Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (716)

Search Parameters:
Keywords = wild-animal detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1678 KiB  
Article
Molecular Surveillance of Plasmodium spp. Infection in Neotropical Primates from Bahia and Minas Gerais, Brazil
by Luana Karla N. S. S. Santos, Sandy M. Aquino-Teixeira, Sofía Bernal-Valle, Beatriz S. Daltro, Marina Noetzold, Aloma Roberta C. Silva, Denise Anete M. Alvarenga, Luisa B. Silva, Ramon S. Oliveira, Cirilo H. Oliveira, Iago A. Celestino, Maria E. Gonçalves-dos-Santos, Thaynara J. Teixeira, Anaiá P. Sevá, Fabrício S. Campos, Bergmann M. Ribeiro, Paulo M. Roehe, Danilo Simonini-Teixeira, Filipe V. S. Abreu, Cristiana F. A. Brito and George R. Albuquerqueadd Show full author list remove Hide full author list
Pathogens 2025, 14(8), 757; https://doi.org/10.3390/pathogens14080757 (registering DOI) - 31 Jul 2025
Viewed by 29
Abstract
In Brazil, Plasmodium infections in non-human primates (NHPs) have been associated with P. simium and P. brasilianum, which are morphologically and genetically similar to the human-infecting species P. vivax and P. malariae, respectively. Surveillance and monitoring of wild NHPs are crucial [...] Read more.
In Brazil, Plasmodium infections in non-human primates (NHPs) have been associated with P. simium and P. brasilianum, which are morphologically and genetically similar to the human-infecting species P. vivax and P. malariae, respectively. Surveillance and monitoring of wild NHPs are crucial for understanding the distribution of these parasites and assessing the risk of zoonotic transmission. This study aimed to detect the presence of Plasmodium spp. genetic material in Platyrrhini primates from 47 municipalities in the states of Bahia and Minas Gerais. The animals were captured using Tomahawk-type live traps baited with fruit or immobilized with tranquilizer darts. Free-ranging individuals were chemically restrained via inhalation anesthesia using VetBag® or intramuscular anesthesia injection. Blood samples were collected from the femoral vein. A total of 298 blood and tissue samples were collected from 10 primate species across five genera: Alouatta caraya (25), Alouatta guariba clamitans (1), Callicebus melanochir (1), Callithrix geoffroyi (28), Callithrix jacchus (4), Callithrix kuhlii (31), Callithrix penicillata (175), Callithrix spp. hybrids (15), Leontopithecus chrysomelas (16), Sapajus robustus (1), and Sapajus xanthosthernos (1). Molecular diagnosis was performed using a nested PCR targeting the 18S small subunit ribosomal RNA (18S SSU rRNA) gene, followed by sequencing. Of the 298 samples analyzed, only one (0.3%) from Bahia tested positive for Plasmodium brasilianum/P. malariae. This represents the first detection of this parasite in a free-living C. geoffroyi in Brazil. These findings highlight the importance of continued surveillance of Plasmodium infections in NHPs to identify regions at risk for zoonotic transmission. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

14 pages, 3364 KiB  
Article
Microbial Load and Diversity of Bacteria in Wild Animal Carcasses Sold as Bushmeat in Ghana
by Daniel Oduro, Winnifred Offih-Kyei, Joanita Asirifi Yeboah, Rhoda Yeboah, Caleb Danso-Coffie, Emmanuel Boafo, Vida Yirenkyiwaa Adjei, Isaac Frimpong Aboagye and Gloria Ivy Mensah
Pathogens 2025, 14(8), 754; https://doi.org/10.3390/pathogens14080754 (registering DOI) - 31 Jul 2025
Viewed by 36
Abstract
The demand for wild animal meat, popularly called “bushmeat”, serves as a driving force behind the emergence of infectious diseases, potentially transmitting a variety of pathogenic bacteria to humans through handling and consumption. This study investigated the microbial load and bacterial diversity in [...] Read more.
The demand for wild animal meat, popularly called “bushmeat”, serves as a driving force behind the emergence of infectious diseases, potentially transmitting a variety of pathogenic bacteria to humans through handling and consumption. This study investigated the microbial load and bacterial diversity in bushmeat sourced from a prominent bushmeat market in Kumasi, Ghana. Carcasses of 61 wild animals, including rodents (44), antelopes (14), and African civets (3), were sampled for microbiological analysis. These samples encompassed meat, intestines, and anal and oral swabs. The total aerobic bacteria plate count (TPC), Enterobacteriaceae count (EBC), and fungal counts were determined. Bacterial identification was conducted using MALDI-TOF biotyping. Fungal counts were the highest across all animal groups, with African civets having 11.8 ± 0.3 log10 CFU/g and 11.9 ± 0.2 log10 CFU/g in intestinal and meat samples, respectively. The highest total plate count (TPC) was observed in rodents, both in their intestines (10.9 ± 1.0 log10 CFU/g) and meat (10.9 ± 1.9 log10 CFU/g). In contrast, antelopes exhibited the lowest counts across all categories, particularly in EBC from intestinal samples (6.1 ± 1.5 log10 CFU/g) and meat samples (5.6 ± 1.2 log10 CFU/g). A comprehensive analysis yielded 524 bacterial isolates belonging to 20 genera, with Escherichia coli (18.1%) and Klebsiella spp. (15.5%) representing the most prevalent species. Notably, the detection of substantial microbial contamination in bushmeat underscores the imperative for a holistic One Health approach to enhance product quality and mitigate risks associated with its handling and consumption. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

