Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = wet weather flow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4621 KB  
Article
Probabilistic Forecasting and Anomaly Detection in Sewer Systems Using Gaussian Processes
by Mohsen Rezaee, Peter Melville-Shreeve and Hussein Rappel
Water 2025, 17(16), 2357; https://doi.org/10.3390/w17162357 - 8 Aug 2025
Viewed by 328
Abstract
This study investigates the capability of Gaussian process regression (GPR) models in the probabilistic forecasting of water flow and depth in a combined sewer system. Traditionally, deterministic methods have been implemented in sewer flow forecasting and anomaly detection, two crucial techniques for a [...] Read more.
This study investigates the capability of Gaussian process regression (GPR) models in the probabilistic forecasting of water flow and depth in a combined sewer system. Traditionally, deterministic methods have been implemented in sewer flow forecasting and anomaly detection, two crucial techniques for a good wastewater network and treatment plant management. However, with the uncertain nature of the factors impacting on sewer flow and depth, a probabilistic approach which takes uncertainties into account is preferred. This research introduces a novel use of GPR in sewer systems for real-time control and forecasting. To this end, a composite kernel is designed to capture flow and depth patterns in dry- and wet-weather periods by considering the underlying physical characteristics of the system. The multi-input, single-output GPR model is evaluated using root mean square error (RMSE), coverage, and differential entropy. The model demonstrates high predictive accuracy for both treatment plant inflow and manhole water levels across various training durations, with coverage values ranging from 87.5% to 99.4%. Finally, the model is used for anomaly detection by identifying deviations from expected ranges, enabling the estimation of surcharge and overflow probabilities under various conditions. Full article
(This article belongs to the Special Issue Advances in Management and Optimization of Urban Water Networks)
Show Figures

Figure 1

21 pages, 3469 KB  
Article
Monitoring Phosphorus During High Flows: Critical for Implementing Surrogacy Models
by Elliot S. Anderson, Keith E. Schilling and Larry J. Weber
Water 2025, 17(15), 2194; https://doi.org/10.3390/w17152194 - 23 Jul 2025
Viewed by 356
Abstract
Phosphorus (P) is a problematic waterborne pollutant, and considerable efforts have been taken to monitor its presence and transport in locales struggling with eutrophication. Most historical P datasets consist of intermittent grab samples, necessitating the construction of surrogacy models to explore P at [...] Read more.
Phosphorus (P) is a problematic waterborne pollutant, and considerable efforts have been taken to monitor its presence and transport in locales struggling with eutrophication. Most historical P datasets consist of intermittent grab samples, necessitating the construction of surrogacy models to explore P at high resolutions. In Iowa, models using historical data to relate turbidity to particulate P (PartP) have successfully been created. However, it is unknown how comprehensively historical datasets reflect Iowa’s hydrologic conditions and how well these models perform during flows not well represented within the existing data. In this study, we analyzed historical P datasets from 16 major Iowa rivers to determine how well they captured the rivers’ full range of streamflow conditions. While these datasets contained sufficient samples during low and average flows, they typically under-sampled high flows—containing few values above the 85–95th percentiles. Therefore, we collected new data in each river during wet conditions, with ~300 samples taken from 2021 to 2024. These new sampling results largely aligned with the existing surrogacy models and slightly improved model performance, suggesting that utilizing turbidity to predict PartP is appropriate in nearly all streamflow conditions. These findings may prove consequential for robustly modeling PartP due to its dynamic nature and disproportionately high transport during wet weather events. Full article
Show Figures

