Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = winding circulating current loss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4585 KB  
Article
Power Losses in the Multi-Turn Windings of High-Speed PMSM Electric Machine Armatures
by Oleksandr Makarchuk and Dariusz Całus
Energies 2025, 18(14), 3761; https://doi.org/10.3390/en18143761 - 16 Jul 2025
Viewed by 525
Abstract
This paper investigates the dependencies between the design parameters of the armature (stator) winding of a high-speed PMSM machine and the electrical losses in its windings resulting from eddy currents. In addition, the factors accounting for the occurrence of parasitic circulating currents, whose [...] Read more.
This paper investigates the dependencies between the design parameters of the armature (stator) winding of a high-speed PMSM machine and the electrical losses in its windings resulting from eddy currents. In addition, the factors accounting for the occurrence of parasitic circulating currents, whose presence in the phase windings is associated with the design specificity, are analyzed. Quantitative analysis is carried out by the application of a newly developed mathematical model for the calculation of fundamental and additional losses in a multi-turn coil enclosed in the slots of a ferromagnetic core. The analysis takes into account the actual design of the slot and the conductor, the variable arrangement of individual conductors in the slot, the core saturation and the presence of the excitation field—to represent the main factors that affect the process of additional losses in the slot of the electric machine. The verification of the mathematical model developed in this study was carried out by comparing the distribution of power losses in the slot section of the coil, consisting of several elementary conductors connected in parallel and located in a rectangular open slot, with an identical distribution derived on the basis of an analytical method from the classical circuit theory. For the purpose of confirming the results and conclusions derived from simulation studies, a number of physical experiments were carried out, consisting in determining the power losses in multi-turn coils of different designs. Recommendations have been developed to minimize additional losses by optimizing the arrangement of conductors within the slot, selecting the appropriate cross-sectional size of a single conductor and the saturation level of the tooth zone. Full article
Show Figures

Figure 1

17 pages, 6751 KB  
Article
Study of Improved Active Clamp Phase-Shifted Full-Bridge Converter
by Xinyao Guo, Runquan Meng, Xiang Bai, Huajian Li, Jiahui Zhang and Xin He
Electronics 2025, 14(5), 834; https://doi.org/10.3390/electronics14050834 - 20 Feb 2025
Cited by 2 | Viewed by 1068
Abstract
The polar energy router is a key device in the polar clean energy system which converges the output of wind power, photovoltaic units, energy storage units and hydrogen fuel cells through the power electronic power converter to the DC bus, which requires the [...] Read more.
The polar energy router is a key device in the polar clean energy system which converges the output of wind power, photovoltaic units, energy storage units and hydrogen fuel cells through the power electronic power converter to the DC bus, which requires the use of a variety of specifications of DC/DC converters; as a result, the efficiency of the DC/DC converter is directly connected to the efficiency of the polar energy router. This paper presents an enhanced isolated DC/DC converter with a phase-shifted full-bridge topology designed to meet the high-efficiency conversion requirements of polar energy routers. Although soft switching can be realized naturally in phase-shifted full-bridge topology, it also faces challenges, such as the difficulty of realizing soft switching under light load conditions, large circulation losses, a loss of duty cycle and oscillation in the secondary-side voltage. To solve these problems, an improved scheme of the phase-shifted full-bridge converter with an active clamp circuit is proposed in this paper. The scheme realized zero-voltage switch (ZVS) under light load by utilizing clamp capacitor energy. The on-state loss was reduced by zeroing the primary-side current during the circulating phase. This paper provides a detailed description of the topology, working principle and performance characteristics of the improved scheme, and its feasibility has been verified through experiments. Full article
Show Figures