30 pages, 7223 KiB  
Article
Smart Wildlife Monitoring: Real-Time Hybrid Tracking Using Kalman Filter and Local Binary Similarity Matching on Edge Network
by Md. Auhidur Rahman, Stefano Giordano and Michele Pagano
Computers 2025, 14(8), 307; https://doi.org/10.3390/computers14080307 - 30 Jul 2025
Viewed by 96
Abstract
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part [...] Read more.
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part of a single event, resulting in increased power consumption and inefficient bandwidth usage. Furthermore, maintaining consistent animal identities in the wild is difficult due to occlusions, variable lighting, and complex environments. In this study, we propose a lightweight hybrid tracking framework built on the YOLOv8m deep neural network, combining motion-based Kalman filtering with Local Binary Pattern (LBP) similarity for appearance-based re-identification using texture and color features. To handle ambiguous cases, we further incorporate Hue-Saturation-Value (HSV) color space similarity. This approach enhances identity consistency across frames while reducing redundant transmissions. The framework is optimized for real-time deployment on edge platforms such as NVIDIA Jetson Orin Nano and Raspberry Pi 5. We evaluate our method against state-of-the-art trackers using event-based metrics such as MOTA, HOTA, and IDF1, with a focus on detected animals occlusion handling, trajectory analysis, and counting during both day and night. Our approach significantly enhances tracking robustness, reduces ID switches, and provides more accurate detection and counting compared to existing methods. When transmitting time-series data and detected frames, it achieves up to 99.87% bandwidth savings and 99.67% power reduction, making it highly suitable for edge-based wildlife monitoring in resource-constrained environments. Full article
(This article belongs to the Special Issue Intelligent Edge: When AI Meets Edge Computing)
Show Figures

