Monitoring Phosphorus During High Flows: Critical for Implementing Surrogacy Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Sites and Regional Setting
2.2. Assembly and Analysis of Existing P Data
2.2.1. Assembly of Historical P Data
2.2.2. Statistical Analysis of P Data
2.2.3. Assessment of Streamflow Conditions Captured by Existing Data
2.3. Collection of New P Data
2.4. Surrogacy Model Validation
3. Results
3.1. Statistical Summary of P in Iowa Rivers
3.2. Data Collection Results
3.3. Construction of Final Models
4. Discussion
4.1. P Transport Behavior in Iowa
4.2. Validation of Existing Surrogacy Models
4.3. The Importance of High Flows in P Transport
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BIC | Bayesian Information Criteria |
cms | Cubic meters per second |
IDNR | Iowa Department of Natural Resources |
mg/L | Milligrams per liter |
N | Nitrogen |
NTU | Nephelometric turbidity units |
ON | Organic nitrogen |
OP | Orthophosphate |
PartP | Particulate phosphorus |
P | Phosphorus |
Q-Q | Two-sample quantile–quantile |
R | Pearson correlation coefficient |
R2 | Coefficient of determination |
RMSE | Root mean squared error |
std | Sample standard deviation |
TP | Total phosphorus |
US | United States of America |
USGS | United States Geological Survey |
References
- Carpenter, S.R. Phosphorus control is critical to mitigating eutrophication. Proc. Natl. Acad. Sci. USA 2008, 105, 11039–11040. [Google Scholar] [CrossRef] [PubMed]
- Correll, D.L. The role of phosphorus in the eutrophication of receiving waters: A review. J. Environ. Qual. 1998, 27, 261–266. [Google Scholar] [CrossRef]
- Tunney, H.; Breeuwsma, A.; Withers, P.; Ehlert, P. Phosphorus Fertilizer Strategies: Present and Future; CAB International: Wallingford, UK, 1997. [Google Scholar]
- Griffin, T.; Honeycutt, C.; He, Z. Changes in soil phosphorus from manure application. Soil. Sci. Soc. Am. J. 2003, 67, 645–653. [Google Scholar] [CrossRef]
- Eghball, B.; Power, J.F. Phosphorus-and nitrogen-based manure and compost applications corn production and soil phosphorus. Soil. Sci. Soc. Am. J. 1999, 63, 895–901. [Google Scholar] [CrossRef]
- Villalba, G.; Liu, Y.; Schroder, H.; Ayres, R.U. Global phosphorus flows in the industrial economy from a production perspective. J. Ind. Ecol. 2008, 12, 557–569. [Google Scholar] [CrossRef]
- Donnert, D.; Salecker, M. Elimination of phosphorus from municipal and industrial waste water. Water Sci. Technol. 1999, 40, 195–202. [Google Scholar] [CrossRef]
- Jones, R.; Lee, G.F. Recent advances in assessing impact of phosphorus loads on eutrophication-related water quality. Water Res. 1982, 16, 503–515. [Google Scholar] [CrossRef]
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. Controlling eutrophication: Nitrogen and phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef] [PubMed]
- Sellner, K.G.; Doucette, G.J.; Kirkpatrick, G.J. Harmful algal blooms: Causes, impacts and detection. J. Ind. Microbiol. Biotechnol. 2003, 30, 383–406. [Google Scholar] [CrossRef] [PubMed]
- Grattan, L.M.; Holobaugh, S.; Morris, J.G., Jr. Harmful algal blooms and public health. Harmful Algae 2016, 57, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Hallegraeff, G.M. Harmful algal blooms: A global overview. Man. Harmful Mar. Microalgae 2003, 33, 1–22. [Google Scholar]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdiscip. Rev. Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- Cordell, D.; White, S. Peak phosphorus: Clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 2011, 3, 2027–2049. [Google Scholar] [CrossRef]
