Novel Hybrid Deep Learning Model for Forecasting FOWT Power Output
Abstract
1. Introduction
2. Methodology
3. Convolutional Neural Network (CNN)
3.1. Long Short-Term Memory (LSTM)
3.2. Multivariate CNN-LSTM Model
3.3. Feature Engineering
3.4. Model Evaluation
4. Results and Discussion
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barooni, M.; Nezhad, S.K.; Ali, N.A.; Ashuri, T.; Sogut, D.V. Numerical study of ice-induced loads and dynamic response analysis for floating offshore wind turbines. Mar. Struct. 2022, 86, 103300. [Google Scholar] [CrossRef]
- Barooni, M.; Ashuri, T.; Velioglu Sogut, D.; Wood, S.; Ghaderpour Taleghani, S. Floating Offshore Wind Turbines: Current Status and Future Prospects. Energies 2022, 16, 2. [Google Scholar] [CrossRef]
- Ashuri, T.; Zaaijer, M.B. Review of design concepts, methods and considerations of offshore wind turbines. In Proceedings of the European Offshore Wind Conference and Exhibition, Berlin, Germany, 4–6 December 2007; Volume 1. [Google Scholar]
- Xu, Y.; Liu, P.; Penesis, I.; He, G.; Heidarian, A.; Ghassemi, H. Energy generation efficiency and strength coupled design and optimization of wind turbine rotor blades. J. Energy Eng. 2019, 145, 04019004. [Google Scholar] [CrossRef]
- Junejo, A.R.; Gilal, N.U.; Doh, J. Physics-informed optimization of robust control system to enhance power efficiency of renewable energy: Application to wind turbine. Energy 2023, 263, 125667. [Google Scholar] [CrossRef]
- Del Ser, J.; Casillas-Perez, D.; Cornejo-Bueno, L.; Prieto-Godino, L.; Sanz-Justo, J.; Casanova-Mateo, C.; Salcedo-Sanz, S. Randomization-based machine learning in renewable energy prediction problems: Critical literature review, new results and perspectives. Appl. Soft Comput. 2022, 118, 108526. [Google Scholar] [CrossRef]
- Gogas, P.; Papadimitriou, T. Machine Learning in Renewable Energy. Energies 2023, 16, 2260. [Google Scholar] [CrossRef]
- Kim, S.; Matsumi, Y.; Pan, S.; Mase, H. A real-time forecast model using artificial neural network for after-runner storm surges on the Tottori coast, Japan. Ocean Eng. 2016, 122, 44–53. [Google Scholar] [CrossRef]
- Dineva, A.; Várkonyi-Kóczy, A.R.; Tar, J.K. Fuzzy expert system for automatic wavelet shrinkage procedure selection for noise suppression. In Proceedings of the IEEE 18th International Conference on Intelligent Engineering Systems INES 2014, Tihany, Hungary, 3–5 July 2014; pp. 163–168. [Google Scholar]
- Suykens, J.A.; Vandewalle, J. Recurrent least squares support vector machines. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2000, 47, 1109–1114. [Google Scholar] [CrossRef]
- Gizaw, M.S.; Gan, T.Y. Regional flood frequency analysis using support vector regression under historical and future climate. J. Hydrol. 2016, 538, 387–398. [Google Scholar] [CrossRef]
- Taherei Ghazvinei, P.; Hassanpour Darvishi, H.; Mosavi, A.; Yusof, K.b.W.; Alizamir, M.; Shamshirband, S.; Chau, K.w. Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network. Eng. Appl. Comput. Fluid Mech. 2018, 12, 738–749. [Google Scholar] [CrossRef]
- Brownlee, J. Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python; Machine Learning Mastery: Melbourne, Australia, 2018. [Google Scholar]
- Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.r.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag. 2012, 29, 82–97. [Google Scholar] [CrossRef]
