Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,470)

Search Parameters:
Keywords = width dependence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4500 KiB  
Article
Finite Element Model-Based Behavior Evaluation of Pavement Stiffness Influence on Shallowly Buried Precast Arch Structures Subjected to Vehicle Load
by Van-Toan Nguyen and Jungwon Huh
Geotechnics 2025, 5(3), 50; https://doi.org/10.3390/geotechnics5030050 - 25 Jul 2025
Viewed by 90
Abstract
In this study, the behavior of a three-hinged buried precast arch structure under the impact of the design truck was studied and evaluated based on the finite element method. A three-dimensional finite element analysis model of the buried precast arch structure has been [...] Read more.
In this study, the behavior of a three-hinged buried precast arch structure under the impact of the design truck was studied and evaluated based on the finite element method. A three-dimensional finite element analysis model of the buried precast arch structure has been meticulously established, considering arch segments’ joining and surface contact and interaction between surrounding soil and concrete structures. The behavior of the arch structure was examined and compared with the influence of pavement types, number of lanes, and axle spacings. The crucial findings indicate that arch structure behavior differs depending on design truck layouts and pavement stiffness and less on multi-lane vehicle loading effects. Furthermore, the extent of pressure propagation under the wheel depends not only on the magnitude of the axle load but also on the stiffness of the pavement structures. Cement concrete pavement (CCP) allows better dispersion of wheel track pressure on the embankment than asphalt concrete pavement (ACP). Therefore, the degree of increase in arch displacement with ACP is higher than that of CCP. To enhance the coverage of the vehicle influence zone, an extension of the backfill material width should be considered from the bottom of the arch and with the prism plane created at a 45-degree transverse angle. Full article
Show Figures

Figure 1

14 pages, 20742 KiB  
Article
The Role of Modulation Techniques on Power Device Thermal Performance in Two-Level VSI Converters
by Abraham M. Alcaide, Jose I. Leon, Christian A. Rojas, Jhonattan G. Berger, Alejandro Stowhas-Villa, Alan H. Wilson-Veas, Giampaolo Buticchi and Samir Kouro
Electronics 2025, 14(15), 2934; https://doi.org/10.3390/electronics14152934 - 23 Jul 2025
Viewed by 195
Abstract
The failure of power semiconductors due to variations in junction temperature represents an important factor in determining the reliability of a power converter. This work presents a comparative assessment of the thermal performance of IGBT power semiconductors within a two-level voltage source converter, [...] Read more.
The failure of power semiconductors due to variations in junction temperature represents an important factor in determining the reliability of a power converter. This work presents a comparative assessment of the thermal performance of IGBT power semiconductors within a two-level voltage source converter, specifically the average junction temperature and the variation of this value over a given period. The evaluation was carried out using different continuous and discontinuous carrier-based pulse width modulation (CB-PWM) techniques. The use of discontinuous PWM allows for a decrease in switching losses and therefore in average junction temperatures, but the variation in junction temperature is largely and non-linearly dependent on several factors, including the power factor of the three-phase load. Among the discontinuous PWM techniques, this analysis focuses on those that allow for a symmetric thermal load. The aforementioned comparisons have been tested in a laboratory setup, whee we directly measured the junction temperature through a high-end infrared thermal camera. Full article
(This article belongs to the Special Issue Applications, Control and Design of Power Electronics Converters)
Show Figures

