Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = wet processing route

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3316 KB  
Article
Sustainable Valorization of Mussel Shell Waste: Processing for Calcium Carbonate Recovery and Hydroxyapatite Production
by Adriana Poli Castilho Dugaich, Andressa da Silva Barboza, Marianna Gimenes e Silva, Andressa Baptista Nörnberg, Marcelo Maraschin, Maurício Malheiros Badaró, Daiara Floriano da Silva, Carlos Eduardo Maduro de Campos, Carolina dos Santos Santinoni, Sheila Cristina Stolf, Rafael Guerra Lund and Juliana Silva Ribeiro de Andrade
J. Funct. Biomater. 2026, 17(1), 24; https://doi.org/10.3390/jfb17010024 (registering DOI) - 30 Dec 2025
Abstract
This study aimed to develop a sustainable route for processing biogenic calcium carbonate from Perna perna mussel shell waste and converting it into hydroxyapatite (HA), as well as to evaluate its potential for bone and dental tissue engineering applications. Mussel shells were decarbonized [...] Read more.
This study aimed to develop a sustainable route for processing biogenic calcium carbonate from Perna perna mussel shell waste and converting it into hydroxyapatite (HA), as well as to evaluate its potential for bone and dental tissue engineering applications. Mussel shells were decarbonized (400 °C), milled, and converted to HA via wet chemical precipitation using a nominal Ca/P molar ratio of 1.67 during synthesis followed by thermal treatment (900 °C). Comprehensive characterization included SEM, FTIR, XRD, Raman spectroscopy, XRF, TGA, and BET analysis. Biological evaluation involved cytotoxicity assays (MTT), antimicrobial testing, and odontogenic differentiation studies (Alizarin Red) using SHEDs. Statistical analysis by one-way ANOVA and Tukey post hoc tests (α = 0.05). SEM revealed a microstructured morphology composed of agglomerates, favorable for biomedical applications. FTIR and XRD confirmed the conversion of CaCO3 to hydroxyapatite, while thermal analysis demonstrated the material’s stability. The HA exhibited secondary minor phase (13%) β-TCP form of calcium phosphate (Ca2.997H0.006(PO4)2), high crystallinity (about 80%), and nanoscale crystallite size (85 nm, 2.5–5.0 m2/g), despite forming larger agglomerates in suspension. The material showed favorable physicochemical properties (neutral pH, −18.5 mV zeta potential), but no inhibition was detected in antimicrobial testing. In vitro assays showed excellent cytocompatibility (viability > 70% at 12.5 µg/mL) and significant osteogenic potential (high mineralization vs. controls, p < 0.05). Mussel shell-derived HA presents a sustainable, clinically relevant biomaterial with ideal properties for bone regeneration. The study establishes a complete waste-to-biomaterial pipeline while addressing key requirements for dental and orthopedic applications. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Graphical abstract

