Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (574)

Search Parameters:
Keywords = wind-to-hydrogen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7087 KiB  
Article
Production of Anisotropic NdFeB Permanent Magnets with In Situ Magnetic Particle Alignment Using Powder Extrusion
by Stefan Rathfelder, Stephan Schuschnigg, Christian Kukla, Clemens Holzer, Dieter Suess and Carlo Burkhardt
Materials 2025, 18(15), 3668; https://doi.org/10.3390/ma18153668 - 4 Aug 2025
Abstract
This study investigates the sustainable production of NdFeB permanent magnets using powder extrusion molding (PEM) with in situ magnetic alignment, utilizing recycled powder from an end-of-life (Eol) wind turbine magnet obtained via hydrogen processing of magnetic scrap (HPMS). Finite Element Method (FEM) simulations [...] Read more.
This study investigates the sustainable production of NdFeB permanent magnets using powder extrusion molding (PEM) with in situ magnetic alignment, utilizing recycled powder from an end-of-life (Eol) wind turbine magnet obtained via hydrogen processing of magnetic scrap (HPMS). Finite Element Method (FEM) simulations were conducted to design and optimize alignment tool geometries and magnetic field parameters. A key challenge in the PEM process is achieving effective particle alignment while the continuous strand moves through the magnetic field during extrusion. To address this, extrusion experiments were performed using three different alignment tool geometries and varying magnetic field strengths to determine the optimal configuration for particle alignment. The experimental results demonstrate a high degree of alignment (Br/Js = 0.95), exceeding the values obtained with PEM without an external magnetic field (0.78). The study confirms that optimizing the alignment tool geometry and applying sufficiently strong magnetic fields during extrusion enable the production of anisotropic NdFeB permanent magnets without post-machining, providing a scalable route for permanent magnet recycling and manufacturing. Moreover, PEM with in situ magnetic particle alignment allows for the continuous fabrication of near-net-shape strands with customizable cross-sections, making it a scalable approach for permanent magnet recycling and industrial manufacturing. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

28 pages, 4460 KiB  
Article
New Protocol for Hydrogen Refueling Station Operation
by Carlos Armenta-Déu
Future Transp. 2025, 5(3), 96; https://doi.org/10.3390/futuretransp5030096 (registering DOI) - 1 Aug 2025
Viewed by 154
Abstract
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the [...] Read more.
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the hydrogen compressor power requirement and the energy consumption for refilling the vehicle tank; therefore, the proposed alternative design for hydrogen refueling stations is feasible and compatible with low-intensity renewable energy sources like solar photovoltaic, wind farms, or micro-hydro plants. Additionally, the cascade method supplies higher pressure to the dispenser throughout the day, thus reducing the refueling time for specific vehicle driving ranges. The simulation shows that the energy saving using the cascade method achieves 9% to 45%, depending on the vehicle attendance. The hydrogen refueling station design supports a daily vehicle attendance of 9 to 36 with a complete refueling process coverage. The carried-out simulation proves that the vehicle tank achieves the maximum attainable pressure of 700 bars with a storage system of six tanks. The data analysis shows that the daily hourly hydrogen demand follows a sinusoidal function, providing a practical tool to predict the hydrogen demand for any vehicle attendance, allowing the planners and station designers to resize the elements to fulfill the new requirements. The proposed system is also applicable to hydrogen ICE vehicles. Full article
Show Figures