Figure 1

17 pages, 7997 KB  
Article
Synergistic Effects of Multiple Monsoon Systems on Autumn Precipitation in West China
by Luchi Song, Lingli Fan, Chunqiao Lin, Jiahao Li and Jianjun Xu
Atmosphere 2025, 16(4), 481; https://doi.org/10.3390/atmos16040481 - 20 Apr 2025
Viewed by 382
Abstract
Multiple monsoon systems impact autumn precipitation in West China; however, their synergistic influence is unknown. Here, we employed statistical analysis of Global Precipitation Climatology Project Version 3.2 precipitation data, European Center for Medium-Range Weather Forecasts ERA5 reanalysis data, and Coupled Model Intercomparison Project [...] Read more.
Multiple monsoon systems impact autumn precipitation in West China; however, their synergistic influence is unknown. Here, we employed statistical analysis of Global Precipitation Climatology Project Version 3.2 precipitation data, European Center for Medium-Range Weather Forecasts ERA5 reanalysis data, and Coupled Model Intercomparison Project model data, and calculated four monsoon indices to analyze the features of the East Asian Monsoon, South Asian Monsoon, Asia Zonal Circulation, and Tibetan Plateau Monsoon, as well as their synergistic impacts on autumn precipitation in West China. The East Asian Monsoon negatively influences autumn precipitation in West China through closed high pressure over Northeast China. The South Asian Monsoon encloses West China between two areas of closed high pressure; strong high pressure to the north guides the abnormal transport of cold air in Northwest China, whereas strong western Pacific subtropical high pressure guides the transport of warm and wet air to West China, which is conducive to the formation of autumn precipitation in West China. During years of strong Asia Zonal Circulation, West China is controlled by an anomalous sinking airflow, which is not conducive to the occurrence of autumn rain. During strong Tibetan Plateau Monsoon, western and southwestern China are affected by plateau subsidence flow, resulting in less precipitation. Based on the CMIP6 model data, the study found that under the SSP5-8.5 emission scenario, the future trends of the four monsoon systems will show significant differences, and the amplitude of autumn and interannual precipitation oscillations in west China will increase. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

25 pages, 18044 KB  
Article
Atmospheric Energetics of Three Contrasting West African Monsoon Seasons as Simulated by a Regional Climate Model
by Yves Ngueto, René Laprise and Oumarou Nikiéma
Atmosphere 2025, 16(4), 405; https://doi.org/10.3390/atmos16040405 - 31 Mar 2025
Viewed by 465
Abstract
The West African atmospheric energy budget is assessed for the first time across three contrasting monsoon seasons (dry, wet, and moderate) using the latest version of the Canadian Regional Climate Model (CRCM6/GEM5). The model is driven by ERA5 reanalysis from the European Centre [...] Read more.
The West African atmospheric energy budget is assessed for the first time across three contrasting monsoon seasons (dry, wet, and moderate) using the latest version of the Canadian Regional Climate Model (CRCM6/GEM5). The model is driven by ERA5 reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF). A formalism appropriate for regional climate energetics is employed to quantify the primary physical processes occurring during the West African Monsoon, with the aim of highlighting those that exhibit significant inter-seasonal variability. The atmospheric energy path shows that the time-mean available enthalpy (AM) reservoir, reflecting high surface temperatures and a lapse rate characteristic of a dry atmosphere, dominates other energy reservoirs. AM is converted into the time-mean kinetic energy (KM) and the time-variability available enthalpy (AE) reservoirs, which are converted into a time-variability kinetic energy reservoir (KE) through barotropic and baroclinic processes. AE is the lowest energy reservoir, confirming smaller temperature variations in the tropics compared to higher latitudes. Kinetic energy reservoirs KM and KE have the same order of magnitude, suggesting that mean flow is as important as eddy activities during the season. The atmospheric energy cycle computed for three contrasting rainy seasons shows that time-variability energy reservoirs (AE and KE) and main terms acting upon them, are proportional to the rainfall activity, being higher (lower) during rainy (dry) years. It also reveals that, while CA (conversion from AM to AE) and the generation term GE feed wave’s development, the frictional term DE counteracts the generation of KE to dampen the creation of transient eddies. These findings suggest that the atmospheric energetic formalism could be applied on West African seasonal forecasts and future climate simulations to implement adaptation strategies. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