Figure 1

12 pages, 3876 KB  
Article
Design and Performance Analysis of Windings Considering High Frequency Loss and Connection Mode of a Starter Generator
by Xiaojun Ren, Zhikai Chen, Rui Du and Ming Feng
Energies 2024, 17(20), 5124; https://doi.org/10.3390/en17205124 - 15 Oct 2024
Cited by 2 | Viewed by 1631
Abstract
The starter generator is the key component of the aircraft’s starter generation system. A high power density, efficiency, and reliability are essential for an aircraft’s starter generator. The configuration of the windings is closely related to the performance of the starter generator. In [...] Read more.
The starter generator is the key component of the aircraft’s starter generation system. A high power density, efficiency, and reliability are essential for an aircraft’s starter generator. The configuration of the windings is closely related to the performance of the starter generator. In this paper, the winding performance analysis and design are studied. Considering the skin effect, circulation effect, and proximity effect, a calculation model of winding loss under high-frequency operation is established. The motor performance under different winding connections is compared. Through a comprehensive comparison of starting performance, generation loss, and process performance differences, the optimum configuration of windings is identified. The performance of the starter generator including winding resistance, current, and no-load loss was tested on the prototype platform to verify the rationality and correctness of the analysis and design methods. Full article
Show Figures

Figure 1

25 pages, 22684 KB  
Article
Hydrodynamic Modelling in a Mediterranean Coastal Lagoon—The Case of the Stagnone Lagoon, Marsala
by Emanuele Ingrassia, Carmelo Nasello and Giuseppe Ciraolo
Water 2024, 16(18), 2602; https://doi.org/10.3390/w16182602 - 14 Sep 2024
Cited by 2 | Viewed by 1704
Abstract
Coastal lagoons are important wetland sites for migratory species and the local flora and fauna population. The Stagnone Lagoon is a coastal lagoon located on the west edge of Sicily between the towns of Marsala and Trapani. The area is characterized by salt-harvesting [...] Read more.
Coastal lagoons are important wetland sites for migratory species and the local flora and fauna population. The Stagnone Lagoon is a coastal lagoon located on the west edge of Sicily between the towns of Marsala and Trapani. The area is characterized by salt-harvesting plants and several archaeological sites and is affected by microtidal excursion. Two mouths allow exchange with the open sea: one smaller and shallower in the north and one larger and deeper in the south. This study aims to understand the lagoon’s hydrodynamics, in terms of circulation and involved forces. The circulation process appears to be dominated mainly by tide excursions and wind forces. Wind velocity, water levels, and water velocity were recorded during different field campaigns in order to obtain a benchmark value. The hydrodynamic circulation has been studied with a 2DH (two-dimensional in the horizontal plane) unstructured mesh model, calibrated with data collected during the 2006 field campaign and validated with the data of the 2007 campaign. Rapid changes in averaged velocity have been found both in Vx and Vy components, showing the strong dependence on seiches. This study tries to identify the main factor that domains the evolution of the water circulation. Sensitivity analyses were conducted to estimate the correct energy transfer between the forcing factors and dissipating ones. A Gauckler–Strickler roughness coefficient between 20 and 25 m1/3/s is found to be the most representative in the lagoon. To enhance the knowledge of this peculiar lagoon, the MIKE 21 model has been used, reproducing all the external factors involved in the circulation process. Nash–Sutcliffe coefficient of efficiency (NSE) values up to 0.92 and 0.79 are reached with a Gauckler–Strickler coefficient equal to 20 m1/3/s related to water depth and the Vy velocity component. The Vx velocity component NSE has never been satisfying, showing the limits of the 2D approach in reproducing the currents induced by local morphological peculiarities. Comparing the NSE value of water depth, there is a loss of up to 70% in model predictivity capability between the southern and the northern lagoon areas. This study aims to support the local decision-makers to improve the management of the lagoon itself. Full article
Show Figures