Figure 1

24 pages, 3783 KiB  
Article
Morphodynamic Interactions Between Sandbar, Beach Profile, and Dune Under Variable Hydrodynamic and Morphological Conditions
by Alirio Sequeira, Carlos Coelho and Márcia Lima
Water 2025, 17(14), 2112; https://doi.org/10.3390/w17142112 - 16 Jul 2025
Viewed by 185
Abstract
Coastal areas are increasingly vulnerable to erosion, a process that can lead to severe consequences such as flooding and land loss. This study investigates strategies for preventing and mitigating coastal erosion, with a particular focus on nature-based solutions, notably artificial sand nourishment. Artificial [...] Read more.
Coastal areas are increasingly vulnerable to erosion, a process that can lead to severe consequences such as flooding and land loss. This study investigates strategies for preventing and mitigating coastal erosion, with a particular focus on nature-based solutions, notably artificial sand nourishment. Artificial nourishment has proven to be an effective method for erosion control. However, its success depends on factors such as the placement location, sediment volume, and frequency of operations. To optimize these interventions, simulations were conducted using both a numerical model (CS-Model) and a physical flume model, based on the same cross-section beach/dune profile, to compare cross-shore nourishment performance across different scenarios. The numerical modeling approach is presented first, including a description of the reference prototype-scale scenario. This is followed by an overview of the physical modeling, detailing the experimental 2D cross-section flume setup and tested scenarios. These scenarios simulate nourishment interventions with variations in beach profile, aiming to assess the influence of water level, berm width, bar volume, and bar geometry. The results from both numerical and physical simulations are presented, focusing on the cross-shore morphological response of the beach profile under wave action, particularly the effects on profile shape, water level, bar volume, and the position and depth of the bar crest. The main conclusion highlights that a wider initial berm leads to greater wave energy dissipation, thereby contributing to the mitigation of dune erosion. Full article
Show Figures

Figure 1

24 pages, 5824 KiB  
Article
Evaluation of Highway Pavement Structural Conditions Based on Measured Crack Morphology by 3D GPR and Finite Element Modeling
by Zhonglu Cao, Dianguang Cao, Haolei Chang, Yaoguo Fu, Xiyuan Shen, Weiping Huang, Huiping Wang, Wanlu Bao, Chao Feng, Zheng Tong, Xiaopeng Lin and Weiguang Zhang
Materials 2025, 18(14), 3336; https://doi.org/10.3390/ma18143336 - 16 Jul 2025
Viewed by 276
Abstract
Structural cracks are internal distresses that cannot be observed from pavement surfaces. However, the existing evaluation methods for asphalt pavement structures lack the consideration of these cracks, which are crucial for accurate pavement assessment and effective maintenance planning. This study develops a novel [...] Read more.
Structural cracks are internal distresses that cannot be observed from pavement surfaces. However, the existing evaluation methods for asphalt pavement structures lack the consideration of these cracks, which are crucial for accurate pavement assessment and effective maintenance planning. This study develops a novel framework combining a three-dimensional (3D) ground penetrating radar (GPR) and finite element modeling (FEM) to evaluate the severity of structural cracks. First, the size and depth development of structural cracks on a four-layer asphalt pavement were determined using the 3D GPR. Then, the range of influence of the structural crack on structural bearing capacity was analyzed based on 3D FEM simulation model. Structural cracks have a distance-dependent diminishing influence on the deflection in the horizontal direction, with the most pronounced effects within a 20-cm width zone surrounding the cracks. Finally, two indices have been proposed: the pavement structural crack index (PSCI) to assess the depth of crack damage and the structural crack reflection ratio (SCRR) to evaluate surface reflection. Besides, PSCI and SCRR are used to classify the severities of structural cracks: none, low, and high. The threshold between none/low damage is a structural crack damage rate of 0.19%, and the threshold between low/high damage is 0.663%. An experiment on a 132-km expressway indicated that the proposed method achieved 94.4% accuracy via coring. The results also demonstrate the strong correlation between PSCI and pavement deflection (R2 = 0.92), supporting performance-based maintenance strategies. The results also demonstrate the correlation between structural and surface cracks, with 65.8% of the cracked sections having both structural and surface cracks. Full article
Show Figures