32 pages, 465 KB  
Review
Energetic Valorization of Leather Solid Waste Through Thermochemical and Biochemical Methods
by Mariasole Gobbo, Riccardo Gallorini and Luca Rosi
Energies 2025, 18(24), 6493; https://doi.org/10.3390/en18246493 - 11 Dec 2025
Viewed by 419
Abstract
The leather industry generates large amounts of solid waste, creating environmental concerns for the presence of hazardous compounds such as chromium. In fact, conventional disposal practices, including landfill and incineration, promote the formation of hexavalent chromium (Cr6+) and polluting emissions. This [...] Read more.
The leather industry generates large amounts of solid waste, creating environmental concerns for the presence of hazardous compounds such as chromium. In fact, conventional disposal practices, including landfill and incineration, promote the formation of hexavalent chromium (Cr6+) and polluting emissions. This work reviews biochemical and thermochemical processes for the energetic valorization of different leather solid wastes, namely untanned, tanned with chromium or vegetable tanning agents, and post-consumer leather. Thermochemical routes, i.e., pyrolysis, gasification, and hydrothermal treatment (HT), can convert leather waste into energy carriers including bio-oil, syngas, and char, while anaerobic digestion (AD) is a biochemical method used to produce biogas. Particularly, pyrolysis is promising for fuel precursors and chromium stabilization, HT suits wet, raw waste, while gasification enables syngas recovery. In AD, microbial chromium inhibition is mitigated through the co-digestion of degradable substrates. This review takes a waste-type-driven rather than process-driven approach to provide new insights into the conversion of leather solid waste into value-added products, showing that the optimal recycling route depends on the waste characteristics. Moreover, these methods have not yet been directly compared in terms of their energy production performance with regard to leather waste. Future work should improve process conditions, evaluate chromium and finishing additive impacts, and assess scalability. Full article
(This article belongs to the Special Issue Biomass: Clean and Renewable Energy Sources)
23 pages, 3813 KB  
Article
Comparative Analysis of Impregnation Methods for Polyimide-Based Prepregs: Insights from Industrial Perspective
by Biljana Kostadinoska, Blagoja Samakoski, Samoil Samak, Dijana Cvetkoska and Anka Trajkovska Petkoska
J. Compos. Sci. 2025, 9(12), 651; https://doi.org/10.3390/jcs9120651 - 1 Dec 2025
Viewed by 436
Abstract
This study presents a comparative analysis of two industrially relevant technologies for manufacturing of prepreg composite materials based on polyimide (PI) resin: hot-melt and solvent-based technology. More specifically, the study focuses on evaluating the relationship between key processing parameters and the final properties [...] Read more.
This study presents a comparative analysis of two industrially relevant technologies for manufacturing of prepreg composite materials based on polyimide (PI) resin: hot-melt and solvent-based technology. More specifically, the study focuses on evaluating the relationship between key processing parameters and the final properties of the composite material manufactured with unidirectional (UD) C-fibers and woven fabrics used as reinforcement for both technologies. The impregnation process was carried out using a custom-designed coating equipment developed by Mikrosam D.O.O. Manufactured prepregs were characterized in terms of their resin content, volatile content, weight, width, and quality of the applied resin film. The hot-melt method that involves applying the resin in a semi-molten state with minimal solvent content provided a stable resin content (34–35%) and low volatiles (~1.2–1.5%) in the final product. The solvent-based method, using a resin/solvent ratio of 50:50, enabled deeper resin penetration into the fibers, particularly in woven fabrics (resin content: 34–37%) and lower residual volatiles (~0.3–0.5%). These results showed that the hot-melt technology consistently produced prepregs with very stable resin content, which is critical for structural applications requiring increased mechanical performance. In contrast, the solvent-based method demonstrated better adaptability to different reinforcement forms, improved impregnation depth, and excellent film uniformity, particularly suitable for woven fabrics. Representative SEM micrographs confirmed uniform resin distribution, full fiber wetting, and absence of voids, validating the impregnation quality obtained by both techniques. These findings highlight the technological relevance of selecting the appropriate impregnation route for each reinforcement architecture, offering direct guidance for industrial-scale composite manufacturing, where the hot-melt method is preferred for UD prepregs requiring precise resin control, while solvent-based impregnation ensures deeper and uniform resin distribution in woven fabric structures. Full article
Show Figures

Figure 1

18 pages, 2359 KB  
Article
Preparation Process and Performance of Mineral Admixtures Derived from High-Sulfur Lead-Zinc Tailings
by Mengyuan Li, Mingshan Gong, Hangkong Li, Lijie Guo, Zhong Li, Xin Guo, Yanying Yin and Tingting Ren
Minerals 2025, 15(12), 1256; https://doi.org/10.3390/min15121256 - 27 Nov 2025
Viewed by 317
Abstract
The large-scale accumulation of high-sulfur lead–zinc tailings poses serious environmental and safety challenges, while the increasing shortage of traditional mineral admixtures such as fly ash and slag highlights the urgent need for sustainable alternatives. This study aims to develop a high-performance mineral admixture [...] Read more.
The large-scale accumulation of high-sulfur lead–zinc tailings poses serious environmental and safety challenges, while the increasing shortage of traditional mineral admixtures such as fly ash and slag highlights the urgent need for sustainable alternatives. This study aims to develop a high-performance mineral admixture using lead–zinc tailings characterized by high SO3 content and low pozzolanic activity. The effects of four activation routes—mechanical grinding, wet magnetic separation, wet magnetic separation–mechanical grinding, and mechanical grinding–high-reactivity mineral admixture synergistic modification—were systematically compared in terms of tailings fineness, SO3 reduction, and activity index. The results indicate that single mechanical grinding can achieve the fineness requirement of Grade II admixtures specified in GB/T 1596–2017 (45 μm residue ≤ 30%), but the 28-day strength activity index only reached 58.64%, and the SO3 content remained above the standard limit. Wet magnetic separation effectively reduced the SO3 content to below 3.5%, and the combined process yielded a product with an activity index of up to 74.51%. Further improvement was achieved through a “mechanical grinding–high-reactivity mineral admixture synergistic modification” process, incorporating fly ash (FA), ground granulated blast furnace slag (GGBS), and silica fume (SF). Among these, SF exhibited the most pronounced synergistic effect. The optimal mixture, composed of 85.19% ground tailings and 14.81% SF, achieved the highest 28-day activity index of 76.35%. This process enables full utilization of tailings while maintaining a simplified flow, lower energy consumption, and superior product performance. The findings provide a feasible and efficient technological route for the high-value utilization of high-sulfur tailings and contribute to promoting green mining and sustainable resource development. Full article
(This article belongs to the Special Issue Advances in Mine Backfilling Technology and Materials, 2nd Edition)
Show Figures