Figure 1

19 pages, 4764 KiB  
Article
Evolutionary Diversity of Bat Rabies Virus in São Paulo State, Brazil
by Luzia H. Queiroz, Angélica C. A. Campos, Marissol C. Lopes, Elenice M. S. Cunha, Avelino Albas, Cristiano de Carvalho, Wagner A. Pedro, Eduardo C. Silva, Monique S. Lot, Sandra V. Inácio, Danielle B. Araújo, Marielton P. Cunha, Edison L. Durigon, Luiz Gustavo B. Góes and Silvana R. Favoretto
Viruses 2025, 17(8), 1063; https://doi.org/10.3390/v17081063 - 30 Jul 2025
Viewed by 195
Abstract
The history of the rabies virus dates back four millennia, with the virus being considered by many to be the first known transmitted between animals and humans. In Brazil, rabies virus variants associated with terrestrial wild animals, marmosets, and different bat species have [...] Read more.
The history of the rabies virus dates back four millennia, with the virus being considered by many to be the first known transmitted between animals and humans. In Brazil, rabies virus variants associated with terrestrial wild animals, marmosets, and different bat species have been identified. In this study, bat samples from different regions of São Paulo State, in Southeast Brazil, were analyzed to identify their genetic variability and patterns. A total of 51 samples were collected over ten years (1999–2009) and submitted to the immunofluorescent technique using monoclonal antibodies for antigenic profile detection (the diagnostic routine used in Latin American countries) and genetic evolution analysis through maximum likelihood approaches. Three antigenic profiles were detected: one related to the rabies virus maintained by hematophagous bat populations (AgV3), part of the monoclonal antibody panel used, and two other profiles not included in the panel (called NC1 and NC2). These antigenic profiles were genetically distributed in five groups. Group I was related to hematophagous bats (AgV3), Groups II and III were related to insectivorous bats (NC1) and Groups IV and V were also related to insectivorous bats (NC2). The results presented herein show that genetic lineages previously restricted to the northwest region of São Paulo State are now found in other state regions, highlighting the need for a comprehensive genetic study of bat rabies covering geographic and temporal space, through expanded genomic analysis using a standard genomic fragment. Full article
(This article belongs to the Special Issue Advances in Rabies Research 2024)
12 pages, 680 KiB  
Communication
Epidemiology and Genomic Characterization of Trichophyton mentagrophytes over a Period of 4 Years in Northern Italy
by Luca Rossi, Annarita Sorrentino, Caterina Signoretto and Paolo Gaibani
J. Fungi 2025, 11(8), 566; https://doi.org/10.3390/jof11080566 - 29 Jul 2025
Viewed by 178
Abstract
Dermatophytes are keratinophilic fungi that cause a wide range of superficial infections in humans and animals. The Trichophyton mentagrophytes species complex is one of the most clinically important groups due to its broad host range, widespread distribution, and increasing involvement in antifungal-resistant infections. [...] Read more.
Dermatophytes are keratinophilic fungi that cause a wide range of superficial infections in humans and animals. The Trichophyton mentagrophytes species complex is one of the most clinically important groups due to its broad host range, widespread distribution, and increasing involvement in antifungal-resistant infections. Here, we described the epidemiology of T. mentagrophytes over a period of 4 years detected in the northeastern part of Italy and provided the genomic characterization of clinical isolates. ITS sequence analysis revealed that among the 13 strains studied, 11 belonged to the T. mentagrophytes complex. In detail, nine were classified as genotype I/II and two as genotype VII. Analysis of the SQLE gene revealed that nine strains harbored a wild-type gene, while two carried a Lys276Asn mutation. Genomic analysis was performed on three clinical T. mentagrophytes strains that belonged to genotype I/II, revealing the presence of different virulence factors including MEP-1, MEP-2, MEP-3, and MEP-5. Phylogenetic analysis based on core-genome SNPs demonstrated that the two genomes included in this study were clonally related to a T. mentagrophytes strain isolated in China in 2024. In conclusion, our study highlights the importance of genomic characterization in order to trace the epidemiology of dermatophytes worldwide and to characterize emerging strains. Full article
(This article belongs to the Collection Superficial Fungal Infections)
Show Figures

Figure 1

19 pages, 1977 KiB  
Article
Knowledge, Perception, and Attitude of Veterinarians About Q Fever from South Spain
by Francisco Pérez-Pérez, Rafael Jesús Astorga-Márquez, Ángela Galán-Relaño, Carmen Tarradas-Iglesias, Inmaculada Luque-Moreno, Lidia Gómez-Gascón, Juan Antonio De Luque-Ibáñez and Belén Huerta-Lorenzo
Microorganisms 2025, 13(8), 1759; https://doi.org/10.3390/microorganisms13081759 - 28 Jul 2025
Viewed by 273
Abstract
Q Fever is a zoonosis caused by Coxiella burnetii that affects domestic and wild ruminants, leading to reproductive disorders. In humans, the disease can manifest with acute and chronic clinical manifestations. Veterinarians, as healthcare professionals in close contact with animals, serve both as [...] Read more.
Q Fever is a zoonosis caused by Coxiella burnetii that affects domestic and wild ruminants, leading to reproductive disorders. In humans, the disease can manifest with acute and chronic clinical manifestations. Veterinarians, as healthcare professionals in close contact with animals, serve both as the first line of defence in preventing infection at the animal–human interface and as an important sentinel group for the rapid detection of outbreaks. The aim of this study was to assess the knowledge, perception, and attitude of veterinarians in Southern Spain regarding Q Fever. To this end, an online survey was designed, validated, and conducted among veterinarians in the province of Malaga, with a final participation of 97 individuals, predominantly from the private sector (clinic, livestock, agri-food, etc.). The data obtained reflected a general lack of knowledge about the disease, particularly concerning its epidemiology and infection prevention. Regarding perception and attitude, a significant percentage of respondents stated they did not use protective equipment when handling susceptible animals and only sought information about the disease in response to outbreak declarations. The study emphasised the significance of promoting training in zoonotic diseases during and after graduation, the relevance of official channels in occupational risk prevention, and the utility of epidemiological surveys as a tool to identify and address potential gaps in knowledge related to this disease. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