- Worsfold, P.; McKelvie, I.; Monbet, P. Determination of phosphorus in natural waters: A historical review. Anal. Chim. Acta 2016, 918, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Estela, J.M.; Cerdà, V. Flow analysis techniques for phosphorus: An overview. Talanta 2005, 66, 307–331. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhao, L.; Yu, F.; Du, Q. Detection of phosphorus species in water: Technology and strategies. Analyst 2019, 144, 7130–7148. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Reza, M.N.; Jeong, J.-T.; Lee, K.-H. Sensing technology for rapid detection of phosphorus in water: A review. J. Biosyst. Eng. 2016, 41, 138–144. [Google Scholar] [CrossRef]
- Jarvie, H.P.; Withers, J.; Neal, C. Review of robust measurement of phosphorus in river water: Sampling, storage, fractionation and sensitivity. Hydrol. Earth Syst. Sci. 2002, 6, 113–131. [Google Scholar] [CrossRef]
- Anderson, E.S.; Schilling, K.E. Intensive short-term sampling with long-term consequences: Characterizing pollutant transport with implications for developing monitoring. Environ. Monit. Assess. 2024, 196, 1130. [Google Scholar] [CrossRef] [PubMed]
- Bowes, M.J.; Smith, J.T.; Jarvie, H.P.; Neal, C. Modelling of phosphorus inputs to rivers from diffuse and point sources. Sci. Total Environ. 2008, 395, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Tabbara, H. Phosphorus loss to runoff water twenty-four hours after application of liquid swine manure or fertilizer. J. Environ. Qual. 2003, 32, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Kronvang, B.; Vagstad, N.; Behrendt, H.; Bøgestrand, J.; Larsen, S. Phosphorus losses at the catchment scale within Europe: An overview. Soil Use Manag. 2007, 23, 104–116. [Google Scholar] [CrossRef]
- Jones, A.S.; Horsburgh, J.S.; Mesner, N.O.; Ryel, R.J.; Stevens, D.K. Influence of sampling frequency on estimation of annual total phosphorus and total suspended solids loads. JAWRA J. Am. Water Resour. Assoc. 2012, 48, 1258–1275. [Google Scholar] [CrossRef]
- Yang, Y.-Y.; Toor, G.S. Sources and mechanisms of nitrate and orthophosphate transport in urban stormwater runoff from residential catchments. Water Res. 2017, 112, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.S.; Schilling, K.E. The speciation of Iowa’s nutrient loads and the implications for midwestern nutrient reduction strategies. J. Soil Water Conserv. 2024, 79, 233–246. [Google Scholar] [CrossRef]
- Drewry, J.; Newham, L.; Greene, R.; Jakeman, A.; Croke, B. A review of nitrogen and phosphorus export to waterways: Context for catchment modelling. Mar. Freshw. Res. 2006, 57, 757–774. [Google Scholar] [CrossRef]
- Jackson-Blake, L.A.; Dunn, S.M.; Helliwell, R.; Skeffington, R.; Stutter, M.; Wade, A.J. How well can we model stream phosphorus concentrations in agricultural catchments? Environ. Model. Softw. 2015, 64, 31–46. [Google Scholar] [CrossRef]
- Runkel, R.L.; Crawford, C.G.; Cohn, T.A. Load Estimator (LOADEST): A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers; US Geological Survey: Reston, VA, USA, 2004. [Google Scholar]
- Hirsch, R.M.; Moyer, D.L.; Archfield, S.A. Weighted regressions on time, discharge, and season (WRTDS), with an application to Chesapeake Bay river inputs. JAWRA J. Am. Water Resour. Assoc. 2010, 46, 857–880. [Google Scholar] [CrossRef] [PubMed]
- Isles, P.D. A random forest approach to improve estimates of tributary nutrient loading. Water Res. 2024, 248, 120876. [Google Scholar] [CrossRef] [PubMed]
- Medalie, L. Concentration and Flux of Total and Dissolved Phosphorus, Total Nitrogen, Chloride, and Total Suspended Solids for Monitored Tributaries of Lake Champlain, 1990–2012; US Geological Survey: Reston, VA, USA, 2014. [Google Scholar]
- Lee, C.J.; Hirsch, R.M.; Crawford, C.G. An Evaluation of Methods for Computing Annual Water-Quality Loads; US Geological Survey: Reston, VA, USA, 2019. [Google Scholar]