- El Bourakadi, D.; Ramadan, H.; Yahyaouy, A.; Boumhidi, J. A novel solar power prediction model based on stacked BiLSTM deep learning and improved extreme learning machine. Int. J. Inf. Technol. 2023, 15, 587–594. [Google Scholar] [CrossRef]
- Xiong, J.; Peng, T.; Tao, Z.; Zhang, C.; Song, S.; Nazir, M.S. A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction. Energy 2023, 266, 126419. [Google Scholar] [CrossRef]
- Lim, S.C.; Huh, J.H.; Hong, S.H.; Park, C.Y.; Kim, J.C. Solar Power Forecasting using CNN-LSTM hybrid model. Energies 2022, 15, 8233. [Google Scholar] [CrossRef]
- Barooni, M.; Ghaderpour Taleghani, S.; Bahrami, M.; Sedigh, P.; Velioglu Sogut, D. Machine Learning-Based Forecasting of metocean data for offshore engineering applications. Atmosphere 2024, 15, 640. [Google Scholar] [CrossRef]
- Li, H.; Huang, C.G.; Soares, C.G. A real-time inspection and opportunistic maintenance strategies for floating offshore wind turbines. Ocean Eng. 2022, 256, 111433. [Google Scholar] [CrossRef]
- Abbas, N.; Zalkind, D.; Pao, L.; Wright, A. A reference open-source controller for fixed and floating offshore wind turbines. Wind Energy Sci. Discuss. 2021, 2021, 1–33. [Google Scholar] [CrossRef]
- Choe, D.E.; Kim, H.C.; Kim, M.H. Sequence-based modeling of deep learning with LSTM and GRU networks for structural damage detection of floating offshore wind turbine blades. Renew. Energy 2021, 174, 218–235. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W. Physics-informed deep learning model in wind turbine response prediction. Renew. Energy 2022, 185, 932–944. [Google Scholar] [CrossRef]
- Chen, H.; Liu, H.; Chu, X.; Liu, Q.; Xue, D. Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network. Renew. Energy 2021, 172, 829–840. [Google Scholar] [CrossRef]
- Khazaee, M.; Derian, P.; Mouraud, A. A comprehensive study on Structural Health Monitoring (SHM) of wind turbine blades by instrumenting tower using machine learning methods. Renew. Energy 2022, 199, 1568–1579. [Google Scholar] [CrossRef]
- Wang, Z.; Qiao, D.; Tang, G.; Wang, B.; Yan, J.; Ou, J. An identification method of floating wind turbine tower responses using deep learning technology in the monitoring system. Ocean Eng. 2022, 261, 112105. [Google Scholar] [CrossRef]
- Ostovar, A.; Davari, D.D.; Dzikuć, M. Determinants of design with Multilayer Perceptron Neural Networks: A comparison with logistic regression. Sustainability 2025, 17, 2611. [Google Scholar] [CrossRef]
- Pandit, R.; Astolfi, D.; Hong, J.; Infield, D.; Santos, M. SCADA data for wind turbine data-driven condition/performance monitoring: A review on state-of-art, challenges and future trends. Wind Eng. 2023, 47, 422–441. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, Q.; Sun, L.; Sun, L.; Kang, J.; Li, H. CNN–LSTM–AM: A power prediction model for offshore wind turbines. Ocean Eng. 2024, 301, 117598. [Google Scholar] [CrossRef]
- Barooni, M.; Ali, N.A.; Ashuri, T. An open-source comprehensive numerical model for dynamic response and loads analysis of floating offshore wind turbines. Energy 2018, 154, 442–454. [Google Scholar] [CrossRef]
- Jonkman, B.J. TurbSim User’s Guide; Technical Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2006.
- Jonkman, J. Definition of the Floating System for Phase IV of OC3 (No. NREL/TP-500-47535); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2010.
