Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (214)

Search Parameters:
Keywords = wind turbine structural aerodynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1835 KiB  
Article
Stress Development in Droplet Impact Analysis of Rain Erosion Damage on Wind Turbine Blades: A Review of Liquid-to-Solid Contact Conditions
by Quentin Laplace Oddo, Quaiyum M. Ansari, Fernando Sánchez, Leon Mishnaevsky and Trevor M. Young
Appl. Sci. 2025, 15(15), 8682; https://doi.org/10.3390/app15158682 (registering DOI) - 6 Aug 2025
Abstract
The wind energy sector is experiencing substantial growth, with global wind turbine capacity increasing and projected to expand further in the coming years. However, rain erosion on the leading edges of turbine blades remains a significant challenge, affecting both aerodynamic efficiency and structural [...] Read more.
The wind energy sector is experiencing substantial growth, with global wind turbine capacity increasing and projected to expand further in the coming years. However, rain erosion on the leading edges of turbine blades remains a significant challenge, affecting both aerodynamic efficiency and structural longevity. The associated degradation reduces annual energy production and leads to high maintenance costs due to frequent inspections and repairs. To address this issue, researchers have developed numerical models to predict blade erosion caused by water droplet impacts. This study presents a finite element analysis model in Abaqus to simulate the interaction between a single water droplet and wind turbine blade material. The novelty of this model lies in evaluating the influence of several parameters on von Mises and S33 peak stresses in the leading-edge protection, such as friction coefficient, type of contact, impact velocity, and droplet diameter. The findings provide insights into optimising LEP numerical models to simulate rain erosion as closely as possible to real-world scenarios. Full article
Show Figures

Figure 1

26 pages, 4555 KiB  
Article
Influence of Geometric Effects on Dynamic Stall in Darrieus-Type Vertical-Axis Wind Turbines for Offshore Renewable Applications
by Qiang Zhang, Weipao Miao, Kaicheng Zhao, Chun Li, Linsen Chang, Minnan Yue and Zifei Xu
J. Mar. Sci. Eng. 2025, 13(7), 1327; https://doi.org/10.3390/jmse13071327 - 11 Jul 2025
Viewed by 231
Abstract
The offshore implementation of vertical-axis wind turbines (VAWTs) presents a promising new paradigm for advancing marine wind energy utilization, owing to their omnidirectional wind acceptance, compact structural design, and potential for lower maintenance costs. However, VAWTs still face major aerodynamic challenges, particularly due [...] Read more.
The offshore implementation of vertical-axis wind turbines (VAWTs) presents a promising new paradigm for advancing marine wind energy utilization, owing to their omnidirectional wind acceptance, compact structural design, and potential for lower maintenance costs. However, VAWTs still face major aerodynamic challenges, particularly due to the pitching motion, where the angle of attack varies cyclically with the blade azimuth. This leads to strong unsteady effects and susceptibility to dynamic stalls, which significantly degrade aerodynamic performance. To address these unresolved issues, this study conducts a comprehensive investigation into the dynamic stall behavior and wake vortex evolution induced by Darrieus-type pitching motion (DPM). Quasi-three-dimensional CFD simulations are performed to explore how variations in blade geometry influence aerodynamic responses under unsteady DPM conditions. To efficiently analyze geometric sensitivity, a surrogate model based on a radial basis function neural network is constructed, enabling fast aerodynamic predictions. Sensitivity analysis identifies the curvature near the maximum thickness and the deflection angle of the trailing edge as the most influential geometric parameters affecting lift and stall behavior, while the blade thickness is shown to strongly impact the moment coefficient. These insights emphasize the pivotal role of blade shape optimization in enhancing aerodynamic performance under inherently unsteady VAWT operating conditions. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Data Analysis)
Show Figures