Figure 1

17 pages, 14423 KiB  
Article
The Influence of the Dispersion and Covalent Functionalization of CNTs on Electrical Conduction Under an Electric Field in LDPE/CNT Composites
by Xiaoli Wu, Ting Yin, Yi Yang, Wenyan Liu, Danping Wang, Libo Wan and Yijun Liao
Polymers 2025, 17(14), 1940; https://doi.org/10.3390/polym17141940 - 15 Jul 2025
Viewed by 294
Abstract
In this study, we comprehensively compare electrical conduction behavior under an applied electric field and electrical conductivity variation with temperature in low-density polyethylene (LDPE)/CNT composites with different dispersions and covalent functionalizations. Composites with different dispersions were prepared using solution and melt mixing processes. [...] Read more.
In this study, we comprehensively compare electrical conduction behavior under an applied electric field and electrical conductivity variation with temperature in low-density polyethylene (LDPE)/CNT composites with different dispersions and covalent functionalizations. Composites with different dispersions were prepared using solution and melt mixing processes. The solution-mixed composites exhibited better dispersion and higher electrical conductivity compared to the melt-mixed composites. At a high critical content (beyond the percolation threshold), the current–voltage (I–V) curve of the solution-mixed composites exhibited linear conduction behavior due to the formation of a continuous conductive network. In contrast, the melt-mixed composites exhibited nonlinear conduction behavior, with the conductive mechanism attributed to the field emission effect caused by poor interfacial contact between the CNTs. Additionally, LDPE/CNT-carboxyl (LDPE/CNT-COOH) and LDPE/CNT-hydroxy (LDPE/CNT-OH) composites demonstrated better dispersion but displayed lower electrical conductivity and similar nonlinear conduction behavior when compared to unmodified ones. This is attributed to the surface defects caused by the modification process, which lead to an increased energy barrier and a decreased transition frequency in the field emission effect. Furthermore, the temperature-dependent electrical conductivity results indicate that the variation trend in current with temperature differed among LDPE/CNT composites with different dispersions and covalent functionalizations. These differences were mainly influenced by the gap width between CNTs (mainly affected by dispersion and aspect ratio of CNTs), as well as the electrical conductivity of CNTs (mainly influenced by surface modification and intrinsic electrical conductivity of CNTs). Full article
(This article belongs to the Special Issue Application and Characterization of Polymer Composites)
Show Figures

Graphical abstract

20 pages, 1508 KiB  
Article
In Silico Investigation of the RBC Velocity Fluctuations in Ex Vivo Capillaries
by Eren Çolak, Özgür Ekici and Şefik Evren Erdener
Appl. Sci. 2025, 15(14), 7796; https://doi.org/10.3390/app15147796 - 11 Jul 2025
Viewed by 275
Abstract
A properly functioning capillary microcirculation is essential for sufficient oxygen and nutrient delivery to the central nervous system. The physical mechanisms governing the transport of red blood cells (RBCs) inside the narrow and irregularly shaped capillary lumen are complex, but understanding them is [...] Read more.
A properly functioning capillary microcirculation is essential for sufficient oxygen and nutrient delivery to the central nervous system. The physical mechanisms governing the transport of red blood cells (RBCs) inside the narrow and irregularly shaped capillary lumen are complex, but understanding them is essential for identifying the root causes of neurological disorders like cerebral ischemia, Alzheimer’s disease, and other neurodegenerative conditions such as concussion and cognitive dysfunction in systemic inflammatory conditions. In this work, we conducted numerical simulations of three-dimensional capillary models, which were acquired ex vivo from a mouse retina, to characterize RBC transport. We show how the spatiotemporal velocity of the RBCs deviates in realistic capillaries and equivalent cylindrical tubes, as well as how this profile is affected by hematocrit and red cell distribution width (RDW). Our results show a previously unprecedented level of RBC velocity fluctuations in capillaries that depends on the geometric features of different confinement regions and a capillary circularity index (Icc) that represents luminal irregularity. This velocity fluctuation is aggravated by high hematocrit conditions, without any further effect on RDW. These results can provide a better understanding of the underlying mechanisms of pathologically high capillary transit time heterogeneity that results in microcirculatory dysfunction. Full article
Show Figures

Figure 1

32 pages, 9426 KiB  
Article
Multi-Output Prediction and Optimization of CO2 Laser Cutting Quality in FFF-Printed ASA Thermoplastics Using Machine Learning Approaches
by Oguzhan Der
Polymers 2025, 17(14), 1910; https://doi.org/10.3390/polym17141910 - 10 Jul 2025
Viewed by 380
Abstract
This research article examines the CO2 laser cutting performance of Fused Filament Fabricated Acrylonitrile Styrene Acrylate (ASA) thermoplastics by analyzing the influence of plate thickness, laser power, and cutting speed on four quality characteristics: surface roughness (Ra), top kerf width (Top KW), [...] Read more.
This research article examines the CO2 laser cutting performance of Fused Filament Fabricated Acrylonitrile Styrene Acrylate (ASA) thermoplastics by analyzing the influence of plate thickness, laser power, and cutting speed on four quality characteristics: surface roughness (Ra), top kerf width (Top KW), bottom kerf width (Bottom KW), and bottom heat-affected zone (Bottom HAZ). Forty-five experiments were conducted using five thickness levels, three power levels, and three cutting speeds. To model and predict these outputs, seven machine learning approaches were employed: Autoencoder, Autoencoder–Gated Recurrent Unit, Autoencoder–Long Short-Term Memory, Random Forest, Extreme Gradient Boosting (XGBoost), Support Vector Regression, and Linear Regression. Among them, XGBoost yielded the highest accuracy across all performance metrics. Analysis of Variance results revealed that Ra is mainly affected by plate thickness, Bottom KW by cutting speed, and Bottom HAZ by power, while Top KW is influenced by all three parameters. The study proposes an effective prediction framework using multi-output modeling and hybrid deep learning, offering a data-driven foundation for process optimization. The findings are expected to support intelligent manufacturing systems for real-time quality prediction and adaptive laser post-processing of engineering-grade thermoplastics such as ASA. This integrative approach also enables a deeper understanding of nonlinear dependencies in laser–material interactions. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