Figure 1

19 pages, 5006 KB  
Article
Silanization of Cotton Fabric to Obtain Durable Hydrophobic and Oleophobic Materials
by Anna Szymańska, Marcin Przybylak, Agnieszka Przybylska and Hieronim Maciejewski
Int. J. Mol. Sci. 2025, 26(23), 11374; https://doi.org/10.3390/ijms262311374 - 25 Nov 2025
Viewed by 404
Abstract
Developing durable hydrophobic and oleophobic textiles using simple and environmentally responsible techniques remains a challenge. This study aimed to determine how the structure of organosilicon silanes—specifically the type of functional group (fluorinated alkyl, long alkyl, or benzyl group) and the presence of an [...] Read more.
Developing durable hydrophobic and oleophobic textiles using simple and environmentally responsible techniques remains a challenge. This study aimed to determine how the structure of organosilicon silanes—specifically the type of functional group (fluorinated alkyl, long alkyl, or benzyl group) and the presence of an ester linker formed via the thiol–Michael addition—affects the wetting behaviour of cotton fabrics. Five silanes were synthesized and applied using a mild pad–dry–cure silanization process. The modified fabrics were evaluated through water and oil contact angle (WCA, OCA) measurements, water absorption tests, droplet-stability analysis, and washing-durability assessment. All treated samples exhibited hydrophobicity, while the silane containing a C6 perfluoroalkyl chain provided both hydrophobic and oleophobic performance. This fabric showed a WCA of 152° and an OCA of 126° (hexadecane), which remained essentially unchanged after 10 washing cycles (153° and 126°, respectively). Water absorption decreased by 91%, and droplets remained stable for at least 30 min. SEM, and SEM-EDS confirmed the presence and uniform distribution of the silane coating. These results demonstrate that short-chain fluorinated silanes and long-chain alkyl silanes can form durable low-surface-energy layers on cotton using a straightforward and efficient process, offering a promising route for high-performance functional textiles. Full article
(This article belongs to the Special Issue Advances in Agro-Polymers)
Show Figures