Figure 1

27 pages, 1734 KiB  
Article
Characterizing Wake Behavior of Adaptive Aerodynamic Structures Using Reduced-Order Models
by Kyan Sadeghilari, Aditya Atre and John Hall
Energies 2025, 18(14), 3648; https://doi.org/10.3390/en18143648 - 10 Jul 2025
Viewed by 338
Abstract
In recent times, blades that have the ability to change shape passively or actively have garnered interest due to their ability to optimize blade performance for varying flow conditions. Various versions of morphing exist, from simple chord length changes to full blade morphing [...] Read more.
In recent times, blades that have the ability to change shape passively or actively have garnered interest due to their ability to optimize blade performance for varying flow conditions. Various versions of morphing exist, from simple chord length changes to full blade morphing with multiple degrees of freedom. These blades can incorporate smart materials or mechanical actuators to modify the blade shape to suit the wind conditions. Morphing blades have shown an ability to improve performance in simulations. These simulations show increased performance in Region 2 (partial load) operating conditions. This study focuses on the effects of the wake for a flexible wind turbine with actively variable twist angle distribution (TAD) to improve the energy production capabilities of morphing structures. These wake effects influence wind farm performance for locally clustered turbines by extracting energy from the free stream. Hence, the development of better wake models is critical for better turbine design and controls. This paper provides an outline of some approaches available for wake modeling. FLORIS (FLow Redirection and Induction Steady-State) is a program used to predict steady-state wake characteristics. Alongside that, the Materials and Methods section shows different modeling environments and their possible integration into FLORIS. The Results and Discussion section analyzes the 20 kW wind turbine with previously acquired data from the National Renewable Energy Laboratory’s (NREL) AeroDyn v13 software. The study employs FLORIS to simulate steady-state non-linear wake interactions for the nine TAD shapes. These TAD shapes are evaluated across Region 2 operating conditions. The previous study used a genetic algorithm to obtain nine TAD shapes that maximized aerodynamic efficiency in Region 2. The Results and Discussion section compares these TAD shapes to the original blade design regarding the wake characteristics. The project aims to enhance the understanding of FLORIS for studying wake characteristics for morphing blades. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

17 pages, 2929 KiB  
Article
Novel Hybrid Deep Learning Model for Forecasting FOWT Power Output
by Mohammad Barooni, Deniz Velioglu Sogut, Parviz Sedigh and Masoumeh Bahrami
Energies 2025, 18(13), 3532; https://doi.org/10.3390/en18133532 - 4 Jul 2025
Viewed by 313
Abstract
This study presents a novel approach in the field of renewable energy, focusing on the power generation capabilities of floating offshore wind turbines (FOWTs). The study addresses the challenges of designing and assessing the power generation of FOWTs due to their multidisciplinary nature [...] Read more.
This study presents a novel approach in the field of renewable energy, focusing on the power generation capabilities of floating offshore wind turbines (FOWTs). The study addresses the challenges of designing and assessing the power generation of FOWTs due to their multidisciplinary nature involving aerodynamics, hydrodynamics, structural dynamics, and control systems. A hybrid deep learning model combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks is proposed to predict the performance of FOWTs accurately and more efficiently than traditional numerical models. This model addresses computational complexity and lengthy processing times of conventional models, offering adaptability, scalability, and efficient handling of nonlinear dynamics. The results for predicting the generator power of a spar-type floating offshore wind turbine (FOWT) in a multivariable parallel time-series dataset using the Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) model showed promising outcomes, offering valuable insights into the model’s performance and potential applications. Its ability to capture a comprehensive range of load case scenarios—from mild to severe—through the integration of multiple relevant features significantly enhances the model’s robustness and applicability in realistic offshore environments. The research demonstrates the potential of deep learning methods in advancing renewable energy technology, specifically in optimizing turbine efficiency, anticipating maintenance needs, and integrating wind power into energy grids. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