Figure 1

22 pages, 19719 KB  
Article
Study on the Impact of Offshore Wind Farms on Surrounding Water Environment in the Yangtze Estuary Based on Remote Sensing
by Lina Cai, Qunfei Hu, Zhongfeng Qiu, Jie Yin, Yuanzhi Zhang and Xinkai Zhang
Remote Sens. 2023, 15(22), 5347; https://doi.org/10.3390/rs15225347 - 13 Nov 2023
Cited by 6 | Viewed by 4291
Abstract
Offshore wind farms (OWFs), built extensively in recent years, induce changes in the surrounding water environment. The changes in the suspended sediment concentration (SSC) and chlorophyll-a concentration (Chl-aC) induced by an OWF in the Yangtze River Estuary were analyzed based on Chinese Gaofen [...] Read more.
Offshore wind farms (OWFs), built extensively in recent years, induce changes in the surrounding water environment. The changes in the suspended sediment concentration (SSC) and chlorophyll-a concentration (Chl-aC) induced by an OWF in the Yangtze River Estuary were analyzed based on Chinese Gaofen (GF) satellite data. The results show the following: (1) The flow near the wind turbines makes the bottom water surge, driving the sediment to “re-suspend” and be lost, deepening the scour pit around the bottom of the wind turbines, which is known as “self-digging”. The interaction between the pillar of a wind turbine and tidal currents makes hydrodynamic factors more complicated. Blocking by wind turbines promoting the scour of the bottom seabed of the OWF results in speeding up the circulation rate of sediment loss and “re-suspension”, which contributes to the change in the SSC and Chl-aC. This kind of change in sediment transport in estuarine areas due to human construction affects the balance of the ecological environment. Long-term sediment loss around wind turbines also influences the safety of wind turbines. (2) The SSC and Chl-aC are mainly in the range of 200–600 mg/L and 3–7 μg/L, respectively, in the OWF area, higher than the values obtained in surrounding waters. The SSC and Chl-aC downstream of the OWF are higher than those upstream, with differences of 100–300 mg/L and 0.5–2 μg/L. High SSC and Chl-aC “tails” appear downstream of wind turbines, consistent with the direction of local tidal currents, with lengths in the range of 2–4 km. In addition, the water environment in the vicinity of a wind turbine array, with a roughly 2–5 km scope (within 4 km during flooding and around 2.5 km during ebbing approximately) downstream of the wind turbine array, is impacted by the OWF. (3) In order to solve the problem of “self-digging” induced by OWFs, it is suggested that the distance between two wind turbines should be controlled within 2–3.5 km in the main flow direction, promising that the second row of wind turbines will be placed on the suspended sediment deposition belt induced by the first row. In this way, the problems of ecosystem imbalance and tidal current structure change caused by sediment loss because of local scouring can be reduced. Furthermore, mutual compensation between wind turbines can solve the “self-digging” problem to a certain extent and ensure the safety of OWFs. Full article
Show Figures

Figure 1

16 pages, 8537 KB  
Article
A Comprehensive Investigation of Winding Eddy and Circulating Current Losses of Stator Iron Coreless PMBLDC Motors
by Liu Yang, Jing Zhao, Wenqi Fu, Xiangdong Liu, Jianguo Zhu and Chao Ai
Energies 2023, 16(14), 5523; https://doi.org/10.3390/en16145523 - 21 Jul 2023
Cited by 6 | Viewed by 2793
Abstract
A method is proposed to comprehensively study the eddy and circulating current losses of stator winding wound by multiple parallel strands, to further improve the power density of stator iron coreless permanent magnet brushless DC (PMBLDC) motors. Analytical models of the eddy and [...] Read more.
A method is proposed to comprehensively study the eddy and circulating current losses of stator winding wound by multiple parallel strands, to further improve the power density of stator iron coreless permanent magnet brushless DC (PMBLDC) motors. Analytical models of the eddy and circulating current losses in stator winding are deduced firstly to explicitly express the influencing factors of these two losses. As is shown, these factors are mutually contradicting. While the eddy current loss can be greatly reduced by using multiple parallel conductor strands, the circulating current loss will be extensively increased. The factors influencing these two winding losses, such as the strand diameter, magnetization types, and rotating speed, are investigated. A prototype of stator iron coreless PMBLDC motor without an inner rotor core is manufactured and tested to validate the theory. The experimental results of winding eddy and circulating current losses with different combinations of strand diameters and parallel numbers agree well with the theoretical results. Full article
(This article belongs to the Topic Advanced Electrical Machine Design and Optimization Ⅱ)
Show Figures