Figure 1

18 pages, 6506 KiB  
Article
Realizing the Role of Hydrogen Energy in Ports: Evidence from Ningbo Zhoushan Port
by Xiaohui Zhong, Yuxin Li, Daogui Tang, Hamidreza Arasteh and Josep M. Guerrero
Energies 2025, 18(15), 4069; https://doi.org/10.3390/en18154069 - 31 Jul 2025
Viewed by 301
Abstract
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality, with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port [...] Read more.
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality, with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port operations, using the Chuanshan Port Area of Ningbo Zhoushan Port (CPANZP) as a case study. Through a comprehensive analysis of hydrogen production, storage, refueling, and consumption technologies, we demonstrate the feasibility and benefits of integrating hydrogen systems into port infrastructure. Our findings highlight the successful deployment of a hybrid “wind-solar-hydrogen-storage” energy system at CPANZP, which achieves 49.67% renewable energy contribution and an annual reduction of 22,000 tons in carbon emissions. Key advancements include alkaline water electrolysis with 64.48% efficiency, multi-tier hydrogen storage systems, and fuel cell applications for vehicles and power generation. Despite these achievements, challenges such as high production costs, infrastructure scalability, and data integration gaps persist. The study underscores the importance of policy support, technological innovation, and international collaboration to overcome these barriers and accelerate the adoption of hydrogen energy in ports worldwide. This research provides actionable insights for port operators and policymakers aiming to balance operational efficiency with sustainability goals. Full article
Show Figures

Figure 1

27 pages, 5196 KiB  
Article
Impact of Hydrogen Release on Accidental Consequences in Deep-Sea Floating Photovoltaic Hydrogen Production Platforms
by Kan Wang, Jiahui Mi, Hao Wang, Xiaolei Liu and Tingting Shi
Hydrogen 2025, 6(3), 52; https://doi.org/10.3390/hydrogen6030052 - 29 Jul 2025
Viewed by 230
Abstract
Hydrogen is a potential key component of a carbon-neutral energy carrier and an input to marine industrial processes. This study examines the consequences of coupled hydrogen release and marine environmental factors during floating photovoltaic hydrogen production (FPHP) system failures. A validated three-dimensional numerical [...] Read more.
Hydrogen is a potential key component of a carbon-neutral energy carrier and an input to marine industrial processes. This study examines the consequences of coupled hydrogen release and marine environmental factors during floating photovoltaic hydrogen production (FPHP) system failures. A validated three-dimensional numerical model of FPHP comprehensively characterizes hydrogen leakage dynamics under varied rupture diameters (25, 50, 100 mm), transient release duration, dispersion patterns, and wind intensity effects (0–20 m/s sea-level velocities) on hydrogen–air vapor clouds. FLACS-generated data establish the concentration–dispersion distance relationship, with numerical validation confirming predictive accuracy for hydrogen storage tank failures. The results indicate that the wind velocity and rupture size significantly influence the explosion risk; 100 mm ruptures elevate the explosion risk, producing vapor clouds that are 40–65% larger than 25 mm and 50 mm cases. Meanwhile, increased wind velocities (>10 m/s) accelerate hydrogen dilution, reducing the high-concentration cloud volume by 70–84%. Hydrogen jet orientation governs the spatial overpressure distribution in unconfined spaces, leading to considerable shockwave consequence variability. Photovoltaic modules and inverters of FPHP demonstrate maximum vulnerability to overpressure effects; these key findings can be used in the design of offshore platform safety. This study reveals fundamental accident characteristics for FPHP reliability assessment and provides critical insights for safety reinforcement strategies in maritime hydrogen applications. Full article
Show Figures