24 pages, 3084 KiB  
Article
Overall Design and Performance Analysis of the Semi-Submersible Platform for a 10 MW Vertical-Axis Wind Turbine
by Qun Cao, Xinyu Zhang, Ying Chen, Xinxin Wu, Kai Zhang and Can Zhang
Energies 2025, 18(13), 3488; https://doi.org/10.3390/en18133488 - 2 Jul 2025
Viewed by 383
Abstract
This study presents a novel semi-submersible platform design for 10 MW vertical-axis wind turbines (VAWTs), specifically engineered to address the compounded challenges of China’s intermediate-depth (40 m), typhoon-prone maritime environment. Unlike conventional horizontal-axis configurations, VAWTs impose unique demands due to omnidirectional wind reception, [...] Read more.
This study presents a novel semi-submersible platform design for 10 MW vertical-axis wind turbines (VAWTs), specifically engineered to address the compounded challenges of China’s intermediate-depth (40 m), typhoon-prone maritime environment. Unlike conventional horizontal-axis configurations, VAWTs impose unique demands due to omnidirectional wind reception, high aerodynamic load fluctuations, and substantial self-weight—factors exacerbated by short installation windows and complex hydrodynamic interactions. Through systematic scheme demonstration, we establish the optimal four-column configuration, resolving critical limitations of existing concepts in terms of water depth adaptability, stability, and fabrication economics. The integrated design features central turbine mounting, hexagonal pontoons for enhanced damping, and optimized ballast distribution, achieving a 3400-tonne steel mass (29% reduction vs. benchmarks). Comprehensive performance validation confirms exceptional survivability under 50-year typhoon conditions (Hs = 4.42 m, Uw = 54 m/s), limiting platform tilt to 8.02° (53% of allowable) and nacelle accelerations to 0.10 g (17% of structural limit). Hydrodynamic analysis reveals heave/pitch natural periods > 20 s, avoiding wave resonance (Tp = 7.64 s), while comparative assessment demonstrates 33% lower pitch RAOs than leading horizontal-axis platforms. The design achieves unprecedented synergy of typhoon resilience, motion performance, and cost-efficiency—validated by 29% steel savings—providing a technically and economically viable solution for megawatt-scale VAWT deployment in challenging seas. Full article
Show Figures

Figure 1

32 pages, 5640 KiB  
Article
Computational Analysis of Aerodynamic Blade Load Transfer to the Powertrain of a Direct-Drive Multi-MW Wind Turbine
by Magnus Bichan, Pablo Jaen-Sola, Firdaus Muhammad-Sukki and Nazmi Sellami
Machines 2025, 13(7), 575; https://doi.org/10.3390/machines13070575 - 2 Jul 2025
Viewed by 256
Abstract
This paper details the development of a full turbine model and ensuing aero-servo-elastic analysis of the International Energy Agency’s 15MW Reference Wind Turbine. This model provides the means to obtain realistic turbine performance data, of which normal and tangential blade loads are extracted [...] Read more.
This paper details the development of a full turbine model and ensuing aero-servo-elastic analysis of the International Energy Agency’s 15MW Reference Wind Turbine. This model provides the means to obtain realistic turbine performance data, of which normal and tangential blade loads are extracted and applied to a simplified drivetrain model developed expressly to quantify the shaft eccentricities caused by aerodynamic loading, thus determining the impact of aerodynamic loading on the generator structure. During this process, a method to determine main bearing stiffness values is presented, and values for the IEA-15MW-RWT obtained. It was found that wind speeds in the region of turbine cut-out induce shaft eccentricities as high as 56%, and that tangential loading has a significant contribution to shaft eccentricities, increasing deflection at the generator area by as much as 106% at high windspeeds, necessitating its inclusion. During a subsequent generator structure optimisation, the shaft eccentricities caused by the loading scenarios examined in this paper were found to increase the necessary mass of the rotor structure by 40%, to meet the reduced airgap clearance. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