Figure 1

8 pages, 2609 KB  
Proceeding Paper
The Influence of Antarctic Sea Ice Distribution on the Southern Ocean Overturning Circulation for the Past 20,000 Years
by Gagan Mandal, Jia-Yuh Yu and Shih-Yu Lee
Proceedings 2023, 87(1), 9; https://doi.org/10.3390/IECG2022-14145 - 13 Mar 2023
Viewed by 1644
Abstract
Changes in Southern Ocean physics are dynamically linked to westerly winds, ocean currents, and the distribution of Antarctic sea ice in the Southern Hemisphere. As a result, it is critical to comprehend the response of Southern Ocean physics to the distribution of Antarctic [...] Read more.
Changes in Southern Ocean physics are dynamically linked to westerly winds, ocean currents, and the distribution of Antarctic sea ice in the Southern Hemisphere. As a result, it is critical to comprehend the response of Southern Ocean physics to the distribution of Antarctic sea ice on a basin scale. This modeling study employs a fully coupled Earth system model to investigate the effect of Antarctic Sea ice distribution on Southern Ocean dynamics during the past 20,000 years. The findings show that the formation and melting of sea ice have an effect on the distribution of surface buoyancy flux over the Southern Ocean. The simulated sea ice edge (grid points in the ice model have a sea ice concentration above 5%) in the Southern Ocean almost demarcates the borderline between the lower and upper meridional overturning cells. The seemingly permanent Antarctic sea ice edge (grid points in the ice model with a sea ice concentration greater than 80%) coincides with the shift of buoyancy flux from positive (buoyancy gain) to negative (buoyancy loss). Furthermore, the negative surface buoyancy flux zone has shifted polewards for the past 20,000 years, with the exception of approximately 14.1 thousand years. Our findings show that Antarctic sea ice feedback affects the surface buoyancy flux, affecting the overturning circulation in the Southern Ocean. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Geosciences)
Show Figures

Figure 1

14 pages, 3452 KB  
Article
Simulations to Eliminate Backflow Power in an Isolated Three-Port Bidirectional DC–DC Converter
by Norbert Njuanyi Koneh, Jae-Sub Ko and Dae-Kyong Kim
Energies 2023, 16(1), 450; https://doi.org/10.3390/en16010450 - 31 Dec 2022
Cited by 4 | Viewed by 2165
Abstract
The aim of this work was to eliminate the backflow power present in an isolated three-port DC–DC converter. Backflow power (which is an inherent property of phase-shifted DC–DC converters) is the major contributor of circulating current the converter, which in turn is known [...] Read more.
The aim of this work was to eliminate the backflow power present in an isolated three-port DC–DC converter. Backflow power (which is an inherent property of phase-shifted DC–DC converters) is the major contributor of circulating current the converter, which in turn is known to be the leading cause of system loss. The dual phase shift (DPS) control scheme (which alters the transformer voltage waveform at the different winding terminals) was used to reduce the backflow power. Mathematical relations for the backflow power present in the three-port converter were derived. And from this equation, an operating point in which the backflow power is zero was also obtained. This condition for zero backflow power was confirmed by simulations on PSIM. Added to this were simulation results that show other operating conditions in which zero backflow power could be obtained in the converter. In addition, equations for the power processed at the different ports of the converter were also presented, and 3D plots were made to illustrate the variation of the power and backflow power with respect to the phase shift ratios of the DPS control scheme. It was observed that the backflow power can be totally removed from the three-port converter when using this control scheme. Full article
Show Figures

Figure 1

14 pages, 5831 KB  
Article
Hairpin Windings for Electric Vehicle Motors: Modeling and Investigation of AC Loss-Mitigating Approaches
by Payam Shams Ghahfarokhi, Andrejs Podgornovs, Antonio J. Marques Cardoso, Ants Kallaste, Anouar Belahcen and Toomas Vaimann
Machines 2022, 10(11), 1029; https://doi.org/10.3390/machines10111029 - 4 Nov 2022
Cited by 15 | Viewed by 7082
Abstract
The hairpin winding configuration has been attracting attention as a solution to increase the power density of electric vehicle motors by enhancing the slot-filling factor. However, this winding configuration brings high AC losses during high-speed operation and we require new approaches to tackle [...] Read more.
The hairpin winding configuration has been attracting attention as a solution to increase the power density of electric vehicle motors by enhancing the slot-filling factor. However, this winding configuration brings high AC losses during high-speed operation and we require new approaches to tackle this challenge. This paper considers reducing AC losses by proposing two main methods: correct transposition of conductors in parallel paths, and enhancing the number of conductor layers in a slot. First, the proper connection of conductors in parallel paths is considered, and the essential rules for this purpose are described. Next, the paper uses a numerical approach to deal with the effect of incorrect conductor transposition in winding paths on generating additional AC losses due to circulating currents. Finally, the impact of the number of conductor layers in the mitigation of AC losses is also discussed in detail. According to the results, by increasing the number of layers, ohmic losses in the layer near the slot opening dramatically decrease. For instance, ohmic losses in the layer near the slot opening of the eight-layer setup were 82% less than the two-layer layout. Full article
Show Figures