Figure 1

39 pages, 2898 KiB  
Review
Floating Solar Energy Systems: A Review of Economic Feasibility and Cross-Sector Integration with Marine Renewable Energy, Aquaculture and Hydrogen
by Marius Manolache, Alexandra Ionelia Manolache and Gabriel Andrei
J. Mar. Sci. Eng. 2025, 13(8), 1404; https://doi.org/10.3390/jmse13081404 - 23 Jul 2025
Viewed by 691
Abstract
Excessive reliance on traditional energy sources such as coal, petroleum, and gas leads to a decrease in natural resources and contributes to global warming. Consequently, the adoption of renewable energy sources in power systems is experiencing swift expansion worldwide, especially in offshore areas. [...] Read more.
Excessive reliance on traditional energy sources such as coal, petroleum, and gas leads to a decrease in natural resources and contributes to global warming. Consequently, the adoption of renewable energy sources in power systems is experiencing swift expansion worldwide, especially in offshore areas. Floating solar photovoltaic (FPV) technology is gaining recognition as an innovative renewable energy option, presenting benefits like minimized land requirements, improved cooling effects, and possible collaborations with hydropower. This study aims to assess the levelized cost of electricity (LCOE) associated with floating solar initiatives in offshore and onshore environments. Furthermore, the LCOE is assessed for initiatives that utilize floating solar PV modules within aquaculture farms, as well as for the integration of various renewable energy sources, including wind, wave, and hydropower. The LCOE for FPV technology exhibits considerable variation, ranging from 28.47 EUR/MWh to 1737 EUR/MWh, depending on the technologies utilized within the farm as well as its geographical setting. The implementation of FPV technology in aquaculture farms revealed a notable increase in the LCOE, ranging from 138.74 EUR/MWh to 2306 EUR/MWh. Implementation involving additional renewable energy sources results in a reduction in the LCOE, ranging from 3.6 EUR/MWh to 315.33 EUR/MWh. The integration of floating photovoltaic (FPV) systems into green hydrogen production represents an emerging direction that is relatively little explored but has high potential in reducing costs. The conversion of this energy into hydrogen involves high final costs, with the LCOH ranging from 1.06 EUR/kg to over 26.79 EUR/kg depending on the complexity of the system. Full article
(This article belongs to the Special Issue Development and Utilization of Offshore Renewable Energy)
Show Figures

Figure 1

26 pages, 3954 KiB  
Article
Bi-Level Planning of Grid-Forming Energy Storage–Hydrogen Storage System Considering Inertia Response and Frequency Parameter Optimization
by Dongqi Huang, Pengwei Sun, Wenfeng Yao, Chang Liu, Hefeng Zhai and Yehao Gao
Energies 2025, 18(15), 3915; https://doi.org/10.3390/en18153915 - 23 Jul 2025
Viewed by 275
Abstract
Energy storage plays an essential role in stabilizing fluctuations in renewable energy sources such as wind and solar, enabling surplus electricity retention, and delivering dynamic frequency regulation. However, relying solely on a single form of storage often proves insufficient due to constraints in [...] Read more.
Energy storage plays an essential role in stabilizing fluctuations in renewable energy sources such as wind and solar, enabling surplus electricity retention, and delivering dynamic frequency regulation. However, relying solely on a single form of storage often proves insufficient due to constraints in performance, capacity, and cost-effectiveness. To tackle frequency regulation challenges in remote desert-based renewable energy hubs—where traditional power infrastructure is unavailable—this study introduces a planning framework for an electro-hydrogen energy storage system with grid-forming capabilities, designed to supply both inertia and frequency response. At the system design stage, a direct current (DC) transmission network is modeled, integrating battery and hydrogen storage technologies. Using this configuration, the capacity settings for both grid-forming batteries and hydrogen units are optimized. This study then explores how hydrogen systems—comprising electrolyzers, storage tanks, and fuel cells—and grid-forming batteries contribute to inertial support. Virtual inertia models are established for each technology, enabling precise estimation of the total synthetic inertia provided. At the operational level, this study addresses stability concerns stemming from renewable generation variability by introducing three security indices. A joint optimization is performed for virtual inertia constants, which define the virtual inertia provided by energy storage systems to assist in frequency regulation, and primary frequency response parameters within the proposed storage scheme are optimized in this model. This enhances the frequency modulation potential of both systems and confirms the robustness of the proposed approach. Lastly, a real-world case study involving a 13 GW renewable energy base in Northwest China, connected via a ±10 GW HVDC export corridor, demonstrates the practical effectiveness of the optimization strategy and system configuration. Full article
(This article belongs to the Special Issue Advanced Battery Management Strategies)
Show Figures