16 pages, 779 KiB  
Article
A Supervisory Control Framework for Fatigue-Aware Wake Steering in Wind Farms
by Yang Shen, Jinkui Zhu, Peng Hou, Shuowang Zhang, Xinglin Wang, Guodong He, Chao Lu, Enyu Wang and Yiwen Wu
Energies 2025, 18(13), 3452; https://doi.org/10.3390/en18133452 - 30 Jun 2025
Viewed by 242
Abstract
Wake steering has emerged as a promising strategy to mitigate turbine wake losses, with existing research largely focusing on the aerodynamic optimization of yaw angles. However, many prior approaches rely on static look-up tables (LUTs), offering limited adaptability to real-world wind variability and [...] Read more.
Wake steering has emerged as a promising strategy to mitigate turbine wake losses, with existing research largely focusing on the aerodynamic optimization of yaw angles. However, many prior approaches rely on static look-up tables (LUTs), offering limited adaptability to real-world wind variability and leading to non-optimal results. More importantly, these energy-focused strategies overlook the mechanical implications of frequent yaw activities in pursuit of the maximum power output, which may lead to premature exhaustion of the yaw system’s design life, thereby accelerating structural degradation. This study proposes a supervisory control framework that balances energy capture with structural reliability through three key innovations: (1) upstream-based inflow sensing for real-time capture of free-stream wind, (2) fatigue-responsive optimization constrained by a dynamic actuation quota system with adaptive yaw activation, and (3) a bidirectional threshold adjustment mechanism that redistributes unused actuation allowances and compensates for transient quota overruns. A case study at an offshore wind farm shows that the framework improves energy yield by 3.94%, which is only 0.29% below conventional optimization, while reducing yaw duration and activation frequency by 48.5% and 74.6%, respectively. These findings demonstrate the framework’s potential as a fatigue-aware control paradigm that balances energy efficiency with system longevity. Full article
(This article belongs to the Special Issue Wind Turbine Wakes and Wind Farms)
Show Figures

Figure 1

19 pages, 3230 KiB  
Article
Research on Nonlinear Pitch Control Strategy for Large Wind Turbine Units Based on Effective Wind Speed Estimation
by Longjun Li, Xiangtian Deng, Yandong Liu, Xuxin Yue, Haoran Wang, Ruibo Liu, Zhaobing Cai and Ruiqi Cai
Electronics 2025, 14(12), 2460; https://doi.org/10.3390/electronics14122460 - 17 Jun 2025
Viewed by 254
Abstract
With the increasing capacity of wind turbines, key components including the rotor diameter, tower height, and tower radius expand correspondingly. This heightened inertia extends the response time of pitch actuators during rapid wind speed variations occurring above the rated wind speed. Consequently, wind [...] Read more.
With the increasing capacity of wind turbines, key components including the rotor diameter, tower height, and tower radius expand correspondingly. This heightened inertia extends the response time of pitch actuators during rapid wind speed variations occurring above the rated wind speed. Consequently, wind turbines encounter significant output power oscillations and complex structural loading challenges. To address these issues, this paper proposes a novel pitch control strategy combining an effective wind speed estimation with the inverse system method. The developed control system aims to stabilize the power output and rotational speed despite wind speed fluctuations. Central to this approach is the estimation of the aerodynamic rotor torque using an extended Kalman filter (EKF) applied to the drive train model. The estimated torque is then utilized to compute the effective wind speed at the rotor plane via a differential method. Leveraging this wind speed estimate, the inverse system technique transforms the nonlinear wind turbine dynamics into a linearized, decoupled pseudo-linear system. This linearization facilitates the design of a more agile pitch controller. Simulation outcomes demonstrate that the proposed strategy markedly enhances the pitch response speed, diminishes output power oscillations, and alleviates structural loads, notably at the tower base. These improvements bolster operational safety and stability under the above-rated wind speed conditions. Full article
(This article belongs to the Special Issue Power Electronics in Renewable Systems)
Show Figures