31 pages, 10161 KiB  
Review
Tracking the Spatial and Functional Dispersion of Vaccine-Related Canine Distemper Virus Genotypes: Insights from a Global Scoping Review
by Mónica G. Candela, Adrian Wipf, Nieves Ortega, Ana Huertas-López, Carlos Martínez-Carrasco and Pedro Perez-Cutillas
Viruses 2025, 17(8), 1045; https://doi.org/10.3390/v17081045 - 27 Jul 2025
Viewed by 229
Abstract
Canine morbillivirus (CDV), the cause of canine distemper, is a pathogen affecting many hosts. While modified live virus (MLV) vaccines are crucial for controlling the disease in dogs, cases of vaccine-related infections have been found in both domestic and wild animals. Specifically, the [...] Read more.
Canine morbillivirus (CDV), the cause of canine distemper, is a pathogen affecting many hosts. While modified live virus (MLV) vaccines are crucial for controlling the disease in dogs, cases of vaccine-related infections have been found in both domestic and wild animals. Specifically, the America-1 and Rockborn-like vaccine genotypes are concerning due to their spread and ability to transmit between different species. This study conducted a review and analysis of molecular detections of these strains in various carnivores (domestic, captive, synanthropic, and wild species). This study used a conceptual model considering host ecology and the domestic–wild interface to evaluate plausible transmission connections over time using Linear Directional Mean (LDM) and Weighted Mean Centre (WMC) methods. Statistical analyses examined the relationship between how likely a strain is to spread and factors like host type and vaccination status. The findings showed that the America-1 genotype spread in a more organised way, with domestic dogs being the main source and recipient, bridging different environments. Synanthropic mesocarnivores also played this same role, with less intensity. America-1 was most concentrated in the North Atlantic and Western Europe. In contrast, the Rockborn-like strain showed a more unpredictable and restricted spread, residual circulation from past use rather than ongoing spread. Species involved in vaccine-related infections often share characteristics like generalist behaviour, social living, and a preference for areas where domestic animals and wildlife interact. We did not find a general link between a host vaccination status and the likelihood of the strain spreading. The study emphasised the ongoing risk of vaccine-derived strains moving from domestic and synanthropic animals to vulnerable wild species, supporting the need for improved vaccination approaches. Mapping these plausible transmission routes can serve as a basis for targeted surveillance, not only of vaccine-derived strains, but of any other circulating genotype. Full article
(This article belongs to the Special Issue Canine Distemper Virus)
Show Figures

Figure 1

21 pages, 471 KiB  
Review
Role and Contribution of Serological Surveillance in Animals and Exposed Humans to the Study of Zoonotic Influenza Disease Epidemiology: A Scoping Review
by Rebecca Badra, Wenqing Zhang, John S. L. Tam, Richard Webby, Sylvie van der Werf, Sergejs Nikisins, Ann Cullinane, Saad Gharaibeh, Richard Njouom, Malik Peiris, Ghazi Kayali and Jean-Michel Heraud
Pathogens 2025, 14(8), 739; https://doi.org/10.3390/pathogens14080739 - 27 Jul 2025
Viewed by 410
Abstract
Background: Zoonotic influenza viruses pose a significant and evolving public health threat. In response to the recent rise in H5N1 cross-species transmission, the World Health Organization (WHO) R&D Blueprint for Epidemics consultations have prioritized strengthening surveillance, candidate vaccines, diagnostics, and pandemic preparedness. Serological [...] Read more.
Background: Zoonotic influenza viruses pose a significant and evolving public health threat. In response to the recent rise in H5N1 cross-species transmission, the World Health Organization (WHO) R&D Blueprint for Epidemics consultations have prioritized strengthening surveillance, candidate vaccines, diagnostics, and pandemic preparedness. Serological surveillance plays a pivotal role by providing insights into the prevalence and transmission dynamics of influenza viruses. Objective: This scoping review aimed to map the global research landscape on serological surveillance of zoonotic influenza in animals and exposed humans between 2017, the date of the last WHO public health research agenda for influenza review, and 2024, as well as to identify methodological advancements. Methods: Following PRISMA-ScR guidelines, we searched PubMed for English-language peer-reviewed articles published between January 2017 and March 2024. Studies were included if they reported serological surveillance in wild or domestic animals or occupationally exposed human populations, or novel methodologies and their technical limitations and implementation challenges. Results: Out of 7490 screened records, 90 studies from 33 countries, covering 25 animal species, were included. Seroprevalence studies were in domestic poultry and swine. Surveillance in companion animals, wild mammals, and at the human–animal interface was limited. Emerging serological methods included multiplex and nanobody-based assays, though implementation barriers remain. Conclusions: The review is limited by its restriction to one database and English-language articles, lack of quality appraisal, and significant heterogeneity among the included studies. Serological surveillance is a critical but underutilized tool in zoonotic influenza monitoring. Greater integration of serological surveillance into One Health frameworks, especially in high-risk regions and populations, is needed to support early detection and pandemic preparedness. Full article
(This article belongs to the Section Emerging Pathogens)
Show Figures