Figure 1

26 pages, 1513 KB  
Review
Functional Coatings for Fiber Bragg Gratings: A Critical Review of Deposition Techniques for Embedded and Harsh-Environment Applications
by Cristian Vendittozzi, Emilia Di Micco, Michele A. Caponero and Rosaria D’Amato
Coatings 2025, 15(11), 1268; https://doi.org/10.3390/coatings15111268 - 2 Nov 2025
Viewed by 762
Abstract
Fiber Bragg Grating (FBG) sensors facilitate compact, multiplexed, and electromagnetic interference-immune monitoring in embedded and harsh environments. The removal of the polymer jacket, a measure taken to withstand elevated temperatures or facilitate integration, exposes the fragile glass. This underscores the necessity of functional [...] Read more.
Fiber Bragg Grating (FBG) sensors facilitate compact, multiplexed, and electromagnetic interference-immune monitoring in embedded and harsh environments. The removal of the polymer jacket, a measure taken to withstand elevated temperatures or facilitate integration, exposes the fragile glass. This underscores the necessity of functional coatings, which are critical for enhancing durability, calibrating sensitivity, and improving compatibility with host materials. This review methodically compares coating materials and deposition routes for FBGs, encompassing a range of techniques including top-down physical-vapor deposition (sputtering, thermal/e-beam evaporation, cathodic arc), bottom-up chemical vapor deposition (CVD)/atomic layer deposition (ALD), wet-chemical methods (sensitization/activation, electroless plating (EL), electrodeposition (ED)), fusion-based processes (casting and melt coating), and hybrid stacks (e.g., physical vapor deposition (PVD) seed → electrodeposition; gradient interlayers). The consolidation of surface-preparation best practices and quantitative trends reveals a comprehensive understanding of the interrelationships between coating material/stack, thickness/microstructure, adhesion, and sensitivity across a range of temperatures, extending from approximately 300 K to cryogenic regimes. Practical process windows and design rules are distilled to guide method selection and reliable operation across cryogenic and high-temperature regimes. Full article
Show Figures

Figure 1

18 pages, 3326 KB  
Article
Assessment and Modeling of the Hydrological Response of Extensive Green Roofs Under High-Intensity Simulated Rainfalls
by Cristina Bondì and Massimo Iovino
Water 2025, 17(21), 3113; https://doi.org/10.3390/w17213113 - 30 Oct 2025
Viewed by 462
Abstract
Rainfall retention and runoff detention are the key hydrological processes that reduce runoff from green roofs. This study aims to quantify and model the hydrological response of nine combinations of growing substrates and drainage layers for extensive green roofs. Retention and detention capacities [...] Read more.
Rainfall retention and runoff detention are the key hydrological processes that reduce runoff from green roofs. This study aims to quantify and model the hydrological response of nine combinations of growing substrates and drainage layers for extensive green roofs. Retention and detention capacities were evaluated using laboratory column experiments under two extreme initial moisture conditions—air-dried (D) and field capacity (W)—and three rainfall intensities (30, 60, and 100 mm h−1). Regardless of the substrate–drainage combination, retention capacity, WR, was significantly higher under dry conditions than under wet ones. Under wet conditions and rainfall intensity of 30 mm h−1 (30 W tests), the mean WR value (5.2 mm) was significantly lower than those recorded at higher intensities (14.3 and 14.2 mm, for 60 W and 100 W tests, respectively). Detention capacity, WD, was less influenced by initial moisture and rainfall intensity, with mean values ranging from 7.4 to 10.9 mm. The distinct hydrological responses of green roof columns in the two antecedent moisture conditions were attributed to contrasting infiltration mechanisms: capillary flow dominated under dry conditions, while gravity-driven preferential flow prevailed under wet conditions. The application of a simple reservoir-routing model revealed that the AgriTerram (AT)—expanded perlite (EP) combination achieved the greatest reduction in total outflow volume and peak runoff. Under wet initial conditions, no single configuration clearly outperformed the others. This study highlights how the combined use of simulated rainfall experiments and a reservoir-routing model enables the identification of the most effective combination of substrate and drainage system to improve the hydrological performance of green roofs. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