Figure 1

16 pages, 3658 KiB  
Article
Hydrodynamic Analysis of a NREL 5 MW Monopile Wind Turbine Under the Effect of the 30 October 2020 İzmir-Samos Tsunami
by Barış Namlı, Cihan Bayındır and Fatih Ozaydin
J. Mar. Sci. Eng. 2025, 13(5), 857; https://doi.org/10.3390/jmse13050857 - 25 Apr 2025
Viewed by 559
Abstract
Although offshore wind turbines are essential for renewable energy, their construction and design are quite complex when environmental factors are taken into account. It is quite difficult to examine their behavior under rare but dangerous natural events such as tsunamis, which bring great [...] Read more.
Although offshore wind turbines are essential for renewable energy, their construction and design are quite complex when environmental factors are taken into account. It is quite difficult to examine their behavior under rare but dangerous natural events such as tsunamis, which bring great danger to their structural safety and serviceability. With this motivation, this study investigates the effects of tsunami and wind on an offshore National Renewable Energy Laboratory (NREL) 5 MW wind turbine both hydrodynamically and aerodynamically. First, the NREL 5 MW monopile offshore wind turbine model was parameterized and the aerodynamic properties of the rotor region at different wind speeds were investigated using the blade element momentum (BEM) approach. The tsunami data of the İzmir-Samos (Aegean) tsunami on 30 October 2020 were reconstructed using the data acquired from the UNESCO data portal at Bodrum station. The obtained tsunami wave elevation dataset was imported to the QBlade software to investigate the hydrodynamic and aerodynamic characteristics of the NREL 5 MW monopile offshore under the tsunami effect. It was observed that the hydrodynamics significantly changed as a result of the tsunami effect. The total Morison wave force and the hydrodynamic inertia forces significantly changed due to the tsunami–monopile interaction, showing similar cyclic behavior with amplified forces. An increase in the horizontal force levels to values greater than twofold of the pre-event can be observed due to the İzmir-Samos tsunami with a waveheight of 7 cm at the Bodrum station. However, no significant change was observed on the rated power time series, aerodynamics, and bending moments on the NREL 5 MW monopile offshore wind turbine due to this tsunami. Full article
Show Figures

Figure 1

36 pages, 8652 KiB  
Article
Investigation of Directionality Effect for 10 MW Monopile Offshore Wind Turbine Excited by Wind, Wave, and Earthquakes
by Renqiang Xi, Qingxuan Zhou, Yongqing Lai and Wanli Yu
J. Mar. Sci. Eng. 2025, 13(4), 727; https://doi.org/10.3390/jmse13040727 - 5 Apr 2025
Viewed by 530
Abstract
Offshore wind turbines (OWTs) exhibit inherent directional variations in inertia, stiffness, and damping properties. This study examines the directionality effect of a 10 MW monopile-supported OWT using an integrated rotor-nacelle assembly (RNA) and support structure model. Through combined theoretical analysis and numerical simulations, [...] Read more.
Offshore wind turbines (OWTs) exhibit inherent directional variations in inertia, stiffness, and damping properties. This study examines the directionality effect of a 10 MW monopile-supported OWT using an integrated rotor-nacelle assembly (RNA) and support structure model. Through combined theoretical analysis and numerical simulations, this paper systematically investigates the following: (1) the anisotropic characteristics of RNA rotational inertia and blade stiffness, (2) the natural frequency and aerodynamic damping properties of the system, and (3) the directional mechanisms governing seismic responses of MOWTs during parked and running states. The key findings reveal substantial structural anisotropies. The second-order natural frequencies display a 15% disparity between fore–aft (1.43 Hz) and side–side (1.24 Hz) tower modes. The blade frequencies show over 50% differences between flap-wise (0.60 Hz/1.69 Hz) and edge-wise (0.91 Hz/2.71 Hz) modes in first-/second-order vibrations. Moreover, the aerodynamic damping ratios show marked directional contrast, with first-mode fore–aft damping (8%) exceeding side–side values (1.11%) by a factor of 7.2. Consequently, the seismic input directionality induces peak yaw-bearing bending moment variations of 38% (running condition) and 73% (parked condition). The directional effects in parked OWTs are attributed to RNA inertia anisotropy and blade stiffness disparities, while the running condition demonstrates combined influences from inherent system parameters (inertia, stiffness, aerodynamic damping) and wind–wave environmental loading. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