20 pages, 2412 KiB  
Article
Influence of Ion Flow Field on the Design of Hybrid HVAC and HVDC Transmission Lines with Different Configurations
by Jinyuan Xing, Chenze Han, Jun Tian, Hao Wu and Tiebing Lu
Energies 2025, 18(14), 3657; https://doi.org/10.3390/en18143657 - 10 Jul 2025
Viewed by 231
Abstract
Due to the coupling of DC and AC components, the ion flow field of HVDC and HVAC transmission lines in the same corridor or even the same tower is complex and time-dependent. In order to effectively analyze the ground-level electric field of hybrid [...] Read more.
Due to the coupling of DC and AC components, the ion flow field of HVDC and HVAC transmission lines in the same corridor or even the same tower is complex and time-dependent. In order to effectively analyze the ground-level electric field of hybrid transmission lines, the Krylov subspace methods with pre-conditioning treatment are used to solve the discretization equations. By optimizing the coefficient matrix, the calculation efficiency of the iterative process of the electric field in the time domain is greatly increased. Based on the limit of electric field, radio interference and audible noise applied in China, the main factor influencing the design of hybrid transmission lines is determined in terms of electromagnetic environment. After the ground-level electric field of transmission lines with different configurations is analyzed, the minimum height and corridor width of double-circuit 500 kV HVAC lines and one-circuit ±800 kV HVDC lines in the same corridor are obtained. The research provides valuable practical recommendations for optimal tower configurations, minimum heights, and corridor widths under various electromagnetic constraints. Full article
Show Figures

Figure 1

19 pages, 5353 KiB  
Article
Adaptive Symmetry Self-Matching for 3D Point Cloud Completion of Occluded Tomato Fruits in Complex Canopy Environments
by Wenqin Wang, Chengda Lin, Haiyu Shui, Ke Zhang and Ruifang Zhai
Plants 2025, 14(13), 2080; https://doi.org/10.3390/plants14132080 - 7 Jul 2025
Viewed by 345
Abstract
As a globally important cash crop, the optimization of tomato yield and quality is strategically significant for food security and sustainable agricultural development. In order to address the problem of missing point cloud data on fruits in a facility agriculture environment due to [...] Read more.
As a globally important cash crop, the optimization of tomato yield and quality is strategically significant for food security and sustainable agricultural development. In order to address the problem of missing point cloud data on fruits in a facility agriculture environment due to complex canopy structure, leaf shading and limited collection viewpoints, the traditional geometric fitting method makes it difficult to restore the real morphology of fruits due to the dependence on data integrity. This study proposes an adaptive symmetry self-matching (ASSM) algorithm. It dynamically adjusts symmetry planes by detecting defect region characteristics in real time, implements point cloud completion under multi-symmetry constraints and constructs a triple-orthogonal symmetry plane system to adapt to multi-directional heterogeneous structures under complex occlusion. Experiments conducted on 150 tomato fruits with 5–70% occlusion rates demonstrate that ASSM achieved coefficient of determination (R2) values of 0.9914 (length), 0.9880 (width) and 0.9349 (height) under high occlusion, reducing the root mean square error (RMSE) by 23.51–56.10% compared with traditional ellipsoid fitting. Further validation on eggplant fruits confirmed the cross-crop adaptability of the method. The proposed ASSM method overcomes conventional techniques’ data integrity dependency, providing high-precision three-dimensional (3D) data for monitoring plant growth and enabling accurate phenotyping in smart agricultural systems. Full article
(This article belongs to the Special Issue Modeling of Plants Phenotyping and Biomass)
Show Figures