Figure 1

14 pages, 1340 KiB  
Article
Exploring the Prevalence of Antimicrobial Resistance in the Environment Through Bonelli’s Eagles (Aquila fasciata) as Sentinels
by Barbara Martin-Maldonado, Ana Marco-Fuertes, Laura Montoro-Dasi, Laura Lorenzo-Rebenaque, Jose Sansano-Maestre, Jaume Jordá, Daniel Martín Solance, Fernando Esperón and Clara Marin
Antibiotics 2025, 14(8), 734; https://doi.org/10.3390/antibiotics14080734 - 22 Jul 2025
Viewed by 347
Abstract
Background/Objectives: Increasing levels of antimicrobial resistance (AMR) have recently been observed at the human–domestic animal–wildlife interface. Wild birds have been identified as carriers of antimicrobial-resistant bacteria and serve as excellent biomarkers for epidemiological studies. This study assessed the current AMR presence in Eastern [...] Read more.
Background/Objectives: Increasing levels of antimicrobial resistance (AMR) have recently been observed at the human–domestic animal–wildlife interface. Wild birds have been identified as carriers of antimicrobial-resistant bacteria and serve as excellent biomarkers for epidemiological studies. This study assessed the current AMR presence in Eastern Spain’s commensal Escherichia coli isolated from free-ranging Bonelli’s eagles (Aquila fasciata). Methods: Nestlings and their nests were intensively sampled between 2022 and 2024 to determine their AMR profile and characterize E. coli. AMR testing was conducted using the broth microdilution method, following the European Committee on Antimicrobial Susceptibility Testing guidelines. Additionally, the presence of eaeA (intimin gene) and stx-1 and stx-2 (shiga toxins) was analyzed by real-time PCR to classify E. coli strains into enteropathogenic (EPEC) and Shiga-toxigenic (STEC) pathotypes. Results: Of all E. coli isolates, 41.7% were resistant to at least one antimicrobial, and 30% were multidrug-resistant. Only two strains were classified as EPEC and none as STEC. The highest resistance rates were observed for amoxicillin and tetracycline (19.6% each). Alarmingly, resistance to colistin and meropenem, last-resort antibiotics in human medicine, was also detected. Conclusions: Although the mechanisms of resistance acquisition remain unclear, transmission is likely to occur through the food chain, with synanthropic prey acting as intermediary vectors. These results highlight the role of Bonelli’s eagles as essential sentinels of environmental AMR dissemination, even in remote ecosystems. Strengthening One Health-based surveillance is necessary to address AMR’s ecological and public health risks in wildlife. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Infections in Animals)
Show Figures