30 pages, 4851 KB  
Article
Scalable Production of Boron Nitride-Coated Carbon Fiber Fabrics for Improved Oxidation Resistance
by Cennet Yıldırım Elçin, Muhammet Nasuh Arık, Kaan Örs, Uğur Nakaş, Zeliha Bengisu Yakışık Özgüle, Özden Acar, Salim Aslanlar, Özkan Altay, Erdal Çelik and Korhan Şahin
J. Compos. Sci. 2025, 9(10), 564; https://doi.org/10.3390/jcs9100564 - 14 Oct 2025
Viewed by 1324
Abstract
This study aimed to develop an industrially scalable coating route for enhancing the oxidation resistance of carbon fiber fabrics, a critical requirement for next-generation aerospace and high-temperature composite structures. To achieve this goal, synthesis of hexagonal boron nitride (h-BN) layers was achieved via [...] Read more.
This study aimed to develop an industrially scalable coating route for enhancing the oxidation resistance of carbon fiber fabrics, a critical requirement for next-generation aerospace and high-temperature composite structures. To achieve this goal, synthesis of hexagonal boron nitride (h-BN) layers was achieved via a single wet step in which the fabric was impregnated with an ammonia–borane/THF solution and subsequently nitrided for 2 h at 1000–1500 °C in flowing nitrogen. Thermogravimetric analysis coupled with X-ray diffraction revealed that amorphous BN formed below ≈1200 °C and crystallized completely into (002)-textured h-BN (with lattice parameters a ≈ 2.50 Å and c ≈ 6.7 Å) once the dwell temperature reached ≥1300 °C. Complementary XPS, FTIR and Raman spectroscopy confirmed a near-stoichiometric B:N ≈ 1:1 composition and the elimination of O–H/N–H residues as crystallinity improved. Low-magnification SEM (100×) confirmed the uniform and large-area coverage of the BN layer on the carbon fiber tows, while high-magnification SEM revealed a progressive densification of the coating from discrete nanospheres to a continuous nanosheet barrier on the fibers. Oxidation tests in flowing air shifted the onset of mass loss from 685 °C for uncoated fibers to 828 °C for the coating produced at 1400 °C; concurrently, the peak oxidation rate moved ≈200 °C higher and declined by ~40%. Treatment at 1500 °C conferred no additional benefit, indicating that 1400 °C provides the optimal balance between full crystallinity and limited grain coarsening. The resulting dense h-BN film, aided by an in situ self-healing B2O3 glaze above ~800 °C, delayed carbon fiber oxidation by ≈140 °C. Overall, the process offers a cost-effective, large-area alternative to vapor-phase deposition techniques, positioning BN-coated carbon fiber fabrics for robust service in extreme oxidative environments. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Figure 1

63 pages, 828 KB  
Review
Extraction of Marine Bioactive Compounds from Seaweed: Coupling Environmental Concerns and High Yields
by Carlos Cardoso, Joana Matos and Cláudia Afonso
Mar. Drugs 2025, 23(9), 366; https://doi.org/10.3390/md23090366 - 19 Sep 2025
Cited by 1 | Viewed by 4216
Abstract
This review examines recent advances in the extraction of valuable compounds from seaweed biomass, focusing on practical feasibility and environmental sustainability. There is a growing importance of seaweed biomass in terms of the study and acknowledgment of its untapped biotechnological potential (multiple compounds [...] Read more.
This review examines recent advances in the extraction of valuable compounds from seaweed biomass, focusing on practical feasibility and environmental sustainability. There is a growing importance of seaweed biomass in terms of the study and acknowledgment of its untapped biotechnological potential (multiple compounds and biological activities) and in terms of economic impact. Conventional extraction techniques largely fail to address this challenge, even if optimized. This has led to the development and testing of innovative technologies as solutions for a ‘green’ and effective extraction of components from seaweed biomass and to biorefinery processes. There are large differences in outcomes between alternative processes, depending on the matrix, operational parameters, and targeted compounds and activities. Despite the positive results of some techniques, such as those based on physical mechanisms, namely Microwave-Assisted Extraction (MAE) and Ultrasound-Assisted Extraction (UAE), and on enzymatic selectivity, i.e., Enzyme-Assisted Extraction (EAE), there is no universally effective technique and approach, thus justifying integrated approaches combining different techniques. The application of ‘green’ solvents was also assessed and proven to harbor a large potential, just as the wet route. Although technical difficulties, outcome variability, and economic viability problems are relevant, recent progress in seaweed processing paves the way for a future blue economy. Full article
Show Figures