22 pages, 18090 KB  
Article
Hydrogeological Assessment and Steady-State Groundwater Flow Modeling for Groundwater Management in the Golina River Sub-Basin, Northern Ethiopia, Using MODFLOW 6
by Hindeya Gebru, Tesfamichael Gebreyohannes, Ermias Hagos and Nicola Perilli
Water 2025, 17(7), 949; https://doi.org/10.3390/w17070949 - 25 Mar 2025
Cited by 2 | Viewed by 978
Abstract
Unsustainable groundwater extraction for domestic and agricultural purposes, particularly crop irrigation, is leading to dramatic reductions in the quantity and quality of groundwater in many developing countries, including Ethiopia. Assessing and predicting groundwater responses to hydraulic stress caused by overexploitation related to anthropogenic [...] Read more.
Unsustainable groundwater extraction for domestic and agricultural purposes, particularly crop irrigation, is leading to dramatic reductions in the quantity and quality of groundwater in many developing countries, including Ethiopia. Assessing and predicting groundwater responses to hydraulic stress caused by overexploitation related to anthropogenic activities and climate change are crucial for informing water management decisions. The aim of this study is to develop a three-dimensional steady-state groundwater flow model for the Golina River Sub-Basin to understand the relationship between groundwater recharge and groundwater pumping and their impacts under steady-state conditions from the perspective of groundwater management. The model was created using MODFLOW 6 and discretized into 345 rows and 444 columns with a grid resolution of 100 m by 100 m. The subsurface was modeled as two layers: a clastic alluvial layer overlying a weathered and fractured bedrock. The surface-water divide of the Golina River Sub-Basin was treated as a no-flow boundary. The initial values of horizontal hydraulic conductivity ranged from 0.001 m/day for rhyolite to 27.26 m/day for alluvial deposits. The aquifer recharge rates from the WetSpass model ranged from 1.08 × 10−3 to 2.25 × 10−4 m/day, and the discharge rates from the springs, hand-dug wells, and boreholes were 2.79 × 104 m3/day, known flux boundaries. Sensitivity analysis revealed that the model is very sensitive to hydraulic conductivity, moderately sensitive to aquifer recharge, and less sensitive to groundwater pumping. Calibration was performed to match observed and simulated hydraulic heads of selected wells and achieved a correlation coefficient of 0.998. The calibrated hydraulic conductivity ranged from 1.2 × 10−4 m/day for rhyolite to 20 m/day for gravel-dominated alluvial deposits. The groundwater flow direction is toward the southeast, and the water balance indicates a negligible difference between the total recharge (207,775.8297 m3/day, which is the water entering the aquifer system) and the total pumped volume (207,775.9373 m3/day, which is the water leaving the aquifer system). The scenario analysis showed that an increase in the pumping rate of 25%, 50%, and 75% would result in a decrease in the hydraulic head by 4.64 m, 10.18 m, and 17.38 m, respectively. A decrease in recharge of 25%, 50%, and 75% would instead result in hydraulic-head declines of 6 m, 15.29 m, and 46.97 m, respectively. Consequently, the findings of this study suggest that decision-makers should prioritize enhancing integrated groundwater management strategies to improve recharge rates within the aquifer system of the study area. Full article
(This article belongs to the Special Issue Groundwater Flow and Transport Modeling in Aquifer Systems)
Show Figures

Figure 1

21 pages, 39906 KB  
Article
Geological and 3D Image Analysis Toward Protecting a Geosite: The Case Study of Falakra, Limnos, Greece
by Ioannis K. Koukouvelas, Aggeliki Kyriou, Konstantinos G. Nikolakopoulos, Georgios Dimaris, Ioannis Pantelidis and Harilaos Tsikos
Minerals 2025, 15(2), 148; https://doi.org/10.3390/min15020148 - 31 Jan 2025
Cited by 1 | Viewed by 1098
Abstract
The Falakra geosite is located at the northern shoreline of the island of Limnos, Greece, and exhibits an array of unusual geomorphological features developed in late Cenozoic sandstones. Deposition of the primary clastic sediments was overprinted by later, low-temperature hydrothermal fluid flow and [...] Read more.
The Falakra geosite is located at the northern shoreline of the island of Limnos, Greece, and exhibits an array of unusual geomorphological features developed in late Cenozoic sandstones. Deposition of the primary clastic sediments was overprinted by later, low-temperature hydrothermal fluid flow and interstitial secondary calcite formation associated with nearby volcanic activity. Associated sandstone cannonballs take center stage in a landscape built by joints, Liesengang rings and iron (hydr)oxide precipitates, constituting an intriguing site of high aesthetic value. The Falakra geosite is situated in an area with dynamic erosion processes occurring under humid weather conditions. These have evidently sculpted and shaped the sandstone landscape through a complex interaction of wave- and wind-induced erosional processes aided by salt spray wetting. This type of geosite captivates scientists and nature enthusiasts due to its unique geological and landscape features, making its sustainable conservation a significant concern and topic of debate. Here, we provide detailed geological and remote sensing mapping of the area to improve the understanding of geological processes and their overall impact. Given the significance of the Falakra geosite as a unique tourist destination, we emphasize the importance of developing it under sustainable management. We propose the segmentation of the geosite into four sectors based on the corresponding geological features observed on site. Sector A, located to the west, is occupied by a lander-like landscape; to the southeast, sector B contains clusters of cannonballs and concretions; sector C is characterized by intense jointing and complex iron (hydr)oxide precipitation patterns, dominated by Liesengang rings, while sector D displays cannonball or concretion casts. Finally, we propose a network of routes and platforms to highlight the geological heritage of the site while reducing the impact of direct human interaction with the outcrops. For constructing the routes and platforms, we propose the use of serrated steel grating. Full article
(This article belongs to the Special Issue Application of UAV and GIS for Geosciences, 2nd Edition)
Show Figures