Figure 1

22 pages, 1725 KiB  
Article
Capacity Optimization for Coordinated Operation of Hybrid Electrolytic Cells Based on Wavelet Packet
by Yi Yang, Bowen Zhou, Yang Xu, Juan Zhang, Bo Yang, Guiping Zhou and Shunjiang Wang
Sustainability 2025, 17(14), 6412; https://doi.org/10.3390/su17146412 - 13 Jul 2025
Viewed by 330
Abstract
Hydrogen production through electrolysis of water can achieve efficient, stable and diversified utilization of renewable energy. To this end, a hybrid electrolyzer system for hydrogen production based on bi-layer optimization is constructed. Firstly, the wind and photovoltaic power is decomposed into high-frequency and [...] Read more.
Hydrogen production through electrolysis of water can achieve efficient, stable and diversified utilization of renewable energy. To this end, a hybrid electrolyzer system for hydrogen production based on bi-layer optimization is constructed. Firstly, the wind and photovoltaic power is decomposed into high-frequency and low-frequency components by an adaptive wavelet packet. The low-frequency power is allocated to the alkaline electrolyzers (AWE) to ensure its stability, and the high-frequency power is allocated to the proton exchange membrane electrolyzers (PEM) with a faster response characteristic, thereby improving the energy utilization rate. This paper proposes a bi-layer optimization model, in which the upper-layer objective is to minimize the cost of mixed hydrogen production, and the lower-layer optimization objective is to maximize the utilization rate of renewable energy. The differential evolution algorithm optimizes the upper-layer objective, with results sent to the lower layer. Then, the YALMIP toolbox is used to solve the lower-layer objective. Through case analysis, the optimal proportion of AWE and PEM hydrogen electrolyzers obtained by this optimization method is 89.5 and 10.5, respectively. Compared with a single type of electrolyzer, the method proposed in this paper effectively improves the energy utilization efficiency and reduces the cost of hydrogen production. Full article
(This article belongs to the Topic Clean Energy Technologies and Assessment, 2nd Edition)
Show Figures

Figure 1

36 pages, 3639 KiB  
Article
The Impact of VAT Preferential Policies on the Profitability of China’s New Energy Power Generation Industry
by Wang Ying and Igor A. Mayburov
Energies 2025, 18(14), 3614; https://doi.org/10.3390/en18143614 - 9 Jul 2025
Viewed by 403
Abstract
To achieve climate goals and promote clean energy, China has introduced preferential VAT policies to promote the development of renewable energy power generation industries, but their actual impact on corporate profitability remains underexplored. This study innovatively applies a DID approach, enhanced with PSM [...] Read more.
To achieve climate goals and promote clean energy, China has introduced preferential VAT policies to promote the development of renewable energy power generation industries, but their actual impact on corporate profitability remains underexplored. This study innovatively applies a DID approach, enhanced with PSM and dynamic modeling, to evaluate the causal effects of VAT incentives on firm ROE. Using panel data from 98 listed power generation companies between 2010 and 2024, this study distinguishes treatment effects across the wind, solar, and hydrogen sectors, revealing significant heterogeneity. Unlike prior studies, it further investigates time-lagged impacts and fiscal efficiency indicators to assess policy sustainability. Results show that VAT incentives significantly enhance ROE for wind and solar firms, while the hydrogen sector exhibits weaker responses. These findings not only confirm the effectiveness of targeted tax incentives but also offer new insights for refining fiscal policies to better support sector-specific transitions toward renewable energy. This study provides empirical evidence for the design of China’s fiscal energy policy to maximize the growth of the renewable energy sector. More broadly, this study provides lessons for global green transition policies, illustrating how well-designed fiscal incentives can support sustainable energy development worldwide. Full article
Show Figures