- Zhang, Q.; Hirsch, R.M. River water-quality concentration and flux estimation can be improved by accounting for serial correlation through an autoregressive model. Water Resour. Res. 2019, 55, 9705–9723. [Google Scholar] [CrossRef]
- Defew, L.; May, L.; Heal, K. Uncertainties in estimated phosphorus loads as a function of different sampling frequencies and common calculation methods. Mar. Freshw. Res. 2013, 64, 373–386. [Google Scholar] [CrossRef]
- Viviano, G.; Salerno, F.; Manfredi, E.C.; Polesello, S.; Valsecchi, S.; Tartari, G. Surrogate measures for providing high frequency estimates of total phosphorus concentrations in urban watersheds. Water Res. 2014, 64, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.S.; Stevens, D.K.; Horsburgh, J.S.; Mesner, N.O. Surrogate measures for providing high frequency estimates of total suspended solids and total phosphorus concentrations 1. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 239–253. [Google Scholar] [CrossRef]
- Settle, S.; Goonetilleke, A.; Ayoko, G.A. Determination of surrogate indicators for phosphorus and solids in urban stormwater: Application of multivariate data analysis techniques. Water Air Soil Pollut. 2007, 182, 149–161. [Google Scholar] [CrossRef]
- Kämäri, M.; Tarvainen, M.; Kotamäki, N.; Tattari, S. High-frequency measured turbidity as a surrogate for phosphorus in boreal zone rivers: Appropriate options and critical situations. Environ. Monit. Assess. 2020, 192, 1–20. [Google Scholar] [PubMed]
- Robertson, D.M.; Hubbard, L.E.; Lorenz, D.L.; Sullivan, D.J. A surrogate regression approach for computing continuous loads for the tributary nutrient and sediment monitoring program on the Great Lakes. J. Great Lakes Res. 2018, 44, 26–42. [Google Scholar] [CrossRef]
- Anderson, E.S.; Schilling, K.E.; Jones, C.S.; Weber, L.J. Estimating Iowa’s riverine phosphorus concentrations via water quality surrogacy. Heliyon 2024, 10, e37377. [Google Scholar] [CrossRef] [PubMed]
- Schilling, K.E.; Kim, S.-W.; Jones, C.S. Use of water quality surrogates to estimate total phosphorus concentrations in Iowa rivers. J. Hydrol. Reg. Stud. 2017, 12, 111–121. [Google Scholar] [CrossRef]
- Loperfido, J.; Just, C.L.; Papanicolaou, A.N.; Schnoor, J.L. In situ sensing to understand diel turbidity cycles, suspended solids, and nutrient transport in Clear Creek, Iowa. Water Resour. Res. 2010, 46, W06525. [Google Scholar] [CrossRef]
- Garrett, J.D. Concentrations, Loads, and Yields of Select Constituents from Major Tributaries of the Mississippi and Missouri Rivers in Iowa, Water Years 2004-2008; US Geological Survey: Reston, VA, USA, 2012. [Google Scholar]
- Stutter, M.; Dawson, J.J.; Glendell, M.; Napier, F.; Potts, J.M.; Sample, J.; Vinten, A.; Watson, H. Evaluating the use of in-situ turbidity measurements to quantify fluvial sediment and phosphorus concentrations and fluxes in agricultural streams. Sci. Total Environ. 2017, 607, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chan, K.S.; Schilling, K.E. Total phosphorus concentration trends in 40 Iowa rivers, 1999 to 2013. J. Environ. Qual. 2016, 45, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Wise, D.R.; Anning, D.W.; Miller, O. Spatially Referenced Models of Streamflow and Nitrogen, Phosphorus, and Suspended-Sediment Transport in Streams of the Southwestern United States; US Geological Survey: Reston, VA, USA, 2019. [Google Scholar]
- Schilling, K.E.; Streeter, M.T.; Seeman, A.; Jones, C.S.; Wolter, C.F. Total phosphorus export from Iowa agricultural watersheds: Quantifying the scope and scale of a regional condition. J. Hydrol. 2020, 581, 124397. [Google Scholar] [CrossRef]