16 pages, 5590 KiB  
Article
Experimental and Computational Study of the Aerodynamic Characteristics of a Darrieus Rotor with Asymmetrical Blades to Increase Turbine Efficiency Under Low Wind Velocity Conditions
by Muhtar Isataev, Rustem Manatbayev, Zhanibek Seydulla, Nurdaulet Kalassov, Ainagul Yershina and Zhandos Baizhuma
Appl. Syst. Innov. 2025, 8(2), 49; https://doi.org/10.3390/asi8020049 - 3 Apr 2025
Cited by 2 | Viewed by 940
Abstract
In this study, we conducted experimental and numerical investigations of a Darrieus rotor with asymmetrical blades, which has two structural configurations—with and without horizontal parallel plates. Experimental tests were conducted in a wind tunnel at various air flow velocities (ranging from 3 m/s [...] Read more.
In this study, we conducted experimental and numerical investigations of a Darrieus rotor with asymmetrical blades, which has two structural configurations—with and without horizontal parallel plates. Experimental tests were conducted in a wind tunnel at various air flow velocities (ranging from 3 m/s to 15 m/s), measuring rotor rotation frequency, torque, and thrust force. The computational simulation used the ANSYS 2022 R2 Fluent software package, where CFD simulations of air flow around both rotor configurations were performed. The calculations employed the Realizable k-ε turbulence model, while an unstructured mesh with local refinement in the blade–flow interaction zones was used for grid generation. The study results showed that the rotor with horizontal parallel plates exhibits higher aerodynamic efficiency at low wind velocities compared to the no-plates rotor. The experimental findings indicated that at wind speeds of 3–6 m/s, the rotor with plates demonstrates 18–22% higher torque, which facilitates the self-start process and stabilizes turbine operation. The numerical simulations confirmed that horizontal plates contribute to stabilizing the air flow by reducing the intensity of vortex structures behind the blades, thereby decreasing aerodynamic drag and minimizing energy losses. It was also found that the presence of plates creates a directed flow effect, increasing the lift force on the blades and improving the power coefficient (Cp). In the case of the rotor without plates, the CFD simulations identified significant low-pressure zones and high turbulence regions behind the blades, leading to increased aerodynamic losses and reduced efficiency. Thus, the experimental and numerical modeling results confirm that the Darrieus rotor with horizontal parallel plates is a more efficient solution for operation under low and variable wind conditions. The optimized design with plates ensures more stable flow, reduces energy losses, and increases the turbine’s power coefficient. These findings may be useful for designing small-scale wind energy systems intended for areas with low wind speeds. Full article
(This article belongs to the Special Issue Wind Energy and Wind Turbine System)
Show Figures