Figure 1

32 pages, 6487 KB  
Article
FS-DDPG: Optimal Control of a Fan Coil Unit System Based on Safe Reinforcement Learning
by Chenyang Li, Qiming Fu, Jianping Chen, You Lu, Yunzhe Wang and Hongjie Wu
Buildings 2025, 15(2), 226; https://doi.org/10.3390/buildings15020226 - 14 Jan 2025
Viewed by 1138
Abstract
To optimize the control of fan coil unit (FCU) systems under model-free conditions, researchers have integrated reinforcement learning (RL) into the control processes of system pumps and fans. However, traditional RL methods can lead to significant fluctuations in the flow of pumps and [...] Read more.
To optimize the control of fan coil unit (FCU) systems under model-free conditions, researchers have integrated reinforcement learning (RL) into the control processes of system pumps and fans. However, traditional RL methods can lead to significant fluctuations in the flow of pumps and fans, posing a safety risk. To address this issue, we propose a novel FCU control method, Fluctuation Suppression–Deep Deterministic Policy Gradient (FS-DDPG). The key innovation lies in applying a constrained Markov decision process to model the FCU control problem, where a penalty term for process constraints is incorporated into the reward function, and constraint tightening is introduced to limit the action space. In addition, to validate the performance of the proposed method, we established a variable operating conditions FCU simulation platform based on the parameters of the actual FCU system and ten years of historical weather data. The platform’s correctness and effectiveness were verified from three aspects: heat transfer, the air side and the water side, under different dry and wet operating conditions. The experimental results show that compared with DDPG, FS-DDPG avoids 98.20% of the pump flow and 95.82% of the fan flow fluctuations, ensuring the safety of the equipment. Compared with DDPG and RBC, FS-DDPG achieves 11.9% and 51.76% energy saving rates, respectively, and also shows better performance in terms of operational performance and satisfaction. In the future, we will further improve the scalability and apply the method to more complex FCU systems in variable environments. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