Figure 1

34 pages, 5374 KiB  
Review
Analysis of Infrastructure Requirements for Sustainable Transportation Technologies
by Richard A. Dunlap
Energies 2025, 18(13), 3556; https://doi.org/10.3390/en18133556 - 5 Jul 2025
Viewed by 711
Abstract
At present, transportation energy comes primarily from fossil fuels. In order to mitigate the effects of greenhouse gas emissions, it is necessary to transition to low-carbon transportation technologies. These technologies can include battery electric vehicles, fuel cell vehicles and biofuel vehicles. This transition [...] Read more.
At present, transportation energy comes primarily from fossil fuels. In order to mitigate the effects of greenhouse gas emissions, it is necessary to transition to low-carbon transportation technologies. These technologies can include battery electric vehicles, fuel cell vehicles and biofuel vehicles. This transition includes not only the development and production of suitable vehicles, but also the development of appropriate infrastructure. For example, in the case of battery electric vehicles, this infrastructure would include additional grid capacity for battery charging. For fuel cell vehicles, infrastructure could include facilities for the production of suitable electrofuels, which, again, would require additional grid capacity. In the present paper, we look at some specific examples of infrastructure requirements for battery electric vehicles and vehicles using hydrogen and other electrofuels in either internal combustion engines or fuel cells. Analysis includes the necessary additional grid capacity, energy storage requirements and land area associated with renewable energy generation by solar photovoltaics and wind. The present analysis shows that the best-case scenario corresponds to the use of battery electric vehicles powered by electricity from solar photovoltaics. This situation corresponds to a 47% increase in grid electricity generation and the utilization of 1.7% of current crop land. Full article
(This article belongs to the Special Issue The Future of Renewable Energy: 2nd Edition)
Show Figures

Figure 1

30 pages, 8445 KiB  
Article
Critical Environmental Factors in Offshore Wind–Hydrogen Projects: Uruguay’s Exclusive Economic Zone
by Luisa Rivas, Alice Elizabeth González and Alejandro Gutiérrez
Sustainability 2025, 17(13), 6096; https://doi.org/10.3390/su17136096 - 3 Jul 2025
Viewed by 547
Abstract
Green hydrogen is a promising solution for decarbonizing emission-intensive sectors, with its production through offshore wind energy offering viable opportunities. This study presents a preliminary assessment of the main environmental factors potentially affected by offshore wind and green hydrogen projects in Uruguay’s Exclusive [...] Read more.
Green hydrogen is a promising solution for decarbonizing emission-intensive sectors, with its production through offshore wind energy offering viable opportunities. This study presents a preliminary assessment of the main environmental factors potentially affected by offshore wind and green hydrogen projects in Uruguay’s Exclusive Economic Zone (EEZ), where such developments pose environmental challenges that require evaluation, particularly given the limited prior research in Uruguay and Latin America. Through a comprehensive review of international literature and national technical data, the study identifies key interactions between project activities and the physical, biotic, and anthropic environmental components during the development, construction, and operational phases. Using cross-reference matrices and impact categorization, the analysis highlights that activities such as foundation installation, submarine cable deployment, and offshore electrolysis could significantly affect the seabed, underwater noise levels, water quality, and marine biodiversity. The biotic and physical environment were found to be the most frequently impacted. To contextualize these findings, technical information specific to Uruguay’s EEZ was reviewed to identify the most vulnerable regional environmental factors. The results offer a science-based foundation to support early-stage environmental assessments and guide sustainable offshore energy development in the region. Full article
Show Figures

Figure 1

13 pages, 656 KiB  
Article
AI Predictive Simulation for Low-Cost Hydrogen Production
by Allan John Butler and Akhtar Kalam
Energy Storage Appl. 2025, 2(3), 9; https://doi.org/10.3390/esa2030009 - 1 Jul 2025
Viewed by 312
Abstract
Green hydrogen, produced through renewable-powered electrolysis, has the potential to revolutionize energy systems; however, its widespread adoption hinges on achieving competitive production costs. A critical challenge lies in optimising the hydrogen production process to address solar and wind energy’s high variability and intermittency. [...] Read more.
Green hydrogen, produced through renewable-powered electrolysis, has the potential to revolutionize energy systems; however, its widespread adoption hinges on achieving competitive production costs. A critical challenge lies in optimising the hydrogen production process to address solar and wind energy’s high variability and intermittency. This paper explores the role of artificial intelligence (AI) in reducing and streamlining hydrogen production costs by enabling advanced process optimisation, focusing on electricity cost management and system-wide efficiency improvements. Full article
Show Figures