Figure 1

13 pages, 4235 KB  
Article
Comparison of AC Losses in the Winding of Electrical Machines with Fixed Strands Positions, Fixed Conductor Shapes and Random Winding
by Anuvav Bardalai, David Gerada, Tianjie Zou, Michele Degano, Chengming Zhang and Chris Gerada
Energies 2022, 15(15), 5701; https://doi.org/10.3390/en15155701 - 5 Aug 2022
Cited by 7 | Viewed by 3948
Abstract
In high performance electric machines, the increase of fundamental frequency leads to additional losses in the winding due to parasitic effects such as the associated skin and proximity effects. In the first part, this paper presents an investigation into accurate modelling of AC [...] Read more.
In high performance electric machines, the increase of fundamental frequency leads to additional losses in the winding due to parasitic effects such as the associated skin and proximity effects. In the first part, this paper presents an investigation into accurate modelling of AC losses in the winding using numerical methods and their experimental verification. Then, using experimental motorette setups, this research provides a comparative study between fixed strand positioning and fixed conductor shapes on the AC losses in the winding. It is shown that the exact position of strands in the conductor is not a critical factor; however, it is very important to control the conductor shape inside the slot. In the final section of this paper, an investigation into the relationship between AC losses in the winding and copper filling factor is presented. It is shown experimentally that counter-intuitive design choices such as using a lower copper fill factor and thicker strand diameters may be beneficial in achieving the highest overall efficiency. Full article
(This article belongs to the Special Issue All-Electric Propulsion Technology for Electrified Aviation)
Show Figures

Figure 1

19 pages, 6735 KB  
Article
A High-Power-Density Active-Clamp Converter with Integrated Planar Transformer
by Dae-Woo Lee, Ji-Hoon Lim, Dong-In Lee and Han-Shin Youn
Energies 2022, 15(15), 5609; https://doi.org/10.3390/en15155609 - 2 Aug 2022
Cited by 11 | Viewed by 4296
Abstract
This paper proposes an active-clamp forward-flyback (ACFF) converter with an integrated planar transformer for wide-input voltage and high-output current applications, such as low-voltage direct-current (LDC) converters in electric vehicles. An integrated planar transformer that consists of a forward-flyback transformer, single primary winding, and [...] Read more.
This paper proposes an active-clamp forward-flyback (ACFF) converter with an integrated planar transformer for wide-input voltage and high-output current applications, such as low-voltage direct-current (LDC) converters in electric vehicles. An integrated planar transformer that consists of a forward-flyback transformer, single primary winding, and efficient structure of secondary windings is adopted for the proposed converter, and since this transformer is implemented with a common four-layer printed circuit board (PCB) winding, a high power density and low cost of the proposed converter can be achieved. In addition, due to the low leakage inductance induced by the planar transformer, a reduced commutation period can be achieved, and it is possible to increase the switching frequency resulting in low volume of transformer. Although the integrated planar transformer has relatively high conduction loss, the active-clamp topology can significantly reduce the conduction loss on switches compared with widely used full-bridge (FB) converters because it only utilizes two switches and shows the low circulating current. As a result, the proposed converter with an integrated planar transformer has strengths in high power density and cost competitiveness without degraded efficiency, and it is a very attractive topology for LDC converters and other applications that require wide-input voltage and high-output current. Full article
(This article belongs to the Topic Advanced Electric Vehicle Technology)
Show Figures