Figure 1

16 pages, 6875 KB  
Article
Scalable Engineering of Superhydrophobic Copper Surfaces with Enhanced Corrosion Resistance by Combined Nanostructuring and Chemical Vapor Deposition
by N. Rahul, Beomguk Park, Sanjaya Kumar Pradhan, Ho-Eon Sung, Inn-Hyup Jeong, Yong-Sup Yun and Min-Suk Oh
Materials 2025, 18(17), 3981; https://doi.org/10.3390/ma18173981 - 25 Aug 2025
Cited by 2 | Viewed by 1342
Abstract
The vulnerability of copper to corrosion in humid and saline environments remains a critical challenge for its long-term use. In this work, we present a streamlined and scalable approach for fabricating superhydrophobic, corrosion-resistant copper surfaces by integrating a simple wet chemical oxidation process [...] Read more.
The vulnerability of copper to corrosion in humid and saline environments remains a critical challenge for its long-term use. In this work, we present a streamlined and scalable approach for fabricating superhydrophobic, corrosion-resistant copper surfaces by integrating a simple wet chemical oxidation process with atmospheric pressure chemical vapor deposition (APCVD) of a perfluorinated silane. The hierarchical CuO nanostructures formed via alkaline oxidation serve as a robust layer, while subsequent silane functionalization imparts low surface energy, resulting in surfaces with water contact angles exceeding 170° and minimal contact angle hysteresis. Comprehensive surface characterization by SEM and roughness analysis confirmed the preservation of hierarchical morphology after coating. Wettability studies reveal a transition from hydrophilic to superhydrophobic behavior, with the Cassie–Baxter regime achieved on nanostructured and silane-functionalized samples, leading to enhanced droplet mobility and self-cleaning effect. Salt spray tests demonstrate that the superhydrophobic surfaces exhibit a corrosion rate reduction of 85.7% (from 2.51 mm/year for bare copper to 0.36 mm/year for the treated surface), indicating a seven-fold improvement in corrosion resistance compared to bare copper. This methodology offers a practical, reproducible route to multifunctional copper surfaces, advancing their potential for use in anti-fouling, self-cleaning, and long-term protective applications. Full article
Show Figures

Figure 1

25 pages, 7378 KB  
Article
Additive Manufacturing of Biobased Material Used in Electrical Insulation: Comparative Studies on Various Printing Technologies
by Robert Sekula, Alexander Leis, Anne Wassong, Annsophie Preuss, Hermann Hanning, Jan Kemnitzer, Marco Wimmer, Maciej Kuniewski and Pawel Mikrut
Polymers 2025, 17(16), 2248; https://doi.org/10.3390/polym17162248 - 20 Aug 2025
Viewed by 924
Abstract
In the power industry, various electrically insulating materials are used to ensure proper mechanical, thermal, and dielectric performance over decades of equipment operation. In power transformers, cellulose is the predominant material in manufacturing various insulation components. Most of these products are manufactured by [...] Read more.
In the power industry, various electrically insulating materials are used to ensure proper mechanical, thermal, and dielectric performance over decades of equipment operation. In power transformers, cellulose is the predominant material in manufacturing various insulation components. Most of these products are manufactured by wet-molding technology. However, this process is long, labor-intensive, and highly energy-demanding. Under the frame of an EU-funded grant, a new kind of insulation material and manufacturing process were developed. Fully bio-based material (produced in the form of pellets) can be processed using additive manufacturing, allowing for much shorter manufacturing times for insulation products, with considerably less scrap and energy consumption (due to the elimination of the drying stage). The focus of the project was extrusion additive manufacturing technology, but at a later stage, a biomaterial powder was developed, making it possible to print with other technologies. In the paper, comparative studies on various additive manufacturing techniques of newly developed biopolymers have been presented, including extrusion, High Speed Sintering (HSS), and Selective Laser Sintering (SLS). The applicability of such material in power transformers required extensive testing of various properties. These results are discussed in the paper and include: oil compatibility, volume resistivity measurements, permittivity and dissipation factor measurements, determination of partial discharge inception voltage, partial discharges measurement, and breakdown voltage measurements. Although mechanical properties remain below industrial targets, the pioneering results provide a promising route for unique directions toward more sustainable manufacturing of high-voltage cellulose insulation and ideas for improving the material properties during the printing process. Full article
(This article belongs to the Special Issue Polymer Materials for Application in Additive Manufacturing)
Show Figures