Figure 1

28 pages, 27861 KiB  
Article
Modeling and Analysis of Wind Turbine Wake Vortex Evolution Due to Time-Constant Spatial Variations in Atmospheric Flow
by Alayna Farrell, Fernando Ponta and North Yates
Energies 2025, 18(6), 1499; https://doi.org/10.3390/en18061499 - 18 Mar 2025
Viewed by 479
Abstract
Modern utility-scale wind turbines are evolving toward larger, lighter, and more flexible designs to meet the growing demand for renewable energy while minimizing logistical costs. However, these advancements in lightweight design result in heightened aeroelastic sensitivity, leading to complex interactions which affect the [...] Read more.
Modern utility-scale wind turbines are evolving toward larger, lighter, and more flexible designs to meet the growing demand for renewable energy while minimizing logistical costs. However, these advancements in lightweight design result in heightened aeroelastic sensitivity, leading to complex interactions which affect the rotor’s capacity to withstand aerodynamic loading and the cascading effects that manifest in the wake’s vortex-structure evolution under variable atmospheric conditions. In this paper, we analyze the influence of stream-wise fluctuating atmospheric flow conditions on wind turbines with large, flexible rotors through simulations of the National Rotor Testbed (NRT) turbine, located at Sandia National Labs’ Scaled Wind Farm Technology (SWiFT) facility in Lubbock, Texas. The Common Ordinary Differential Equation Framework (CODEF) modeling suite is used to simulate wind turbine aeroelastic oscillatory behavior and wind farm vortex–wake interactions for a range of conditions with spatially variant atmospheric flow. CODEF solutions for turbine operation in wind conditions featuring only one parameter fluctuation are compared to wind conditions with several wind parameter variations in combination. By isolating individual inflow variations and comparing them to multi-parameter scenarios, we determine the contributions of each atmospheric factor to rotor dynamics, wake evolution, and downstream wind farm interactions. The purpose of this paper is to analyze the effects of spatial variations in atmospheric flow on the topological evolution of wind turbine vortex wakes, which constitutes a gap in the current understanding of wind turbine wake dynamics. The insights gained from this study are particularly valuable for the development of wind farm control strategies aimed at mitigating the adverse effects of wake interactions, enhancing energy capture, and improving the overall stability of wind farm operations. With these insights, we aim to contribute to the development of modeling and simulation tools to optimize utility-scale wind power plants operating in diverse atmospheric environments. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

30 pages, 8502 KiB  
Article
Dynamic Structural Behavior of Monopile Support Structure for 15 MW Offshore Wind Turbine During Different Phases of Operation
by Sajid Ali, Muhammad Waleed and Daeyong Lee
J. Mar. Sci. Eng. 2025, 13(3), 515; https://doi.org/10.3390/jmse13030515 - 6 Mar 2025
Cited by 1 | Viewed by 1319
Abstract
The structural integrity of offshore wind turbine monopiles is critical for ensuring operational stability and long-term performance under varying environmental and aerodynamic loads. However, transient load conditions during different operational phases, such as start, normal stop, and emergency stop, can significantly impact structural [...] Read more.
The structural integrity of offshore wind turbine monopiles is critical for ensuring operational stability and long-term performance under varying environmental and aerodynamic loads. However, transient load conditions during different operational phases, such as start, normal stop, and emergency stop, can significantly impact structural behavior, influencing fatigue life and dynamic stability. This study investigates the dynamic structural response of a 15 MW offshore wind turbine monopile, incorporating modal analysis and transient simulations to assess deflection, forces, moments, and rotational displacements at the mud-line. The modal analysis revealed natural frequencies of 0.509492 Hz, 1.51616 Hz, and 3.078425 Hz for the blade’s flap-wise modes, while side-to-side modes for the combined tower and monopile structure were identified at 0.17593 Hz, 0.922308 Hz, and 1.650862 Hz. These frequencies are crucial in evaluating resonance risks and ensuring dynamic stability under combined aerodynamic and hydrodynamic forces. The transient analysis demonstrated that lateral force (Fy) variations peaked at −2500 kN during emergency stop, while moment fluctuations (My) reached ±100,000 kNm, reflecting the monopile’s high dynamic sensitivity under sudden aerodynamic unloading. Rotational displacements also showed significant variations, with θx oscillating up to ±0.0009 degrees and θy between −0.0022 and −0.0027 degrees. These findings provide valuable insights into optimizing monopile design to mitigate resonance effects, improve fatigue performance, and enhance structural resilience for large-scale offshore wind turbine support systems. Full article
Show Figures