- Christianson, R.; Christianson, L.; Wong, C.; Helmers, M.; McIsaac, G.; Mulla, D.; McDonald, M. Beyond the nutrient strategies: Common ground to accelerate agricultural water quality improvement in the upper Midwest. J. Environ. Manag. 2018, 206, 1072–1080. [Google Scholar] [CrossRef] [PubMed]
- Nowatzke, L.; Arbuckle, J.G., Jr. Iowa Farmers and the Iowa Nutrient Reduction Strategy: Survey Results from the Missouri-Little Sioux Watershed. Iowa State University: Ames, IA, USA, 2018. [Google Scholar]
- Williamson, T.N.; Dobrowolski, E.G.; Kreiling, R.M. Phosphorus sources, forms, and abundance as a function of streamflow and field conditions in a Maumee River tributary, 2016–2019. J. Environ. Qual. 2023, 52, 492–507. [Google Scholar] [CrossRef] [PubMed]
- Mellander, P.E.; Jordan, P.; Shore, M.; Melland, A.R.; Shortle, G. Flow paths and phosphorus transfer pathways in two agricultural streams with contrasting flow controls. Hydrol. Process. 2015, 29, 3504–3518. [Google Scholar] [CrossRef]
- Bowes, M.J.; House, W.A.; Hodgkinson, R.A.; Leach, D.V. Phosphorus–discharge hysteresis during storm events along a river catchment: The River Swale, UK. Water Res. 2005, 39, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, R.M.; Archfield, S.A.; De Cicco, L.A. A bootstrap method for estimating uncertainty of water quality trends. Environ. Model. Softw. 2015, 73, 148–166. [Google Scholar] [CrossRef]
- Anderson, E.S.; Schilling, K.E. Baseflow Index Trends in Iowa Rivers and the Relationships to Other Hydrologic Metrics. Hydrology 2025, 12, 116. [Google Scholar] [CrossRef]
- Jones, C.S.; Davis, C.A.; Drake, C.W.; Schilling, K.E.; Debionne, S.H.; Gilles, D.W.; Demir, I.; Weber, L.J. Iowa statewide stream nitrate load calculated using in situ sensor network. JAWRA J. Am. Water Resour. Assoc. 2018, 54, 471–486. [Google Scholar] [CrossRef]
- Eberts, S.M.; Woodside, M.D.; Landers, M.N.; Wagner, C.R. Monitoring the Pulse of Our Nation’s Rivers and Streams—The US Geological Survey Streamgaging Network; US Geological Survey: Reston, VA, USA, 2019. [Google Scholar]
- Granato, G.E.; Ries, K.G., III; Steeves, P.A. Compilation of Streamflow Statistics Calculated from Daily Mean Streamflow Data Collected During Water Years 1901–2015 for Selected US Geological Survey Streamgages; US Geological Survey: Reston, VA, USA, 2017. [Google Scholar]
- Robertson, D.M.; Saad, D.A. Spatially Referenced Models of Streamflow and Nitrogen, Phosphorus, and Suspended-Sediment Loads in Streams of the Midwestern United States; US Geological Survey: Reston, VA, USA, 2019. [Google Scholar]
- Prior, J.C. Landforms of Iowa; University of Iowa Press: Iowa City, IA, USA, 1991. [Google Scholar]
- Cruse, R.; Flanagan, D.; Frankenberger, J.; Gelder, B.; Herzmann, D.; James, D.; Krajewski, W.; Kraszewski, M.; Laflen, J.; Opsomer, J. Daily estimates of rainfall, water runoff, and soil erosion in Iowa. J. Soil Water Conserv. 2006, 61, 191–199. [Google Scholar] [CrossRef]
- Mallarino, A.; Stewart, B.; Baker, J.; Downing, J.; Sawyer, J. Phosphorus indexing for cropland: Overview and basic concepts of the Iowa phosphorus index. J. Soil Water Conserv. 2002, 57, 440–447. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Schultz, R.C.; Isenhart, T.M. Streambank Soil and Phosphorus Losses Under Different Riparian Land-Uses in Iowa 1. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 935–947. [Google Scholar] [CrossRef]
- Andersen, D.S.; Pepple, L.M. A county-level assessment of manure nutrient availability relative to crop nutrient capacity in Iowa: Spatial and temporal trends. Trans. ASABE 2017, 60, 1669–1680. [Google Scholar] [CrossRef]