Figure 1

18 pages, 7681 KiB  
Article
Microstructure, Phase Components, and Tribological Properties of Al65Cu20Fe15 Quasicrystal Coatings Deposited by HVOF
by Sherzod Kurbanbekov, Tulkinzhon Gaipov, Pulat Saidakhmetov, Alibek Tazhibayev, Sherzod Ramankulov, Sattarbek Bekbayev, Arai Abdimutalip and Dilnoza Baltabayeva
Lubricants 2025, 13(7), 297; https://doi.org/10.3390/lubricants13070297 - 6 Jul 2025
Viewed by 417
Abstract
Quasicrystalline coatings based on Al65Cu20Fe15 are of increasing interest as potential alternatives to conventional wear-resistant materials due to their unique structural and tribological properties. This study explores the influence of air pressure during high-velocity oxy-fuel (HVOF) spraying on [...] Read more.
Quasicrystalline coatings based on Al65Cu20Fe15 are of increasing interest as potential alternatives to conventional wear-resistant materials due to their unique structural and tribological properties. This study explores the influence of air pressure during high-velocity oxy-fuel (HVOF) spraying on the phase composition, morphology, and wear behavior of Al65Cu20Fe15 coatings deposited on U8G tool steel. Coatings were applied at a fixed spraying distance of 350 mm using three air pressures (1.9, 2.1, and 2.3 bar), with constant propane (2.0 bar) and oxygen (2.1 bar) supply. X-ray diffraction analysis identified the formation of Al78Cu48Fe14 and Al0.5Fe1.5 phases, while scanning electron microscopy revealed a dense, uniform microstructure with low porosity and homogeneous element distribution across all samples. Tribological testing using the ball-on-disk method showed wear track widths ranging from 853.47 to 952.50 µm, depending on the air pressure applied. These findings demonstrate that fine-tuning the air pressure during HVOF spraying significantly influences the structural characteristics and wear resistance of the resulting quasicrystalline coatings, highlighting their promise for advanced surface engineering applications. Full article
(This article belongs to the Special Issue Wear and Friction of High-Performance Coatings and Hardened Surfaces)
Show Figures

Figure 1

14 pages, 2770 KiB  
Article
High-Energy Electron Emission Controlled by Initial Phase in Linearly Polarized Ultra-Intense Laser Fields
by Xinru Zhong, Yiwei Zhou and Youwei Tian
Appl. Sci. 2025, 15(13), 7453; https://doi.org/10.3390/app15137453 - 2 Jul 2025
Viewed by 287
Abstract
Extensive numerical simulations were performed in MATLAB R2020b based on the classical nonlinear Thomson scattering theory and single-electron model, to systematically examine the influence of initial phase in tightly focused linearly polarized laser pulses on the radiation characteristics of multi-energy-level electrons. Through our [...] Read more.
Extensive numerical simulations were performed in MATLAB R2020b based on the classical nonlinear Thomson scattering theory and single-electron model, to systematically examine the influence of initial phase in tightly focused linearly polarized laser pulses on the radiation characteristics of multi-energy-level electrons. Through our research, we have found that phase variation from 0 to 2π induces an angular bifurcation of peak radiation intensity, generating polarization-aligned symmetric lobes with azimuthal invariance. Furthermore, the bimodal polar angle decreases with the increase of the initial energy. This phase-controllable bimodal distribution provides a new solution for far-field beam shaping. Significantly, high-harmonic intensity demonstrates π-periodic phase-dependent modulation. Meanwhile, the time-domain pulse width also exhibits 2π-cycle modulation, which is synchronized with the laser electric field period. Notably, electron energy increase enhances laser pulse peak intensity while compressing its duration. The above findings demonstrate that the precise control of the driving laser’s initial phase enables effective manipulation of the radiation’s spatial characteristics. Full article
Show Figures