Figure 1

16 pages, 4901 KiB  
Article
Thermal Characterization of Ceramic Composites for Optimized Surface Dielectric Barrier Discharge Plasma Actuators
by Kateryna O. Shvydyuk, Frederico F. Rodrigues, João Nunes-Pereira, José C. Páscoa and Abílio P. Silva
Actuators 2025, 14(3), 127; https://doi.org/10.3390/act14030127 - 6 Mar 2025
Cited by 1 | Viewed by 906
Abstract
Ice accretion is a significant drawback in an aircraft’s and wind turbine’s aerodynamic performance in cold climate weather. Plasma actuators are an attractive technology for ice removal; however, dielectric barriers are typically restricted to borosilicate glass and various polymers, such as Teflon® [...] Read more.
Ice accretion is a significant drawback in an aircraft’s and wind turbine’s aerodynamic performance in cold climate weather. Plasma actuators are an attractive technology for ice removal; however, dielectric barriers are typically restricted to borosilicate glass and various polymers, such as Teflon® and Kapton®. Nevertheless, new materials capable of withstanding prolonged exposure to charged particles are needed. In this work, Y2O3-ZrO2, MgO-CaZrO3, and MgO-Al2O3 ceramic samples were manufactured and their thermal properties as DBD plasma actuators were measured. As foreseen, the results showed that the higher the power consumed, the higher the temperature surface of the plasma actuators. The Y2O3-ZrO2 dielectric showed the highest power consumption and ceiling temperatures (20.7 W and 155 °C at 10 kVpp, respectively), followed by MgO-CaZrO3 (9.6 W and 62 °C at 10 kVpp, respectively) and by MgO-Al2O3 (5.6 W and 47 °C at 10 kVpp, respectively). It was concluded that MgO-Al2O3 presented stable magnitudes across the entire dielectric area, whilst Y2O3-ZrO2 showed a more concentrated temperature field. Therefore, considering that about 65 to 95% of the total power supplied to the DBD plasma actuator is dissipated as heat, it becomes natural to propose ceramic-based DBD plasma actuators as de-/anti-icing means for aero-dynamic structures. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

14 pages, 2903 KiB  
Article
Structural Feasibility of a Wind Turbine Blade Inspired by an Owl Airfoil
by Dean Sesalim and Jamal Naser
Energies 2025, 18(5), 1288; https://doi.org/10.3390/en18051288 - 6 Mar 2025
Viewed by 817
Abstract
Geometrical solutions for aerodynamic limitations comprise a major development towards improving the wind energy capture efficiency and aerodynamic performance of wind turbines. However, the implementation of some mechanisms such as considerably thin airfoils have been a hurdle due to the available manufacturing methods [...] Read more.
Geometrical solutions for aerodynamic limitations comprise a major development towards improving the wind energy capture efficiency and aerodynamic performance of wind turbines. However, the implementation of some mechanisms such as considerably thin airfoils have been a hurdle due to the available manufacturing methods and cost effectiveness. Moreover, the analysis has been mostly focused on analyzing and optimizing the aerodynamic aspect of wind turbines, independently of the structural performance necessary to support the optimized aerodynamic performance. Therefore, this paper analyzes the fluid–structure interaction (FSI) of a wind turbine with a relatively thin airfoil section using computational fluid dynamics (CFD) and finite element analysis (FEA) to evaluate the total displacement as well as the stresses acting on the blade as the results of the aerodynamic pressure distribution. Using the structural design, geometrical scales, and material properties of baseline model, the structural performance reflected by the thin airfoil design is isolated. Not only did the thin airfoil reduce the volume of the material and, therefore, the weight of the modified blade, but it was also able to provide high rigidity, which is necessary to support better aerodynamic performance. This was found to be influenced by the structural shape of the turbine blade, resulting in a maximum total deformation of less than 5.9 × 10−7 m, which is very negligible in comparison to the scale of the turbine blade in this analysis. Full article
(This article belongs to the Special Issue Advances in Fluid Dynamics and Wind Power Systems: 2nd Edition)
Show Figures

Figure 1

Back to TopTop