- Powers, S.M.; Tank, J.L.; Robertson, D.M. Control of nitrogen and phosphorus transport by reservoirs in agricultural landscapes. Biogeochemistry 2015, 124, 417–439. [Google Scholar] [CrossRef]
- Schilling, K.E.; Anderson, E.; Streeter, M.T.; Theiling, C. Long-term nitrate-nitrogen reductions in a large flood control reservoir. J. Hydrol. 2023, 620, 129533. [Google Scholar] [CrossRef]
- Anderson, E.S. An Investigation of Iowa’s Riverine Phosphorus Loads and Statewide Phosphorus Budget; The University of Iowa: Iowa City, IA, USA, 2022. [Google Scholar]
- Dolph, C.L.; Boardman, E.; Danesh-Yazdi, M.; Finlay, J.C.; Hansen, A.T.; Baker, A.C.; Dalzell, B. Phosphorus transport in intensively managed watersheds. Water Resour. Res. 2019, 55, 9148–9172. [Google Scholar] [CrossRef]
- Shinohara, R.; Ouellette, L.; Nowell, P.; Parsons, C.T.; Matsuzaki, S.-i.S.; Voroney, R.P. The composition of particulate phosphorus: A case study of the Grand River, Canada. J. Great Lakes Res. 2018, 44, 527–534. [Google Scholar] [CrossRef]
- Kayhanian, M.; Singh, A.; Meyer, S. Impact of non-detects in water quality data on estimation of constituent mass loading. Water Sci. Technol. 2002, 45, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Helsel, D.R. More than obvious: Better methods for interpreting nondetect data. Environ. Sci. Technol. 2005, 39, 419A–423A. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, R.M.; De Cicco, L.A. User Guide to Exploration and Graphics for RivEr Trends (EGRET) and Dataretrieval: R Packages for Hydrologic Data; US Geological Survey: Reston, VA, USA, 2015. [Google Scholar]
- McBride, G.B. Using Statistical Methods for Water Quality Management: Issues, Problems and Solutions; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Beck, M.B. Water quality modeling: A review of the analysis of uncertainty. Water Resour. Res. 1987, 23, 1393–1442. [Google Scholar] [CrossRef]
- Nwaiwu, E.N.; Bitrus, A. Fitting probability distributions to component water quality data from a treatment plant. Glob. J. Environ. Sci. 2005, 4, 151–154. [Google Scholar] [CrossRef]
- Berger, V.W.; Zhou, Y. Kolmogorov–smirnov test: Overview. In Wiley Statsref: Statistics Reference Online; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Schilling, K.E.; Isenhart, T.; Wolter, C.F.; Streeter, M.T.; Kovar, J.L. Contribution of streambanks to phosphorus export from Iowa. J. Soil Water Conserv. 2022, 77, 103–112. [Google Scholar] [CrossRef]
- Garrett, J.D. Total Phosphorus Loadings for the Cedar River at Palo, Iowa, 2009–2020; US Geological Survey: Reston, VA, USA, 2021. [Google Scholar]
- Garrett, J.D. The Use of Continuous Water-Quality Time-Series Data to Compute Nutrient Loadings for Selected Iowa Streams, 2008–2017; US Geological Survey: Reston, VA, USA, 2019. [Google Scholar]
- Lannergård, E.E.; Ledesma, J.L.; Fölster, J.; Futter, M.N. An evaluation of high frequency turbidity as a proxy for riverine total phosphorus concentrations. Sci. Total Environ. 2019, 651, 103–113. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Ambient Water Quality Criteria Recommendations: Rivers and Streams in Nutrient Ecoregion VII. EPA/822/B/00/018; Office of Water, US Environmental Protection Agency: Washington, DC, USA, 2000. [Google Scholar]
- Klatt, J.; Mallarino, A.; Downing, J.; Kopaska, J.; Wittry, D. Soil phosphorus, management practices, and their relationship to phosphorus delivery in the Iowa Clear Lake agricultural watershed. J. Environ. Qual. 2003, 32, 2140–2149. [Google Scholar] [CrossRef] [PubMed]
- Fox, G.A.; Purvis, R.A.; Penn, C.J. Streambanks: A net source of sediment and phosphorus to streams and rivers. J. Environ. Manag. 2016, 181, 602–614. [Google Scholar] [CrossRef] [PubMed]