Figure 1

15 pages, 25123 KiB  
Article
Spark Mapping Analysis for Segregation Partitioning in Large-Scale Super-Critical-Power Steel
by Baibing Li, Lei Zhao, Liang Sheng, Jingwei Yang, Liangjing Yuan, Lei Yu, Qiaochu Zhang, Haizhou Wang and Yunhai Jia
Materials 2025, 18(13), 3128; https://doi.org/10.3390/ma18133128 - 1 Jul 2025
Viewed by 226
Abstract
The material properties of P91 steel, a critical high-temperature heat-resistant steel, are critically dependent on the uniformity of its macro-composition distribution. This paper presents the first application of Spark Mapping Analysis for Large Samples (SMALS) for the non-destructive, full-field characterization of macro-composition distribution [...] Read more.
The material properties of P91 steel, a critical high-temperature heat-resistant steel, are critically dependent on the uniformity of its macro-composition distribution. This paper presents the first application of Spark Mapping Analysis for Large Samples (SMALS) for the non-destructive, full-field characterization of macro-composition distribution in P91 steel ingots and finished tubes. To address the analytical challenges posed by large-sized specimens, an innovative partition-based statistical analysis model was developed, enabling the effective demarcation of large-scale macro-segregation areas. Utilizing Sample A as the paradigm, a systematic methodology and workflow for the partition analysis were established, successfully identifying and quantifying the widths of its positive and negative segregation bands (namely 6 mm, 20 mm, and 8 mm). This approach was subsequently applied to samples from different smelting batches (B1, B2, C1, C2), effectively delineating macro-segregation areas within each sample and performing quantitative evaluations based on the statistical upper segregation limit. The findings provide essential experimental insights into the full-field compositional heterogeneity of P91 steel and deliver critical methodological guidelines for optimizing steel smelting processes to control and mitigate macro-segregation. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

19 pages, 7377 KiB  
Article
An SWE-FEM Model with Application to Resonant Periods and Tide Components in the Western Mediterranean Sea Region
by Kostas Belibassakis and Vincent Rey
J. Mar. Sci. Eng. 2025, 13(7), 1286; https://doi.org/10.3390/jmse13071286 - 30 Jun 2025
Viewed by 452
Abstract
A FEM model of Shallow Wave Equations (SWE-FEM) is studied, taking into account the variable bathymetry of semi-enclosed sea basins. The model, with a spatially varying Coriolis term, is implemented for the description of combined refraction–diffraction effects, from which the eigenperiods and eigenmodes [...] Read more.
A FEM model of Shallow Wave Equations (SWE-FEM) is studied, taking into account the variable bathymetry of semi-enclosed sea basins. The model, with a spatially varying Coriolis term, is implemented for the description of combined refraction–diffraction effects, from which the eigenperiods and eigenmodes of extended geographical sea areas are calculated by means of a low-order FEM scheme. The model is applied to the western Mediterranean basin, illustrating its versatility to easily include the effects of geographical characteristics like islands and other coastal features. The calculated resonant frequencies and modes depend on the domain size and characteristics as well as the location of the open sea boundary, and it is shown to provide results compatible with tide measurements at several stations in the coastal region of France. The calculation of the natural oscillation modes in the western Mediterranean basin, bounded by open boundaries at the Strait of Gibraltar and the Strait of Sicily, reveals a natural period of around 6 h corresponding to the quarter-diurnal tidal components, which are stationary and of roughly constant amplitude on the northern coast of the basin and on the west coast of Corsica (France). On the east coast of Corsica, on the other hand, these components are of very low amplitude and in phase opposition. The semi-diurnal tidal components observed on the same tide gauges north of the basin and west of Corsica are also quasi-stationary although they are not resonant. Resonant oscillations are also observed at lower periods, especially at a period of around 3 h at the Sète station. This period corresponds to a higher-order natural mode of the western Mediterranean basin, but this resonance seems to be essentially linked to the presence of the Gulf of Lion, whose shallowness and the width of the shelf at this point induce a resonance. Other oscillations are also observed at lower periods (T = 1.5 h at station Fos-sur-Mer, T = 45 min in the Toulon harbour station), due to more local forcing. Full article
(This article belongs to the Special Issue New Developments of Ocean Wind, Wave and Tidal Energy)
Show Figures