25 pages, 10105 KB  
Article
Assessing the Potential of Volcanic and Sedimentary Rock Aquifers in Africa: Emphasizing Transmissivity, Water Quality, and Recharge as Key Evaluation Metrics
by Kristine Walraevens, George Bennett, Nawal Alfarrah, Tesfamichael Gebreyohannes, Gebremedhin Berhane, Miruts Hagos, Abdelwassie Hussien, Fenta Nigate, Ashebir Sewale Belay, Adugnaw Birhanu and Alemu Yenehun
Water 2025, 17(1), 109; https://doi.org/10.3390/w17010109 - 3 Jan 2025
Viewed by 2728
Abstract
This study provides a comprehensive analysis of the groundwater potential of hard rock aquifers in five diverse African case study areas: Lake Tana Basin and Beles Basin in northwestern Ethiopia and Mount Meru in northern Tanzania (comprising volcanic aquifers); the Mekelle area in [...] Read more.
This study provides a comprehensive analysis of the groundwater potential of hard rock aquifers in five diverse African case study areas: Lake Tana Basin and Beles Basin in northwestern Ethiopia and Mount Meru in northern Tanzania (comprising volcanic aquifers); the Mekelle area in northern Ethiopia and Jifarah Plain in Libya (consisting of sedimentary aquifers). The evaluation of recharge, transmissivity, and water quality formed the basis of qualitative and quantitative assessment. Multiple methods, including water table fluctuation (WTF), chloride mass balance (CMB), physical hydrological modeling (WetSpass), baseflow separation (BFS), and remote sensing techniques like GRACE satellite data, were employed to estimate groundwater recharge across diverse hydrogeological settings. Topographic contrast, fractured orientation, lineament density, hydro-stratigraphic connections, hydraulic gradient, and distribution of high-flux springs were used to assess IGF from Lake Tana to Beles Basin. The monitoring, sampling, and pumping test sites took into account the high hydromorphological and geological variabilities. Recharge rates varied significantly, with mean values of 315 mm/year in Lake Tana Basin, 193 mm/year in Mount Meru, and as low as 4.3 mm/year in Jifarah Plain. Transmissivity ranged from 0.4 to 6904 m2/day in Lake Tana Basin, up to 790 m2/day in Mount Meru’s fractured lava aquifers, and reached 859 m2/day in the sedimentary aquifers of the Mekelle area. Water quality issues included high TDS levels (up to 3287 mg/L in Mekelle and 11,141 mg/L in Jifarah), elevated fluoride concentrations (>1.5 mg/L) in 90% of Mount Meru samples, and nitrate pollution in shallow aquifers linked to agricultural practice. This study also highlights the phenomenon of inter-basin deep groundwater flow, emphasizing its role in groundwater potential assessment and challenging conventional water balance assumptions. The findings reveal that hard rock aquifers, particularly weathered/fractured basalt aquifers in volcanic regions, exhibit high potential, while pyroclastic aquifers generally demonstrate lower potential. Concerns regarding high fluoride levels are identified in Mount Meru aquifers. Among sedimentary aquifers in the Mekelle area and Jifarah Plain, limestone intercalated with marl or dolomite rock emerges as having high potential. However, high TDS and high sulfate concentrations are quality issues in some of the areas, quite above the WHO’s and each country’s drinking water standards. The inter-basin groundwater flow, investigated in this study of Beles Basin, challenges the conventional water balance assumption that the inflow into a hydrological basin is equivalent to the outflow out of the basin, by emphasizing the importance of considering groundwater influx from neighboring basins. These insights contribute novel perspectives to groundwater balance and potential assessment studies, challenging assumptions about groundwater divides. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

14 pages, 2077 KB  
Article
Using HF183 to Estimate Watershed-Wide Annual Loadings of Human Fecal Pollution from Onsite Wastewater Treatment Systems
by Kenneth Schiff, Amity Zimmer-Faust, Duy Nguyen, John Griffith, Joshua Steele, Darcy Ebentier McCargar and Sierra Wallace
Sustainability 2024, 16(21), 9503; https://doi.org/10.3390/su16219503 - 31 Oct 2024
Viewed by 1161
Abstract
Onsite wastewater treatment systems (OWTSs or septic systems), when properly sited, designed, operated, and maintained, treat domestic wastewater to reduce impacts on and maintain sustainability of aquatic resources. However, when OWTSs are not performing as expected, they can be a potential source of [...] Read more.
Onsite wastewater treatment systems (OWTSs or septic systems), when properly sited, designed, operated, and maintained, treat domestic wastewater to reduce impacts on and maintain sustainability of aquatic resources. However, when OWTSs are not performing as expected, they can be a potential source of human fecal pollution to recreational waters, resulting in an increased risk of illness to swimmers. Quantifying the contribution of poor-performing OWTSs relative to other sources of fecal pollution is particularly challenging in wet weather when various sources commingle as they flow downstream. This study aimed to estimate the total load of human fecal pollution from OWTSs in an arid watershed with municipal separate storm sewer systems (MS4). The novel study design sampled HF183, a DNA-based human marker, from six small catchments containing only OWTSs and no other known human fecal sources, such as sanitary sewer collection systems or people experiencing homelessness. Then, the human fecal loading from the representative catchments was extrapolated to the portions of the watershed that were not sampled but contained OWTSs. Flow-weighted mean HF183 concentrations ranged from 104 to 107 gene copies/100 mL across 29 site-events. HF183 mass loading estimates were normalized to the number of parcels per catchment and inches of rainfall per storm event. Assuming the normalized loading estimate was representative, extrapolation to all of the OWTS parcels in the watershed and average annual rainfall quantity illustrated that HF183 loading from OWTSs was a small but measurable fraction of the total HF183 mass loading emanating at the bottom of the watershed. Clearly, other human fecal sources contributed HF183 during storm events in this watershed. The loading estimate approach used in this study could be applied to other watersheds facing similar challenges in prioritizing resources for monitoring and mitigation among co-located human fecal sources. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