- Krasa, J.; Dostal, T.; Jachymova, B.; Bauer, M.; Devaty, J. Soil erosion as a source of sediment and phosphorus in rivers and reservoirs–Watershed analyses using WaTEM/SEDEM. Environ. Res. 2019, 171, 470–483. [Google Scholar] [CrossRef] [PubMed]
- Shore, M.; Murphy, S.; Mellander, P.-E.; Shortle, G.; Melland, A.R.; Crockford, L.; O’Flaherty, V.; Williams, L.; Morgan, G.; Jordan, P. Influence of stormflow and baseflow phosphorus pressures on stream ecology in agricultural catchments. Sci. Total Environ. 2017, 590, 469–483. [Google Scholar] [CrossRef] [PubMed]
- Schilling, K.E.; Streeter, M.T.; Isenhart, T.M.; Beck, W.J.; Tomer, M.D.; Cole, K.J.; Kovar, J.L. Distribution and mass of groundwater orthophosphorus in an agricultural watershed. Sci. Total Environ. 2018, 625, 1330–1340. [Google Scholar] [CrossRef] [PubMed]
- Wilson, H.; Elliott, J.; Macrae, M.; Glenn, A. Near-surface soils as a source of phosphorus in snowmelt runoff from cropland. J. Environ. Qual. 2019, 48, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.S.; Schilling, K.E.; Jones, C.; Weber, L.; Wolter, C. Iowa’s Annual Phosphorus Budget: Quantifying the Inputs and Outputs of Phosphorus Transport Processes. Land 2024, 13, 1483. [Google Scholar] [CrossRef]
- Eghball, B.; Gilley, J.E. Phosphorus risk assessment index evaluation using runoff measurements. J. Soil Water Conserv. 2001, 56, 202–206. [Google Scholar] [CrossRef]
- Andersson, A. Mechanisms for log normal concentration distributions in the environment. Sci. Rep. 2021, 11, 16418. [Google Scholar] [CrossRef] [PubMed]
- Shumway, R.H.; Azari, R.S.; Kayhanian, M. Statistical approaches to estimating mean water quality concentrations with detection limits. Environ. Sci. Technol. 2002, 36, 3345–3353. [Google Scholar] [CrossRef] [PubMed]
- Maestre, A.; Pitt, R.; Durrans, S.R.; Chakraborti, S. Stormwater quality descriptions using the three parameter lognormal distribution. J. Water Manag. Modeling. 2005, 13, 247–274. [Google Scholar] [CrossRef]
- Reimann, C.; Filzmoser, P. Normal and lognormal data distribution in geochemistry: Death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environ. Geol. 2000, 39, 1001–1014. [Google Scholar] [CrossRef]
- Blum, A.G.; Archfield, S.A.; Vogel, R.M. On the probability distribution of daily streamflow in the United States. Hydrol. Earth Syst. Sci. 2017, 21, 3093–3103. [Google Scholar] [CrossRef]
- Skeffington, R.; Halliday, S.; Wade, A.; Bowes, M.; Loewenthal, M. Using high-frequency water quality data to assess sampling strategies for the EU Water Framework Directive. Hydrol. Earth Syst. Sci. 2015, 19, 2491–2504. [Google Scholar] [CrossRef]
- Mackay, A.; Taylor, M. Event-based water quality sampling method for application in remote rivers. River Res. Appl. 2012, 28, 1105–1112. [Google Scholar] [CrossRef]
- Lessels, J.; Bishop, T. A post-event stratified random sampling scheme for monitoring event-based water quality using an automatic sampler. J. Hydrol. 2020, 580, 123393. [Google Scholar] [CrossRef]
- Chien, H.; Yeh, P.J.-F.; Knouft, J.H. Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. J. Hydrol. 2013, 491, 73–88. [Google Scholar] [CrossRef]
- Bieroza, M.; Heathwaite, A. Seasonal variation in phosphorus concentration–discharge hysteresis inferred from high-frequency in situ monitoring. J. Hydrol. 2015, 524, 333–347. [Google Scholar] [CrossRef]
- Jones, C.S.; Schilling, K.E. From agricultural intensification to conservation: Sediment transport in the Raccoon River, Iowa, 1916–2009. J. Environ. Qual. 2011, 40, 1911–1923. [Google Scholar] [CrossRef] [PubMed]
- Deasy, C.; Brazier, R.; Heathwaite, A.; Hodgkinson, R. Pathways of runoff and sediment transfer in small agricultural catchments. Hydrol. Process. Int. J. 2009, 23, 1349–1358. [Google Scholar] [CrossRef]