Figure 1

20 pages, 2078 KiB  
Article
Holistically Green and Sustainable Pathway Prioritisation for Chemical Process Plant Systems via a FAHP–TOPSIS Framework
by Daniel Li, Mohamed Galal Hassan-Sayed, Nuno Bimbo, Zhaomin Li and Ihab M. T. Shigidi
Processes 2025, 13(7), 2068; https://doi.org/10.3390/pr13072068 - 30 Jun 2025
Viewed by 368
Abstract
Multi-criteria Decision Making (MCDM) presents a novel approach towards truly holistic green sustainability, particularly within the context of chemical process plants (CPPs). ASPEN Plus v12.0 was utilised for two representative CPP cases: isopropanol (IPA) production via isopropyl acetate, and green ammonia (NH3 [...] Read more.
Multi-criteria Decision Making (MCDM) presents a novel approach towards truly holistic green sustainability, particularly within the context of chemical process plants (CPPs). ASPEN Plus v12.0 was utilised for two representative CPP cases: isopropanol (IPA) production via isopropyl acetate, and green ammonia (NH3) production. An integrated Fuzzy Analytic Hierarchy Process (FAHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) was modelled in MATLAB v24.1 to prioritise the holistically green and sustainable pathways. Life cycle assessments (LCAs) were employed to select the pathways, and the most suitable sub-criteria per the four criteria are as follows: social, economic, environmental, and technical. In descending order of optimality, the pathways were ranked as follows for green NH3 and IPA, respectively: Hydropower (HPEA) > Wind Turbine (WGEA) > Biomass Gasification (BGEA)/Solar Photovoltaic (PVEA) > Nuclear High Temperature (NTEA), and Propylene Indirect Hydration (IAH) > Direct Propylene Hydration (PH) > Acetone Hydrogenation (AH). Sensitivity analysis evaluated the FAHP–TOPSIS framework to be overall robust. However, there are potential uncertainties within and/or among sub-criteria, particularly in the social dimension, due to software and data limitations. Future research would seek to integrate FAHP with VIKOR and the Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE-II). Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 1972 KiB  
Article
Learning from Arctic Microgrids: Cost and Resiliency Projections for Renewable Energy Expansion with Hydrogen and Battery Storage
by Paul Cheng McKinley, Michelle Wilber and Erin Whitney
Sustainability 2025, 17(13), 5996; https://doi.org/10.3390/su17135996 - 30 Jun 2025
Viewed by 473
Abstract
Electricity in rural Alaska is provided by more than 200 standalone microgrid systems powered predominantly by diesel generators. Incorporating renewable energy generation and storage to these systems can reduce their reliance on costly imported fuel and improve sustainability; however, uncertainty remains about optimal [...] Read more.
Electricity in rural Alaska is provided by more than 200 standalone microgrid systems powered predominantly by diesel generators. Incorporating renewable energy generation and storage to these systems can reduce their reliance on costly imported fuel and improve sustainability; however, uncertainty remains about optimal grid architectures to minimize cost, including how and when to incorporate long-duration energy storage. This study implements a novel, multi-pronged approach to assess the techno-economic feasibility of future energy pathways in the community of Kotzebue, which has already successfully deployed solar photovoltaics, wind turbines, and battery storage systems. Using real community load, resource, and generation data, we develop a series of comparison models using the HOMER Pro software tool to evaluate microgrid architectures to meet over 90% of the annual community electricity demand with renewable generation, considering both battery and hydrogen energy storage. We find that near-term planned capacity expansions in the community could enable over 50% renewable generation and reduce the total cost of energy. Additional build-outs to reach 75% renewable generation are shown to be competitive with current costs, but further capacity expansion is not currently economical. We additionally include a cost sensitivity analysis and a storage capacity sizing assessment that suggest hydrogen storage may be economically viable if battery costs increase, but large-scale seasonal storage via hydrogen is currently unlikely to be cost-effective nor practical for the region considered. While these findings are based on data and community priorities in Kotzebue, we expect this approach to be relevant to many communities in the Arctic and Sub-Arctic regions working to improve energy reliability, sustainability, and security. Full article
Show Figures