Figure 1

11 pages, 761 KiB  
Communication
First Report of Triple Viral Co-Infection (PPV, PCV2, PCMV) in Wild Boars in the Western Balkans
by Dimitrije Glišić, Sofija Šolaja, Kukilo Stevan, Vesna Milićević, Miloš Vučićević, Jelena Aleksić and Dajana Davitkov
Pathogens 2025, 14(7), 710; https://doi.org/10.3390/pathogens14070710 - 18 Jul 2025
Viewed by 403
Abstract
Wild boars are recognized reservoirs of numerous viral pathogens, posing a significant risk to domestic pig populations, particularly in areas with poor biosecurity. This study assessed the prevalence and co-infection patterns of porcine circovirus type 2 (PCV2), porcine parvovirus (PPV), porcine cytomegalovirus (PCMV), [...] Read more.
Wild boars are recognized reservoirs of numerous viral pathogens, posing a significant risk to domestic pig populations, particularly in areas with poor biosecurity. This study assessed the prevalence and co-infection patterns of porcine circovirus type 2 (PCV2), porcine parvovirus (PPV), porcine cytomegalovirus (PCMV), African swine fever virus (ASFV), classical swine fever virus (CSFV), and pseudorabies virus (PRV) in wild boars from western Serbia and the Republic of Srpska (Bosnia and Herzegovina). Sixty-six spleen samples from legally hunted wild boars were analyzed by qPCR. All animals were negative for ASFV, CSFV, and PRV. The cumulative prevalence of infection with at least one of the other three viruses was 86.4% (95% CI: 76.2–92.8%). PCMV was detected in 74.2% of samples, PCV2 in 50%, and PPV in 28.8%. Co-infections were common: 42.4% of animals were positive for two viruses, and 12.1% for all three. A statistically significant association was observed between triple co-infection and sex, with higher rates in males. Subadult wild boars showed the highest PCV2 + PCMV co-infection rate (p = 0.0547). These findings highlight the need to expand molecular surveillance, particularly for PCMV, in both wild and domestic pigs, especially in regions reliant on low-biosecurity backyard farming. Full article
(This article belongs to the Special Issue Current Challenges in Veterinary Virology)
Show Figures

Figure 1

10 pages, 203 KiB  
Article
Molecular Detection of Various Non-Seasonal, Zoonotic Influenza Viruses Using BioFire FilmArray and GenXpert Diagnostic Platforms
by Charlene Ranadheera, Taeyo Chestley, Orlando Perez, Breanna Meek, Laura Hart, Morgan Johnson, Yohannes Berhane and Nathalie Bastien
Viruses 2025, 17(7), 970; https://doi.org/10.3390/v17070970 - 10 Jul 2025
Viewed by 448
Abstract
Since 2020, the Gs/Gd H5N1 influenza virus (clade 2.3.4.4b) has established itself within wild bird populations across Asia, Europe, and the Americas, causing outbreaks in wild mammals, commercial poultry, and dairy farms. The impacts on the bird populations and the agricultural industry has [...] Read more.
Since 2020, the Gs/Gd H5N1 influenza virus (clade 2.3.4.4b) has established itself within wild bird populations across Asia, Europe, and the Americas, causing outbreaks in wild mammals, commercial poultry, and dairy farms. The impacts on the bird populations and the agricultural industry has been significant, requiring a One Health approach to enhanced surveillance in both humans and animals. To support pandemic preparedness efforts, we evaluated the Cepheid Xpert Xpress CoV-2/Flu/RSV plus kit and the BioFire Respiratory 2.1 Panel for their ability to detect the presence of non-seasonal, zoonotic influenza A viruses, including circulating H5N1 viruses from clade 2.3.4.4b. Both assays effectively detected the presence of influenza virus in clinically-contrived nasal swab and saliva specimens at low concentrations. The results generated using the Cepheid Xpert Xpress CoV-2/Flu/RSV plus kit and the BioFire Respiratory 2.1 Panel, in conjunction with clinical and epidemiological findings provide valuable diagnostic findings that can strengthen pandemic preparedness and surveillance initiatives. Full article
(This article belongs to the Section Animal Viruses)
14 pages, 1293 KiB  
Article
Comprehensive Survey of PCV2 and PCV3 in Domestic Pigs and Wild Boars Across Portugal: Prevalence, Geographical Distribution and Genetic Diversity
by Bernardo Almeida, Margarida D. Duarte, Ana Duarte, Teresa Fagulha, Fernanda Ramos, Tiago Luís, Inês Caetano, Sílvia C. Barros, Fábio Abade dos Santos and Ana Margarida Henriques
Pathogens 2025, 14(7), 675; https://doi.org/10.3390/pathogens14070675 - 9 Jul 2025
Viewed by 359
Abstract
Porcine circoviruses are significant pathogens that affect swine populations worldwide, with implications for animal health and productivity. While PCV2 is well-documented, particularly due to widespread vaccination programs, PCV3 is less understood, and its epidemiological impact is still under investigation. This study screened for [...] Read more.
Porcine circoviruses are significant pathogens that affect swine populations worldwide, with implications for animal health and productivity. While PCV2 is well-documented, particularly due to widespread vaccination programs, PCV3 is less understood, and its epidemiological impact is still under investigation. This study screened for PCV2 and PCV3 in pigs and wild boars across Portugal to assess their prevalence. Also, nucleotide sequence determination was performed to evaluate the genetic diversity of these viruses. Stool samples from 160 pigs belonging to different groups (quarantine, nursery, fattening and adult pigs), as well as organ samples from 120 hunted wild boars, were analyzed. Samples were collected from twelve of the eighteen mainland Portuguese districts with positive cases being detected in nine of them. Pigs had a lower prevalence of PCV2 (1.9%) than PCV3 (11.2%), but the opposite was true in wild boars (76.7% for PCV2 and 55.0% for PCV3). The lower PCV2 prevalence in pigs can be attributed to the PCV2 vaccination program implemented. Additionally, these viruses were significantly more prevalent in wild boars (90.8% were infected with at least one of the viruses) than in domestic pigs (only 12.5%). This significant difference highlights the impact of the controlled environment in pig farms on disease prevention in contrast to the higher exposure risks faced by wild boars in their natural habitat. Compared to a previous study from 2023, we observed a slight decrease in the percentage of positive cases for both PCV2 and PCV3. Phylogenetic analysis of sequences obtained by Sanger sequencing allowed us to conclude that the samples from domestic pigs belong to the PCV2a and PCV3c clades, in contrast to the PCV2-positive cases detected in domestic pigs in 2023 that were classified in the PCV2d genotype. Conversely, samples from wild boars belong to the PCV2d and PCV3a clades. These results reveal genotype differences between wild and domestic pigs and shifts from 2023 to 2024. Our findings provide some information about the circulation of these viruses and emphasize the importance of vaccination and continued monitoring for a deeper understanding of their epidemiology to mitigate potential risks to swine health and production. Full article
(This article belongs to the Special Issue Current Challenges in Veterinary Virology)
Show Figures