- Gilles, D.; Young, N.; Schroeder, H.; Piotrowski, J.; Chang, Y.-J. Inundation mapping initiatives of the Iowa Flood Center: Statewide coverage and detailed urban flooding analysis. Water 2012, 4, 85–106. [Google Scholar] [CrossRef]
- McMillan, H.; Krueger, T.; Freer, J. Benchmarking observational uncertainties for hydrology: Rainfall, river discharge and water quality. Hydrol. Process. 2012, 26, 4078–4111. [Google Scholar] [CrossRef]
Site | Full Name | Site IDs | Site Details | |||
---|---|---|---|---|---|---|
IDNR | USGS | Area (km2) | Lat | Long | ||
Boyer | Boyer River at Logan, IA, USA | 10430001 | 06609500 | 2256 | 41.6417 | −95.7823 |
Des Moines | Des Moines River at Keosauqua, IA, USA | 10890001 | 05490500 | 36,358 | 40.7278 | −91.9596 |
Floyd | Floyd River at James, IA, USA | 10750001 | 06600500 | 2295 | 42.5767 | −96.3114 |
Iowa | Iowa River at Wapello, IA, USA | 10580003 | 05465500 | 32,375 | 41.1781 | −91.1821 |
Little Sioux | Little Sioux River near Turin, IA, USA | 10670003 | 06607500 | 9132 | 41.965 | −95.9723 |
Maquoketa | Maquoketa River near Green Island, IA, USA | 10490005 | 05418500 | 4022 | 42.0834 | −90.6329 |
Nishnabotna | Nishnabotna River above Hamburg, IA, USA | 10360003 | 06810000 | 7268 | 40.6017 | −95.645 |
Nodaway | Nodaway River at Clarinda, IA, USA | 10730001 | 06817000 | 1974 | 40.7433 | −95.0142 |
Rock | Rock River near Rock Valley, IA, USA | 10840001 | 06483500 | 4123 | 43.2144 | −96.2945 |
Skunk | Skunk River at Augusta, IA, USA | 10560002 | 05474000 | 11,168 | 40.7537 | −91.2771 |
Soldier | Soldier River at Pisgah, IA, USA | 10430002 | 06608500 | 1054 | 41.8305 | −95.9314 |
Thompson | Thompson River at Davis City, IA, USA | 10270001 | 06898000 | 1816 | 40.6403 | −93.8083 |
Turkey | Turkey River at Garber, IA, USA | 10220001 | 05412500 | 4002 | 42.74 | −91.2618 |
Upper Iowa | Upper Iowa River near Dorchester, IA, USA | 10030001 | 05388250 | 1994 | 43.4211 | −91.5088 |
Wapsipinicon | Wapsipinicon River near De Witt, IA, USA | 10820001 | 05422000 | 6050 | 41.767 | −90.5349 |
Yellow | Yellow River near Ion, IA, USA | 10030002 | 05389000 | 546 | 43.1119 | −91.2651 |
Site | Flow Threshold (cms) | Threshold Percentile | PartP Yield (kg/ha/yr) 1 | % of PartP Load Above Threshold |
---|---|---|---|---|
Boyer | 40 | 94% | 2.86 | 67.1% |
Des Moines | 1000 | 97% | 0.45 | 15.0% |
Floyd | 42 | 96% | 1.55 | 69.4% |
Iowa | 950 | 95% | 0.68 | 18.5% |
Little Sioux | 170 | 93% | 0.94 | 43.0% |
Maquoketa | 85 | 91% | 1.78 | 72.8% |
Nishnabotna | 170 | 94% | 3.10 | 44.6% |
Nodaway | 38 | 92% | 4.27 | 92.2% |
Rock | 85 | 96% | 1.24 | 76.3% |
Skunk | 190 | 84% | 1.22 | 73.0% |
Soldier | 12 | 90% | 2.47 | 82.8% |
Thompson | 35 | 92% | 3.45 | 91.5% |
Turkey | 110 | 92% | 1.99 | 78.0% |
Upper Iowa | 55 | 93% | 1.07 | 79.7% |
Wapsipinicon | 195 | 94% | 0.65 | 23.9% |
Yellow | 22 | 96% | 1.46 | 79.9% |
P Analyte | Site | n | Mean | Std | Median | Max | Skewness | Flow R | Best Dist | KS p-Val |
---|---|---|---|---|---|---|---|---|---|---|
PartP | Boyer | 382 | 0.53 | 1.25 | 0.17 | 8.99 | 4.4 | 0.36 | pareto | 0.01 |
Des Moines | 475 | 0.16 | 0.18 | 0.12 | 1.03 | 5.7 | 0.20 | lognorm | 0.04 | |
Floyd | 291 | 0.40 | 0.77 | 0.2 | 7.01 | 5.5 | 0.46 | pareto | 0.03 | |
Iowa | 563 | 0.23 | 0.19 | 0.21 | 3.21 | 7.4 | 0.02 | lognorm | 0.23 | |
Little Sioux | 242 | 0.32 | 0.45 | 0.22 | 5.07 | 6.4 | 0.39 | lognorm | 0.23 | |
Maquoketa | 237 | 0.22 | 0.39 | 0.11 | 3.64 | 4.9 | 0.62 | lognorm | 0.06 | |
Nishnabotna | 243 | 0.53 | 0.94 | 0.24 | 9.31 | 5.2 | 0.36 | lognorm | 0.55 | |
Nodaway | 259 | 0.27 | 0.56 | 0.12 | 4.50 | 4.9 | 0.76 | lognorm | 0.01 | |
Rock | 261 | 0.18 | 0.32 | 0.11 | 4.29 | 8.7 | 0.42 | expon | 0.01 | |
Skunk | 250 | 0.27 | 0.27 | 0.19 | 1.46 | 2.2 | 0.57 | lognorm | 0.53 | |