Figure 1

17 pages, 7750 KB  
Article
Contrary Responses of the Gulf Stream and the Kuroshio to Arctic Sea Ice Loss
by Kun Wang, Linyue Wu, Haiwen Liu, Bo Dan, Haijin Dai and Clara Deser
Atmosphere 2022, 13(4), 514; https://doi.org/10.3390/atmos13040514 - 23 Mar 2022
Cited by 6 | Viewed by 3224
Abstract
The impact on the Gulf Stream and Kuroshio from Arctic sea ice loss is investigated using the Community Climate System Model version 4 (CCSM4) model for their important roles during climate change. Results show that the Gulf Stream (Kuroshio) weakens (strengthens) in response [...] Read more.
The impact on the Gulf Stream and Kuroshio from Arctic sea ice loss is investigated using the Community Climate System Model version 4 (CCSM4) model for their important roles during climate change. Results show that the Gulf Stream (Kuroshio) weakens (strengthens) in response to Arctic sea ice loss via ocean (atmosphere) adjustments. More precisely, the Kuroshio acceleration is mainly due to the anomalous wind stress over the North Pacific, while the ocean gyre adjustments in the Atlantic are responsible for the weakened Gulf Stream. As positive buoyancy fluxes induced by Arctic sea ice loss trigger a slowdown of the Atlantic Meridional Overturning Circulation (AMOC), the Gulf Stream decelerates evidently and the current speed decreases by about 5–8 cm/s in the upper ocean. Resulting from less advection and horizontal diffusion in the temperature budget, less poleward warm water leads to narrow sea surface cooling sandwiched between strong warming in the subpolar and subtropical Atlantic. Furthermore, colder surface decreases the upward heat flux (mainly latent heat flux) along the Gulf Stream Extension (GE) path, which leads to a warming hole in the atmosphere. Full article
(This article belongs to the Special Issue Coupled Climate System Modeling)
Show Figures

Figure 1

21 pages, 3471 KB  
Article
Connection System for Small and Medium-Size Wind Generators through the Integration in an MMC and NLC Modulation
by Fernando Martinez-Rodrigo, Dionisio Ramirez, Santiago de Pablo and Luis Carlos Herrero-de Lucas
Energies 2021, 14(9), 2681; https://doi.org/10.3390/en14092681 - 7 May 2021
Cited by 1 | Viewed by 2108
Abstract
This paper presents a new way of organizing a wind farm with a large number of small to medium-sized turbines. Each wind generator has been included in a switching module of a modular multilevel converter (MMC), which generates the output voltage by near [...] Read more.
This paper presents a new way of organizing a wind farm with a large number of small to medium-sized turbines. Each wind generator has been included in a switching module of a modular multilevel converter (MMC), which generates the output voltage by near level control (NLC). The proposed topology reduces the number of semiconductors required, switching losses, and voltage filtering requirements. This topology replaces the usual configuration where each wind turbine is connected to a three-phase two-level back-to-back converter plus a filter and then connected in parallel with the other wind generators. To test the topology and its control performance, a case has been developed and simulated for generator configurations producing the same power, for generation imbalances between phases and for imbalances between arms. The analysis of the data shows that the converter works correctly and that it can deliver power to the grid in a balanced way even if the generation has imbalances. The generation imbalances between phases are compensated through the average value of the circulating current, while the imbalances between arms are compensated through the 50 Hz circulating current. Full article
Show Figures