Figure 1

9 pages, 429 KiB  
Article
The Problem of the Presence of DNA in Cosmetic and Medicinal Products Obtained from Animals on the CITES List
by Aleksandra Figura, Magdalena Gryzinska and Andrzej Jakubczak
Genes 2025, 16(7), 805; https://doi.org/10.3390/genes16070805 - 8 Jul 2025
Viewed by 280
Abstract
Background: The illegal trade in wildlife remains a critical threat to biodiversity, prompting the development of international regulatory frameworks such as the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). One of the key challenges in enforcement is [...] Read more.
Background: The illegal trade in wildlife remains a critical threat to biodiversity, prompting the development of international regulatory frameworks such as the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). One of the key challenges in enforcement is the detection of CITES-listed species in highly processed consumer goods. Methods: This study investigates the use of molecular techniques to detect animal DNA in two selected commercially available medicinal products—a balm and a gel—marketed with ingredients suggestive of protected species such as the brown bear (Ursus arctos) and the medicinal leech (Hirudo medicinalis). Results: Although DNA from these target species was not detected, the analysis revealed the presence of genetic material from the American mink (Neovison vison) and domestic pig (Sus scrofa), indicating the undeclared use of animal-derived substances. While limited in scope, these findings suggest potential ethical and transparency concerns, particularly for consumers adhering to vegetarian, vegan, or religious dietary practices. Conclusions: The study illustrates the feasibility of applying DNA-based screening methods in complex, degraded matrices and their potential as supportive tools in consumer product assessment. However, broader studies are necessary before drawing general regulatory or conservation conclusions. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