Soldier | 269 | 0.41 | 0.88 | 0.18 | 7.75 | 5.1 | 0.61 | pareto | 0.18 | |
Thompson | 256 | 0.23 | 0.39 | 0.1 | 2.93 | 3.6 | 0.70 | pareto | 0.01 | |
Turkey | 387 | 0.23 | 0.70 | 0.07 | 8.05 | 8.2 | 0.44 | pareto | 0.05 | |
Upper Iowa | 269 | 0.10 | 0.25 | 0.05 | 3.40 | 9.4 | 0.41 | pareto | <0.01 | |
Wapsipinicon | 397 | 0.17 | 0.13 | 0.16 | 1.35 | 2.9 | 0.09 | gamma | <0.01 | |
Yellow | 348 | 0.10 | 0.37 | 0.04 | 4.76 | 9.8 | 0.49 | pareto | <0.01 | |
OP | Boyer | 387 | 0.43 | 0.33 | 0.31 | 2.47 | 2.6 | −0.22 | lognorm | 0.07 |
Des Moines | 476 | 0.15 | 0.11 | 0.14 | 0.80 | 2.0 | −0.11 | dweibull | 0.01 | |
Floyd | 294 | 0.32 | 0.21 | 0.27 | 1.50 | 2.3 | 0.03 | lognorm | 0.04 | |
Iowa | 565 | 0.12 | 0.10 | 0.12 | 1.07 | 2.8 | 0.19 | dweibull | <0.01 | |
Little Sioux | 242 | 0.09 | 0.11 | 0.07 | 1.10 | 4.4 | 0.29 | pareto | 0.01 | |
Maquoketa | 237 | 0.11 | 0.09 | 0.08 | 0.72 | 3.2 | 0.30 | dweibull | <0.01 | |
Nishnabotna | 243 | 0.13 | 0.04 | 0.13 | 0.35 | 0.4 | −0.12 | lognorm | 0.42 | |
Nodaway | 261 | 0.12 | 0.06 | 0.11 | 0.52 | 2.8 | −0.03 | logistic | 0.04 | |
Rock | 261 | 0.11 | 0.15 | 0.07 | 1.50 | 5.1 | 0.34 | expon | 0.01 | |
Skunk | 251 | 0.12 | 0.10 | 0.11 | 1.18 | 5.2 | 0.30 | logistic | 0.11 | |
Soldier | 272 | 0.09 | 0.10 | 0.08 | 1.20 | 8.9 | 0.42 | lognorm | 0.02 | |
Thompson | 259 | 0.05 | 0.06 | 0.05 | 0.63 | 6.5 | 0.20 | expon | <0.01 | |
Turkey | 387 | 0.07 | 0.09 | 0.05 | 0.80 | 4.1 | 0.36 | lognorm | 0.20 | |
Upper Iowa | 272 | 0.07 | 0.09 | 0.05 | 0.83 | 5.1 | 0.32 | pareto | <0.01 | |
Wapsipinicon | 397 | 0.07 | 0.09 | 0.04 | 0.84 | 4.0 | 0.33 | pareto | <0.01 | |
Yellow | 351 | 0.10 | 0.11 | 0.07 | 1.30 | 5.9 | 0.33 | lognorm | 0.02 |
Site | Sampling Counts | Turbidity (NTU) | PartP (mg/L) | R2 Scores | ||||
---|---|---|---|---|---|---|---|---|
# Events | # Samples | Mean | Max | Mean | Max | Original | New | |
Boyer | 4 | 28 | 2010 | 6400 | 4.01 | 8.06 | 0.77 | 0.84 |
Des Moines | 3 | 11 | 1120 | 2200 | 1.03 | 1.76 | 0.46 | 0.58 |
Floyd | 7 | 38 | 1020 | 3900 | 2.21 | 7.52 | 0.74 | 0.84 |
Iowa | 2 | 4 | 250 | 360 | 0.59 | 0.72 | 0.3 | 0.34 |
Little Sioux | 7 | 20 | 425 | 1400 | 1.11 | 2.23 | 0.64 | 0.69 |
Maquoketa | 3 | 8 | 269 | 530 | 0.88 | 1.08 | 0.9 | 0.86 |
Nishnabotna | 4 | 24 | 1650 | 4300 | 3.97 | 7.62 | 0.87 | 0.88 |
Nodaway | 8 | 25 | 1110 | 3400 | 1.99 | 3.33 | 0.87 | 0.89 |
Rock | 5 | 28 | 250 | 800 | 0.77 | 1.68 | 0.8 | 0.83 |
Skunk | 7 | 26 | 524 | 1400 | 0.80 | 1.78 | 0.82 | 0.87 |
Soldier | 6 | 14 | 1410 | 2700 | 2.93 | 5.11 | 0.92 | 0.93 |
Thompson | 2 | 7 | 1510 | 2000 | 1.98 | 2.13 | 0.8 | 0.84 |
Turkey | 2 | 16 | 482 | 1300 | 0.90 | 1.89 | 0.9 | 0.9 |
Upper Iowa | 2 | 7 | 367 | 530 | 0.79 | 1.10 | 0.53 | 0.59 |
Wapsipinicon | 2 | 19 | 97 | 300 | 0.30 | 0.88 | 0.39 | 0.47 |
Yellow | 3 | 17 | 1050 | 3400 | 1.57 | 3.83 | 0.62 | 0.8 |
Totals | 66 | 292 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, E.S.; Schilling, K.E.; Weber, L.J. Monitoring Phosphorus During High Flows: Critical for Implementing Surrogacy Models. Water 2025, 17, 2194. https://doi.org/10.3390/w17152194
Anderson ES, Schilling KE, Weber LJ. Monitoring Phosphorus During High Flows: Critical for Implementing Surrogacy Models. Water. 2025; 17(15):2194. https://doi.org/10.3390/w17152194
Chicago/Turabian StyleAnderson, Elliot S., Keith E. Schilling, and Larry J. Weber. 2025. "Monitoring Phosphorus During High Flows: Critical for Implementing Surrogacy Models" Water 17, no. 15: 2194. https://doi.org/10.3390/w17152194
APA StyleAnderson, E. S., Schilling, K. E., & Weber, L. J. (2025). Monitoring Phosphorus During High Flows: Critical for Implementing Surrogacy Models. Water, 17(15), 2194. https://doi.org/10.3390/w17152194