Figure 1

29 pages, 1717 KiB  
Review
Development of the Hydrogen Market and Local Green Hydrogen Offtake in Africa
by Chidiebele E. J. Uzoagba, Princewill M. Ikpeka, Somtochukwu Godfrey Nnabuife, Peter Azikiwe Onwualu, Fayen Odette Ngasoh and Boyu Kuang
Hydrogen 2025, 6(3), 43; https://doi.org/10.3390/hydrogen6030043 - 24 Jun 2025
Viewed by 1049
Abstract
Creating a hydrogen market in Africa is a great opportunity to assist in the promotion of sustainable energy solutions and economic growth. This article addresses the legislation and regulations that need to be developed to facilitate growth in the hydrogen market and allow [...] Read more.
Creating a hydrogen market in Africa is a great opportunity to assist in the promotion of sustainable energy solutions and economic growth. This article addresses the legislation and regulations that need to be developed to facilitate growth in the hydrogen market and allow local green hydrogen offtake across the continent. By reviewing current policy and strategy within particular African countries and best practices globally from key hydrogen economies, the review establishes compelling issues, challenges, and opportunities unique to Africa. The study identifies the immense potential in Africa for renewable energy, and, in particular, for solar and wind, as the foundation for the production of green hydrogen. It examines how effective policy frameworks can establish a vibrant hydrogen economy by bridging infrastructural gaps, cost hurdles, and regulatory barriers. The paper also addresses how local offtake contracts for green hydrogen can be used to stimulate economic diversification, energy security, and sustainable development. Policy advice is provided to assist African authorities and stakeholders in the deployment of enabling regulatory frameworks and the mobilization of funds. The paper contributes to global hydrogen energy discussions by introducing Africa as an eligible stakeholder in the emerging hydrogen economy and outlining prospects for its inclusion into regional and global energy supply chains. Full article
Show Figures

Figure 1

18 pages, 3029 KiB  
Article
Techno-Economic Assessment of Green Hydrogen Production in Australia Using Off-Grid Hybrid Resources of Solar and Wind
by Behgol Bagheri, Hiromu Kumagai, Michio Hashimoto and Masakazu Sugiyama
Energies 2025, 18(13), 3285; https://doi.org/10.3390/en18133285 - 23 Jun 2025
Viewed by 392
Abstract
This study presents a techno-economic framework for assessing the potential of utilizing hybrid renewable energy sources (wind and solar) to produce green hydrogen, with a specific focus on Australia. The model’s objective is to equip decision-makers in the green hydrogen industry with a [...] Read more.
This study presents a techno-economic framework for assessing the potential of utilizing hybrid renewable energy sources (wind and solar) to produce green hydrogen, with a specific focus on Australia. The model’s objective is to equip decision-makers in the green hydrogen industry with a reliable methodology to assess the availability of renewable resources for cost-effective hydrogen production. To enhance the credibility of the analysis, the model integrates 10 min on-ground solar and wind data, uses a high-resolution power dispatch simulation, and considers electrolyzer operational thresholds. This study concentrates on five locations in Australia and employs high-frequency resource data to quantify wind and solar availability. A precise simulation of power dispatch for a large off-grid plant has been developed to analyze the PV/wind ratio, element capacities, and cost variables. The results indicate that the locations where wind turbines can produce cost-effective hydrogen are limited due to the high capital investment, which renders wind farms uneconomical for hydrogen production. Our findings show that only one location—Edithburgh, South Australia—under a 50% solar–50% wind scenario, achieves a hydrogen production cost of 10.3 ¢USD/Nm3, which is lower than the 100% solar scenario. In the other four locations, the 100% solar scenario proves to be the most cost-effective for green hydrogen production. This study suggests that precise and comprehensive resource assessment is crucial for developing hydrogen production plants that generate low-cost green hydrogen. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

Back to TopTop