- O’Shea, K.; Nash, R. An introduction to Convolutional Neural Networks. arXiv 2015, arXiv:1511.08458. [Google Scholar]
- Lu, W.; Li, J.; Li, Y.; Sun, A.; Wang, J. A CNN-LSTM-based model to forecast stock prices. Complexity 2020, 2020, 6622927. [Google Scholar] [CrossRef]
- Deldadehasl, M.; Jafari, M.; Sayeh, M.R. Dynamic classification using the adaptive competitive algorithm for Breast Cancer Detection. J. Data Anal. Inf. Process. 2025, 13, 101–115. [Google Scholar] [CrossRef]
- Mahdavi, Z. Introduce improved CNN model for accurate classification of autism spectrum disorder using 3D MRI brain scans. In Proceedings of the MOL2NET’22, International Conference on Molecular, Biomedicine, Computational & Network Science and Engineering, 8th ed.; MDPI: Basel, Switzerland, 2022. [Google Scholar]
- Breiman, L.; Olshen, R.A. Points of Significance: Classification and regression trees. Nat. Methods 2017, 14, 757–758. [Google Scholar]
- Hodson, T.O.; Over, T.M.; Foks, S.S. Mean squared error, deconstructed. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002681. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Rotor configuration (-) | , upwind |
Rotor and hub diameter (m) | 126, 3 |
Hub height (m) | 90 |
Cut-in, rated, and cut-out wind speed (m s−1) | 3, 11.4, 25 |
Cut-in and rated rotor speed (rpm) | 6.9, 12.1 |
Draft (m) | 120 |
Diameter above taper (m) | |
Diameter below taper (m) | |
Total mass (kg) | 8.06 × 108 |
Overall center of gravity (along the centerline of the platform) (m) | 78.0 |
Pitch inertia about the center of gravity () | 6.80 × 1010 |
Yaw inertia about the centerline () | 1.92 × 108 |
Sea State | T (s) | H (m) |
---|---|---|
1 | 2 | 0.09 |
2 | 4.8 | 0.67 |
3 | 6.5 | 1.4 |
4 | 8.1 | 2.44 |
5 | 9.7 | 2.66 |
6 | 11.3 | 5.49 |
Time | Wind1 VelX | Bld Pitch1 | Bld Pitch2 | Bld Pitch3 | Rotor Speed | Gen Speed | Rot Torq | Yaw BrMxp | Gen Pwr | Gen Tq | Load Case |
---|---|---|---|---|---|---|---|---|---|---|---|
17 | 13.39 | 0.48 | 0.48 | 0.48 | 12.33 | 1197.32 | 4291.88 | 4475.25 | 5100.63 | 43.09 | w1s1d1 |
18 | 15.95 | 1.22 | 1.22 | 1.22 | 12.64 | 1226.60 | 4261.85 | 4178.12 | 5225.37 | 43.09 | w1s1d1 |
19 | 15.23 | 2.00 | 2.00 | 2.00 | 12.88 | 1249.38 | 4460.81 | 4455.88 | 5322.40 | 43.09 | w1s1d1 |
20 | 14.74 | 2.85 | 2.85 | 2.85 | 13.18 | 1278.63 | 4310.66 | 4276.49 | 5447.01 | 43.09 | w1s1d1 |
21 | 14.91 | 3.54 | 3.54 | 3.54 | 13.38 | 1297.82 | 4268.53 | 4307.12 | 5528.77 | 43.09 | w1s1d1 |
22 | 12.80 | 4.18 | 4.18 | 4.18 | 13.56 | 1315.49 | 4274.78 | 4189.38 | 5604.03 | 43.09 | w1s1d1 |
23 | 14.53 | 4.72 | 4.72 | 4.72 | 13.69 | 1329.32 | 4283.82 | 4336.96 | 5662.94 | 43.09 | w1s1d1 |
24 | 15.22 | 5.20 | 5.20 | 5.20 | 13.76 | 1334.76 | 4148.58 | 4018.39 | 5686.13 | 43.09 | w1s1d1 |
25 | 13.03 | 5.56 | 5.56 | 5.56 | 13.77 | 1335.49 | 4255.02 | 4215.71 | 5689.24 | 43.09 | w1s1d1 |
26 | 12.97 | 5.84 | 5.84 | 5.84 | 13.69 | 1327.38 | 4046.92 | 4001.30 | 5654.67 | 43.09 | w1s1d1 |
27 | 12.17 | 6.01 | 6.01 | 6.01 | 13.55 | 1314.75 | 4064.89 | 3971.36 | 5600.88 | 43.09 | w1s1d1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barooni, M.; Velioglu Sogut, D.; Sedigh, P.; Bahrami, M. Novel Hybrid Deep Learning Model for Forecasting FOWT Power Output. Energies 2025, 18, 3532. https://doi.org/10.3390/en18133532
Barooni M, Velioglu Sogut D, Sedigh P, Bahrami M. Novel Hybrid Deep Learning Model for Forecasting FOWT Power Output. Energies. 2025; 18(13):3532. https://doi.org/10.3390/en18133532
Chicago/Turabian StyleBarooni, Mohammad, Deniz Velioglu Sogut, Parviz Sedigh, and Masoumeh Bahrami. 2025. "Novel Hybrid Deep Learning Model for Forecasting FOWT Power Output" Energies 18, no. 13: 3532. https://doi.org/10.3390/en18133532
APA StyleBarooni, M., Velioglu Sogut, D., Sedigh, P., & Bahrami, M. (2025). Novel Hybrid Deep Learning Model for Forecasting FOWT Power Output. Energies, 18(13), 3532. https://doi.org/10.3390/en18133532