20 pages, 4521 KB  
Article
Optimizing the Activation of WWTP Wet-Weather Operation Using Radar-Based Flow and Volume Forecasting with the Relative Economic Value (REV) Approach
by Vianney Courdent, Thomas Munk-Nielsen and Peter Steen Mikkelsen
Water 2024, 16(19), 2806; https://doi.org/10.3390/w16192806 - 2 Oct 2024
Viewed by 1098
Abstract
Wastewater treatment plants (WWTPs) connected to combined sewer systems must cope with high flows during wet-weather conditions, often leading to bypass and thus pollution of water bodies. Radar rainfall forecasts coupled with a rainfall-runoff model provides flow and volume forecasts that can be [...] Read more.
Wastewater treatment plants (WWTPs) connected to combined sewer systems must cope with high flows during wet-weather conditions, often leading to bypass and thus pollution of water bodies. Radar rainfall forecasts coupled with a rainfall-runoff model provides flow and volume forecasts that can be used for deciding when to switch from normal to wet-weather operation, which temporarily allows for higher inflow. However, forecasts are by definition uncertain and may lead to potential mismanagement, e.g., false alarms and misses. Our study focused on two years of operational data from the Damhuså sewer catchment and WWTP. We used the Relative Economic Value (REV) framework to optimize the control parameters of a baseline control strategy (thresholds on flow measurements and radar flow prognosis) and to test new control strategies based on volume instead of flow thresholds. We investigated two situations with different objective functions, considering higher negative impact from misses than false alarms and vice versa, and obtained in both cases a reduction of the rate of false alarms, higher flow thresholds and lower bypass compared to the baseline control. We also assess a new control strategy that employs thresholds of predicted accumulated volume instead of predicted flow and achieved even better results. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

19 pages, 6040 KB  
Article
Impact Assessment of Climate Change on Water Supply to Hsinchu Science Park in Taiwan
by Tsung-Yu Lee, Yun-Pan Lai, Tse-Yang Teng and Chi-Cheng Chiu
Water 2024, 16(12), 1746; https://doi.org/10.3390/w16121746 - 20 Jun 2024
Cited by 3 | Viewed by 2853
Abstract
The Hsinchu Science Park (HSP) in Taiwan plays a vital role in the chain of semiconductor production, but water scarcity has been challenging semiconductor manufacturing. The Baoshan Reservoir (BS) and the Baoshan Second Reservoir (BSR) are two major sources of water supply to [...] Read more.
The Hsinchu Science Park (HSP) in Taiwan plays a vital role in the chain of semiconductor production, but water scarcity has been challenging semiconductor manufacturing. The Baoshan Reservoir (BS) and the Baoshan Second Reservoir (BSR) are two major sources of water supply to the HSP. However, the impacts of climate change on the water supply have not been analyzed. In this study, a hydrological model (i.e., SWAT) and an operation model of the BR and the BSR were coupled to assess the climate change impacts on the inflow, outflow, and water storage volume (WSV) of the reservoirs. The simulations were based on the weather data for the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios of AR5 for the Periods of 2021–2040, 2041–2060, 2061–2060, and 2081–2100 derived from up to 33 GCMs/EMSs. It is found that more intensified global warming would generally result in more apparent rainfall seasonality that is wetter in the wet season and dryer in the dry season and more magnified seasonality in river flow. During the hotspot period of water shortage in the HSP from February to May, future water scarcity is expected to worsen. Among the 16 combinations of scenarios and Periods, 13 indicate lower WSV in the future compared to the Baseline. The annual mean number of ten-day periods with WSV lower than the operation rule curve ranges from 4.84 to 6.95 ten-day periods, higher than the Baseline of 4.81 ten-day periods. Overall, RCP6.0 has the most significant impact on the study area, with the highest annual economic loss occurring during the 2041-2060 period, reaching USD 1 billion (~2.37% of the 2023 annual production value) for the HSP. This study also provides a three-month cumulative rainfall threshold as an operational warning indicator for the HSP. Our assessment results indicate that future water supply to the HSP should be a serious concern for stabilizing the manufacturing processes and hence the global semiconductor component supply. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