23 pages, 3759 KiB  
Review
Highly Pathogenic Avian Influenza (H5N1) Clade 2.3.4.4b in Cattle: A Rising One Health Concern
by Ivan Camilo Sanchez-Rojas, D. Katterine Bonilla-Aldana, Catherin Lorena Solarte-Jimenez, Jorge Luis Bonilla-Aldana, Jaime David Acosta-España and Alfonso J. Rodriguez-Morales
Animals 2025, 15(13), 1963; https://doi.org/10.3390/ani15131963 - 3 Jul 2025
Viewed by 987
Abstract
Highly pathogenic avian influenza (HPAI) H5N1, particularly clade 2.3.4.4b, has demonstrated an unprecedented capacity for cross-species transmission, with recent reports confirming its presence in dairy cattle in the United States of America (USA) in 2024. This unexpected spillover challenges traditional understanding of the [...] Read more.
Highly pathogenic avian influenza (HPAI) H5N1, particularly clade 2.3.4.4b, has demonstrated an unprecedented capacity for cross-species transmission, with recent reports confirming its presence in dairy cattle in the United States of America (USA) in 2024. This unexpected spillover challenges traditional understanding of the virus’s host range and raises serious public health and veterinary concerns. Infected cattle presented with clinical signs such as decreased milk production, thickened or discolored milk, respiratory issues, and lethargy. Pathological findings revealed inflammation of the mammary glands and the detection of a virus in nasal secretions and raw milk, suggesting a potential for both intra- and interspecies transmission. While the current risk of human-to-human transmission remains low, the detection of H5N1 in a human exposed to infected cattle highlights the need for heightened surveillance and protective measures. Moreover, the presence of infectious viruses in the food chain, particularly in unpasteurized milk, introduces a new dimension of zoonotic risk. This review synthesizes emerging evidence on the epidemiology, pathology, diagnostic findings, and zoonotic implications of HPAI H5N1 infection in cattle. It also highlights the importance of genomic surveillance, intersectoral collaboration, and One Health approaches in managing this evolving threat. As the virus continues to circulate and adapt across diverse hosts, including wild birds, domestic poultry, and now mammals, the potential for reassortment and emergence of novel strains remains a significant concern. Immediate actions to strengthen biosecurity, monitor viral evolution, and protect both animal and human populations are critical to mitigate the global risk posed by this expanding panzootic. Full article
(This article belongs to the Special Issue Infection Immunity, Diagnosis and Prevention of Avian Influenza)
Show Figures

Figure 1

29 pages, 4036 KiB  
Article
Lipopolysaccharide and Recombinant Prion Protein Induce Distinct Neurodegenerative Pathologies in FVB/N Mice
by Seyed Ali Goldansaz, Dagnachew Hailemariam, Elda Dervishi, Grzegorz Zwierzchowski, Roman Wójcik, David S. Wishart and Burim N. Ametaj
Int. J. Mol. Sci. 2025, 26(13), 6245; https://doi.org/10.3390/ijms26136245 - 28 Jun 2025
Viewed by 392
Abstract
Prion diseases are classically attributed to the accumulation of protease-resistant prion protein (PrPSc); however, recent evidence suggests that alternative misfolded prion conformers and systemic inflammatory factors may also contribute to neurodegeneration. This study investigated whether recombinant moPrPRes, generated by [...] Read more.
Prion diseases are classically attributed to the accumulation of protease-resistant prion protein (PrPSc); however, recent evidence suggests that alternative misfolded prion conformers and systemic inflammatory factors may also contribute to neurodegeneration. This study investigated whether recombinant moPrPRes, generated by incubating wild-type mouse PrPC with bacterial lipopolysaccharide (LPS), can induce prion-like disease in FVB/N female mice, whether LPS alone causes neurodegeneration, and how LPS modulates disease progression in mice inoculated with the Rocky Mountain Laboratory (RML) strain of prions. Wild-type female FVB/N mice were randomized into six subcutaneous treatment groups: saline, LPS, moPrPRes, moPrPRes + LPS, RML, and RML + LPS. Animals were monitored longitudinally for survival, body weight, and clinical signs. Brain tissues were analyzed histologically and immunohistochemically for vacuolar degeneration, PrPSc accumulation, reactive astrogliosis, and amyloid-β plaque deposition. Recombinant moPrPRes induced a progressive spongiform encephalopathy characterized by widespread vacuolation and astrogliosis, yet with no detectable PrPSc by Western blot or immunohistochemistry. LPS alone triggered a distinct neurodegenerative phenotype, including cerebellar amyloid-β plaque accumulation and terminal-stage spongiosis, with approximately 40% mortality by the end of the study. Co-administration of moPrPRes and LPS resulted in variable regional pathology and intermediate survival (50% at 750 days post-inoculation). Interestingly, RML + LPS co-treatment led to earlier clinical onset and mortality compared to RML alone; however, vacuolation levels were not significantly elevated and, in some brain regions, were reduced. These results demonstrate that chronic endotoxemia and non-infectious misfolded PrP conformers can independently or synergistically induce key neuropathological hallmarks of prion disease, even in the absence of classical PrPSc. Targeting inflammatory signaling and toxic prion intermediates may offer novel therapeutic strategies for prion and prion-like disorders. Full article
(This article belongs to the Special Issue Advanced Research on Immune Cells and Cytokines (2nd Edition))
Show Figures

Figure 1

Back to TopTop