change-point analysis identified 2013 as a significant transition point. Following this abrupt change, GWSA demonstrated a persistent decline, reaching the minimum annual average of −225.78 mm in 2020. Although moderate recovery was observed after 2020, GWSA values remained substantially lower than those in the pre-abrupt change period. Seasonal analysis revealed a distinct “higher in autumn and lower in spring” pattern, with the most pronounced fluctuations occurring in summer and the most stable conditions in winter. Spatially, approximately 99.1% of the study area showed significant decreasing trends, displaying a clear east–west gradient with more severe depletion in inland regions compared to relatively stable coastal areas. Crucially, human activities emerged as the dominant driving factor, with an average contribution rate of 86.11% during 2003–2024. The areal proportion where human activities served as the decisive factor (contribution rate > 80%) increased dramatically to 99.58%. Furthermore, the impact of human activities demonstrated bidirectional characteristics, transitioning from negative influences during the depletion phase to positive contributions promoting groundwater recovery in recent years. At present, the GWSA in Shandong Province is expected to continue declining in the future, with an overall downward trend. Countermeasures must be implemented promptly. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

33 pages, 1265 KB  
Review
Vitamin Supplementation in Sports: A Decade of Evidence-Based Insights
by Magdalena Wiacek, Emilia Nowak, Piotr Lipka, Remigiusz Denda and Igor Z. Zubrzycki
Nutrients 2026, 18(2), 213; https://doi.org/10.3390/nu18020213 - 9 Jan 2026
Viewed by 540
Abstract
Background: Vitamins are micronutrients involved in multiple physiological processes critical for athletic performance. Because athletes are often exposed to increased oxidative stress, higher metabolic turnover, and greater nutritional demands, which can potentially lead to deficiencies in vitamins, understanding vitamin supplementation as a [...] Read more.
Background: Vitamins are micronutrients involved in multiple physiological processes critical for athletic performance. Because athletes are often exposed to increased oxidative stress, higher metabolic turnover, and greater nutritional demands, which can potentially lead to deficiencies in vitamins, understanding vitamin supplementation as a function of sport discipline is of fundamental importance. Methods: This narrative review synthesizes research findings from the past decade, supplemented with earlier studies where necessary, focusing on vitamins A, C, D, E, and the B-complex vitamins. Peer-reviewed literature was evaluated for evidence on the prevalence of deficiencies in athletes, physiological mechanisms, supplementation strategies, and their effects on performance, injury prevention, and recovery. Results: Vitamin D deficiency is highly prevalent among athletes, particularly in indoor sports and during the winter months. Supplementation has been shown to improve musculoskeletal health and potentially reduce injury risk. The antioxidant vitamins C and E can attenuate exercise-induced oxidative stress and muscle damage; however, excessive intake may impair adaptive responses such as mitochondrial biogenesis and protein synthesis. Vitamin A contributes to immune modulation, metabolic regulation, and mitochondrial function, while B-complex vitamins support energy metabolism and red blood cell synthesis. Conclusions: Vitamin supplementation in athletes should be individualized, targeting confirmed deficiencies and tailored to sport-specific demands, age, sex, and training intensity. Dietary optimization should remain the primary strategy, with supplementation serving as an adjunct when intake is insufficient. Further high-quality, sport-specific, and long-term studies are needed to establish clear dosing guidelines and to assess the balance between performance benefits and potential risks associated with over-supplementation. Full article
(This article belongs to the Special Issue Vitamins and Human Health: 3rd Edition)
Show Figures

Figure 1

19 pages, 4554 KB  
Article
Optimizing Planting Density to Improve Source-Sink Relationship and Yield of Hybrid Wheat Under Late-Sowing Conditions
by Yulu Zhang, Zixin Zhu, Changxing Zhao and Xiaoli Chen
Plants 2026, 15(2), 195; https://doi.org/10.3390/plants15020195 - 8 Jan 2026
Viewed by 244
Abstract
Increasing planting density is an effective measure to mitigate the negative impacts of late-sowing on yield formation in winter wheat. However, the physiological mechanisms underlying source-sink coordination and high-yield performance through density regulation in hybrid wheat with high yield potential remain unclear. A [...] Read more.
Increasing planting density is an effective measure to mitigate the negative impacts of late-sowing on yield formation in winter wheat. However, the physiological mechanisms underlying source-sink coordination and high-yield performance through density regulation in hybrid wheat with high yield potential remain unclear. A two-year field experiment was conducted using the hybrid variety Jingmai 17 and conventional variety Jimai 22 as experimental materials, with three planting densities: 150 plants·m−2 (M1), 300 plants·m−2 (M2), and 450 plants·m−2 (M3). The effects of planting density on the source-sink relationship and yield were systematically investigated. The results showed that both Jingmai 17 (2.4–9.7%) and Jimai 22 (1.4–10.6%) exhibited the most significant yield increases under the M2 treatment. This density maintained photosynthetic capacity during the mid-to-late grain-filling stage, delayed leaf senescence, promoted assimilate translocation to the grains, and simultaneously improved grain number per spike and thousand-grain weight by optimizing source-sink coordination efficiency. Compared with Jimai 22, the hybrid wheat Jingmai 17 demonstrated a significant yield advantage (8.2–10.1%), which was attributed to its stronger and more persistent source function, larger and more stable sink capacity, and higher source-sink coordination efficiency. In conclusion, under late-sowing conditions, the hybrid variety Jingmai 17 at a density of 300 plants·m−2 achieved the most effective optimization of the source-sink relationship, fully exploited its yield potential, and achieved a balance between high and stable yield. This study provides a theoretical and practical cultivation reference for the selection of hybrid wheat varieties in this region. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

Back to TopTop