Figure 1

10 pages, 950 KiB  
Article
Effect of Temperature on Allelopathic Interactions Between Copepods (Copepoda) and Rotifers (Rotifera)
by Ana Nayeli López-Rocha, S. S. S. Sarma and S. Nandini
Diversity 2025, 17(7), 455; https://doi.org/10.3390/d17070455 - 27 Jun 2025
Viewed by 191
Abstract
The role of abiotic factors in the allelopathic interactions between copepods and rotifers is poorly documented. Temperature has a marked effect on the metabolism of zooplankton. Therefore, the release of allelochemicals by copepods and the response of rotifers to them may change as [...] Read more.
The role of abiotic factors in the allelopathic interactions between copepods and rotifers is poorly documented. Temperature has a marked effect on the metabolism of zooplankton. Therefore, the release of allelochemicals by copepods and the response of rotifers to them may change as temperatures increase. Here, we tested the effect of two temperatures (20 and 25 °C) on the population growth of Brachionus havanaensis cultured on a conditioned medium (CM) of Arctodiaptomus dorsalis and Eucyclops sp. The CM was obtained daily, separately, for the males and females of both copepod species at a density of 0.1 ind. mL−1 for 24 h prior to experiments. In the controls and CM treatments, higher temperatures had a stimulatory effect on the population growth and the rate of population increase (r) of B. havanaensis. At 25 °C, the CM from the females and males of A. dorsalis caused >30% increase in r, but for the CM from Eucyclops sp., this effect was lower (<21%). At 20 °C, the r in the controls and CM treatments was not significantly different. The morphometry of B. havanaensis varied depending on the treatments. Compared to controls, longer loricae were recorded in the CM of male A. dorsalis at both temperatures. However, in the CM of female calanoids, longer rotifers were observed only at higher temperatures. At 20 °C, the CM from Eucyclops produced smaller loricae. The relationship between the lorica length and width of rotifers showed a linear relation but the slope differed among the treatments. Full article
(This article belongs to the Special Issue 2025 Feature Papers by Diversity’s Editorial Board Members)
Show Figures

Figure 1

18 pages, 1845 KiB  
Article
Anti-Inflammatory and Joint-Protective Effects of Blueberries in a Monosodium Iodoacetate (MIA)-Induced Rat Model of Osteoarthritis
by Sanique M. South, Keith Crabtree, Dayna L. Averitt, Parakat Vijayagopal and Shanil Juma
Nutrients 2025, 17(13), 2134; https://doi.org/10.3390/nu17132134 - 27 Jun 2025
Viewed by 419
Abstract
Background/Objectives: Osteoarthritis is a degenerative joint disease that affects people worldwide. It is characterized by joint pain, synovial inflammation, and the degradation of articular cartilage with subchondral bone. Presently, there is no known cure, and pharmacological treatment options are limited. Blueberries contain phytochemicals, [...] Read more.
Background/Objectives: Osteoarthritis is a degenerative joint disease that affects people worldwide. It is characterized by joint pain, synovial inflammation, and the degradation of articular cartilage with subchondral bone. Presently, there is no known cure, and pharmacological treatment options are limited. Blueberries contain phytochemicals, which have been linked to positive health benefits and may offer therapeutic benefits. Therefore, the purpose of this study was to examine the dose-dependent effects of whole blueberries on arthritis symptoms in a monosodium iodoacetate (MIA)-induced rat model of osteoarthritis. Methods: Forty female rats were used for this study. Thirty were injected with MIA to induce joint degradation associated with osteoarthritis. Ten served as controls without MIA induction. The MIA-induced rats were randomized into three groups. All groups were fed a casein-based diet, with two of the MIA-induced groups receiving an addition of whole-blueberry powder at 5% and 10%. Fasted blood specimens and tissues of interest were collected post-euthanasia for analysis. Mechanical allodynia and joint widths were assessed throughout this study. Results: MIA induction resulted in changes in pain behaviors and the development of mechanical allodynia. The MIA injection produced inflammation, pain symptoms, and behaviors that are representative of those observed in humans with osteoarthritis. The incorporation of whole blueberries into diets reduced pain behaviors and inflammation. Conclusions: Overall, whole blueberries showed limited, non-dose-dependent effects in the MIA-induced rat model of osteoarthritis. While some outcomes improved in blueberry-treated groups, the overall results were not consistently significant. These preliminary findings suggest potential biological activity and support the further investigation of blueberries’ therapeutic efficacy. Full article
(This article belongs to the Special Issue Nutritional Value and Health Benefits of Dietary Bioactive Compounds)
Show Figures

Figure 1

Back to TopTop