28 pages, 12078 KB  
Article
Water Budget for Lake Trafford, a Natural Subtropical Lake in South Florida: An Example of Enhanced Groundwater Influx in a Subtropical Lake Subsequent to Organic Sediment Dredging
by Serge Thomas, Mark A. Lucius, Jong-Yeop Kim, Edwin M. Everham, Dana L. Dettmar and Thomas M. Missimer
Water 2024, 16(8), 1188; https://doi.org/10.3390/w16081188 - 22 Apr 2024
Cited by 2 | Viewed by 2355
Abstract
A very detailed water budget analysis was conducted on Lake Trafford in South Florida. The inflow was dominated by surface water influx via five canals (61%), with groundwater influx constituting 12% and direct rainfall constituting 27%. Lake discharge was dominated by sheet flow [...] Read more.
A very detailed water budget analysis was conducted on Lake Trafford in South Florida. The inflow was dominated by surface water influx via five canals (61%), with groundwater influx constituting 12% and direct rainfall constituting 27%. Lake discharge was dominated by sheet flow (69%) and evapotranspiration (30.5%), with groundwater recharge of the hydraulically connected unconfined aquifer accounting for only 0.5%. The removal of 30 M tons (4.4 × 106 m3) of organic sediment impacted the groundwater influx, causing enhanced groundwater flow into the deeper parts of the lake and mixed flow along the banks, creating a rather unusual pattern. The large number of groundwater seepage meters used during this investigation led to a very reliable set of measurements with occasional failure of only a few meters. A distinctive relationship was found between the wet-season lake stage, heavy rainfall events, and pulses of exiting sheet flow from the lake. Estimation of the evapotranspiration loss using data collected from a weather station on the lake allowed the use of three different models, which, when averaged, produced results comparable to Lake Okeechobee (South Florida). A limitation of this investigation was the inability to directly measure sheet-flow discharges, which had to be estimated as a residual within the calculated water budget. Full article
(This article belongs to the Special Issue Research on Nutrient Dynamics in Lakes)
Show Figures

Figure 1

22 pages, 13545 KB  
Article
Influence of Fluvial Discharges and Tides on the Salt Wedge Position of a Microtidal Estuary: Magdalena River
by Jhonathan R. Cordero-Acosta, Luis J. Otero Díaz and Aldemar E. Higgins Álvarez
Water 2024, 16(8), 1139; https://doi.org/10.3390/w16081139 - 17 Apr 2024
Cited by 3 | Viewed by 1885
Abstract
The linkage between the salt wedge, tidal patterns, and the Magdalena River discharge is established by assessing the ensuing parameters: stratification (ϵ), buoyancy frequency (β), potential energy anomaly (φ), Richardson number by layers (RL), and [...] Read more.
The linkage between the salt wedge, tidal patterns, and the Magdalena River discharge is established by assessing the ensuing parameters: stratification (ϵ), buoyancy frequency (β), potential energy anomaly (φ), Richardson number by layers (RL), and bottom turbulent energy production (P). The salinity, temperature, density, and water velocity data utilized were derived from MOHID 3D, a previously tailored and validated model for the Magdalena River estuary. To grasp the dynamics of the river, a flow regime analysis was conducted during both the wet and dry climatic seasons of the Colombian Caribbean. The utilization of this model aimed to delineate the estuary’s spatial reach, considering flow rates spanning from 2000 to 6500 m3/s across two tidal cycles. This approach facilitates the prediction of the position, stability, and stratification degree of the salt front. Among the conclusions drawn, it is highlighted that: 1. The river flow serves as the principal conditioning agent for the system, inducing a strong estuary response to weather stations; 2. The extent of wedge intrusion and the river discharge exhibit a non-linear, inversely correlation; 3. Tidal waves cause differences of up to 1000 m in the horizontal extent of the wedge; 4. Widespread channel erosion occurs during the rainy season when the salt intrusion does not exceed 2 km; 5. Flocculation processes intensify during the transition between the dry and wet seasons; 6. The stability of the salt layering and the consolidation of the FSI–TMZ are contingent upon the geometric attributes of the channel. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