Figure 1

18 pages, 3191 KB  
Article
Analysis of a Wide Voltage Hybrid Soft Switching Converter
by Bor-Ren Lin and Yen-Chun Liu
Electronics 2021, 10(4), 473; https://doi.org/10.3390/electronics10040473 - 16 Feb 2021
Cited by 3 | Viewed by 2813
Abstract
A hybrid PWM converter is proposed and investigated to realize the benefits of wide zero-voltage switching (ZVS) operation, wide voltage input operation, and low circulating current for direct current (DC) wind power conversion and solar PV power conversion applications. Compared to the drawbacks [...] Read more.
A hybrid PWM converter is proposed and investigated to realize the benefits of wide zero-voltage switching (ZVS) operation, wide voltage input operation, and low circulating current for direct current (DC) wind power conversion and solar PV power conversion applications. Compared to the drawbacks of high freewheeling current and hard switching operation of active devices at the lagging-leg of conventional full bridge PWM converter, a three-leg PWM converter is studied to have wide input-voltage operation (120–600 V). For low input-voltage condition (120–270 V), two-leg full bridge converter with lower transformer turns ratio is activated to control load voltage. For high input-voltage case (270–600 V), PWM converter with higher transformer turns ratio is operated to regulate load voltage. The LLC resonant converter is connecting to the lagging-leg switches in order to achieve wide load range of soft switching turn-on operation. The high conduction losses at the freewheeling state on conventional full bridge converter are overcome by connecting the output voltage of resonant converter to the output rectified terminal of full bridge converter. Hence, a 5:1 (600–120 V) hybrid converter is realized to have less circulating current loss, wide input-voltage operation and wide soft switching characteristics. An 800 W prototype is set up and tested to validate the converter effectiveness. Full article
(This article belongs to the Special Issue Power Electronics in Industry Applications)
Show Figures

Figure 1

48 pages, 6275 KB  
Article
New AC–AC Modular Multilevel Converter Solution for Medium-Voltage Machine-Drive Applications: Modular Multilevel Series Converter
by Gustavo Gontijo, Songda Wang, Tamas Kerekes and Remus Teodorescu
Energies 2020, 13(14), 3664; https://doi.org/10.3390/en13143664 - 16 Jul 2020
Cited by 11 | Viewed by 4077
Abstract
Due to its scalability, reliability, high power quality and flexibility, the modular multilevel converter is the standard solution for high-power high-voltage applications in which an AC–DC–AC connection is required such as high-voltage direct-current transmission systems. However, this converter presents some undesired features from [...] Read more.
Due to its scalability, reliability, high power quality and flexibility, the modular multilevel converter is the standard solution for high-power high-voltage applications in which an AC–DC–AC connection is required such as high-voltage direct-current transmission systems. However, this converter presents some undesired features from both structural and operational perspectives. For example, it presents a high number of components, which results in high costs, size, weight and conduction losses. Moreover, the modular multilevel converter presents problems dealing with DC-side faults, with unbalanced grid conditions, and many internal control loops are required for its proper operation. In variable-frequency operation, the modular multilevel converter presents some serious limitations. The most critical are the high-voltage ripples, in the submodule capacitors, at low frequencies. Thus, many different AC–AC converter solutions, with modular multilevel structure, have been proposed as alternatives for high-power machine-drive applications such as offshore wind turbines, pumped-hydro-storage systems and industrial motor drives. These converters present their own drawbacks mostly related to control complexity, operational limitations, size and weight. This paper introduces an entirely new medium-voltage AC–AC modular multilevel converter solution with many operational and structural advantages in comparison to the modular multilevel converter and other alternative topologies. The proposed converter presents high performance at low frequencies, regarding the amplitude of the voltage ripples in the submodule capacitors, which could make it very suitable for machine-drive applications. In this paper, an analytical description of the voltage ripples in the submodule capacitors is proposed, which proves the high performance of the converter under low-frequency operation. Moreover, the proposed converter presents high performance under unbalanced grid conditions. This important feature is demonstrated through simulation results. The converter solution introduced in this paper has a simple structure, with decoupled phases, which leads to the absence of undesired circulating currents and to a straightforward control, with very few internal control loops for its proper operation, and with simple modulation. Since the converter phases are decoupled, no arm inductors are required, which contributes to the weight and size reduction of the topology. In this paper, a detailed comparison analysis with the modular multilevel converter is presented based on number of components, conduction and switching losses. This analysis concludes that the proposed converter solution presents a reduction in costs and an expressive reduction in size and weight, in comparison to the modular multilevel converter. Thus, it should be a promising solution for high-power machine-drive applications that require compactness and lightness such as offshore wind turbines. In this paper, simulation results are presented explaining the behavior of the proposed converter, proving that it is capable of synthesizing a high-power-quality load voltage, with variable frequency, while exchanging power with the grid. Thus, this topology could be used to control the machine speed in a machine-drive application. Finally, experimental results are provided to validate the topology. Full article
(This article belongs to the Special Issue Modular Multilevel Converters MMC)
Show Figures

Graphical abstract

Back to TopTop