18 pages, 4884 KB  
Article
Disintegration Characteristics of Highly Weathered Granite under the Influence of Scouring
by Xiyang He, Chengyu Liu, Xiangxiang Zhang, Changyu Wu and Zhiyu Weng
Water 2024, 16(3), 496; https://doi.org/10.3390/w16030496 - 3 Feb 2024
Cited by 2 | Viewed by 2195
Abstract
In South China, due to climatic factors, highly weathered granite is distributed across a large area and easily disintegrates after encountering water, causing many geological disasters and other problems. To determine the disintegration mechanism of highly weathered granite in South China, disintegration tests [...] Read more.
In South China, due to climatic factors, highly weathered granite is distributed across a large area and easily disintegrates after encountering water, causing many geological disasters and other problems. To determine the disintegration mechanism of highly weathered granite in South China, disintegration tests were carried out on highly weathered granite in the Fuzhou area under different immersion durations, cycle times, and flow rates, with the help of a self-designed disintegration test device. Moreover, the disintegration mechanism of the highly weathered granite was revealed using nuclear magnetic resonance (NMR) technology. The results demonstrated an increase in the cumulative relative disintegration with prolonged immersion time and the number of dry-wet cycles. Beyond a certain flow rate, the cumulative relative disintegration amount stabilized. There was a strong correlation between the steady disintegration rate and immersion time (or dry-wet cycles). The disintegration process of the highly weathered granite was divided into three stages: rapid, moderate, and stable disintegration. Notably, disintegration primarily occurred around the large pores. This study revealed that the variation in the immersion time (or wet-dry-scouring cycles) was fundamentally linked to changes in the relative volume of the large pores in the rock samples. These findings provide valuable insights for predicting and mitigating surface disasters on highly weathered granite slopes. Full article
Show Figures

Figure 1

20 pages, 5097 KB  
Article
The Relationships between Adverse Weather, Traffic Mobility, and Driver Behavior
by Ayman Elyoussoufi, Curtis L. Walker, Alan W. Black and Gregory J. DeGirolamo
Meteorology 2023, 2(4), 489-508; https://doi.org/10.3390/meteorology2040028 - 19 Nov 2023
Cited by 3 | Viewed by 4474
Abstract
Adverse weather conditions impact mobility, safety, and the behavior of drivers on roads. In an average year, approximately 21% of U.S. highway crashes are weather-related. Collectively, these crashes result in over 5300 fatalities each year. As a proof-of-concept, analyzing weather information in the [...] Read more.
Adverse weather conditions impact mobility, safety, and the behavior of drivers on roads. In an average year, approximately 21% of U.S. highway crashes are weather-related. Collectively, these crashes result in over 5300 fatalities each year. As a proof-of-concept, analyzing weather information in the context of traffic mobility data can provide unique insights into driver behavior and actions transportation agencies can pursue to promote safety and efficiency. Using 2019 weather and traffic data along Colorado Highway 119 between Boulder and Longmont, this research analyzed the relationship between adverse weather and traffic conditions. The data were classified into distinct weather types, day of the week, and the direction of travel to capture commuter traffic flows. Novel traffic information crowdsourced from smartphones provided metrics such as volume, speed, trip length, trip duration, and the purpose of travel. The data showed that snow days had a smaller traffic volume than clear and rainy days, with an All Times volume of approximately 18,000 vehicles for each direction of travel, as opposed to 21,000 vehicles for both clear and wet conditions. From a trip purpose perspective, the data showed that the percentage of travel between home and work locations was 21.4% during a snow day compared to 20.6% for rain and 19.6% for clear days. The overall traffic volume reduction during snow days is likely due to drivers deciding to avoid commuting; however, the relative increase in the home–work travel percentage is likely attributable to less discretionary travel in lieu of essential work travel. In comparison, the increase in traffic volume during rainy days may be due to commuters being less likely to walk, bike, or take public transit during inclement weather. This study demonstrates the insight into human behavior by analyzing impact on traffic parameters during adverse weather travel. Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2023))
Show Figures

Figure 1

Back to TopTop