Figure 1

19 pages, 11203 KB  
Article
In Situ TEM Observation of Electric Field-Directed Self-Assembly of PbS and PbSe Nanoparticles
by Iryna Zelenina, Harald Böttner, Marcus Schmidt, Yuri Grin and Paul Simon
Nanomaterials 2025, 15(16), 1275; https://doi.org/10.3390/nano15161275 - 18 Aug 2025
Viewed by 1086
Abstract
Nano-sized particles of semiconducting lead sulfide and selenide and their 2D thin layers show high potential in applications, such as field-effect transistors, photodetectors, solar cells, and thermoelectric devices. The generation of PbS and PbSe nanobars and nanocubes is evoked by in situ electron [...] Read more.
Nano-sized particles of semiconducting lead sulfide and selenide and their 2D thin layers show high potential in applications, such as field-effect transistors, photodetectors, solar cells, and thermoelectric devices. The generation of PbS and PbSe nanobars and nanocubes is evoked by in situ electron beam treatment, leading to the formation of thin, extended 2D nanolayers. The initial single crystals are decomposed via sublimation of PbS and PbSe in terms of molecular and atomic fragments, which finally condense on the cold substrate to form nanostructures. The fragments in the gas phase were proven using mass spectrometry. In the case of PbS, Pb+ and PbS+ species could were detected, whereas PbSe disintegrated into Pb+, Se2+, and PbSe+. The threshold current that initiates fragmentation increases from PbTe via PbSe up to PbS, which is in line with the increasing crystal formation energies. The uniform orientation of independently formed nanoparticles on the macroscopic scale can be explained by an external electric field acting on emerging dipolar nanospecies. The external dipole field originates from the sputtered mother crystal, where the electron flux is initiated; thus, a current arises between the crystal’s hot and cold ends. On the contrary, in small single crystals, due to the lack of sufficient charge carriers, only local material excavation is detected instead of extended depletion and subsequent nanoparticle deposition. This fragmentation process may represent a new preparation route that provides lead chalcogenide nanofilms that are free of contamination or surfactant participation, which are typical drawbacks associated with the application of wet chemical methods. Full article
Show Figures

Figure 1

18 pages, 2297 KB  
Article
Effects of Wet Soybean Dregs on Forming Relaxation Ratio, Maximum Compressive Force and Specific Energy Consumption of Corn Stover Pellets
by Tianyou Chen, Wenyu Zhang, Yuqiu Song and Yanlin Wang
Agriculture 2025, 15(16), 1727; https://doi.org/10.3390/agriculture15161727 - 11 Aug 2025
Cited by 1 | Viewed by 923
Abstract
This study aims to explore the influence mechanism of wet fermented soybean dregs on corn stover formation, improve the forming quality of straws and reduce the power demand and specific energy consumption of forming equipment. This study takes 2 mm and 4 mm [...] Read more.
This study aims to explore the influence mechanism of wet fermented soybean dregs on corn stover formation, improve the forming quality of straws and reduce the power demand and specific energy consumption of forming equipment. This study takes 2 mm and 4 mm corn stover sizes as the objects and explores the influence of different amounts of fermented soybean dregs on the volume relaxation ratio, maximum compressive force and specific energy consumption of straw forming pellets under compression displacements of 90 mm and 92 mm. Different amounts of water are selected according to the total moisture content of the mixed feed, and the effects of adding water and fermented wet soybean dregs on feed forming are compared and studied. The results indicate that, under certain conditions, adding water or wet fermented soybean dregs to straw is beneficial for shaping. Adding wet fermented soybean dregs to straw can improve the nutritional value of feed and promote the utilization of agricultural waste. Therefore, adding wet fermented soybean dregs is an effective method for processing high-quality feed pellets. Taking into account the quality and specific energy consumption of mixed feed processing, the optimal pelleting process for corn stover and wet fermented soybean dregs in a mixed feed is as follows: straw particle size of 4 mm, added mass ratio of wet fermented soybean dregs of 5% and compression displacement of 92 mm. These results support the research and development of technology and devices for high-quality and low-energy mixed formation using fermented soybean dregs and straw, and they offer a new route for the utilization of other high-moisture feeds. Full article
Show Figures

Figure 1

28 pages, 1699 KB  
Review
Downstream Processes in a Microalgae Biorefinery: Cascaded Enzymatic Hydrolysis and Pulsed Electric Field as Green Solution
by Gianpiero Pataro, Elham Eslami, Francesco Pignataro and Alessandra Procentese
Processes 2025, 13(6), 1629; https://doi.org/10.3390/pr13061629 - 22 May 2025
Cited by 5 | Viewed by 2436
Abstract
Microalgae are a promising source of valuable compounds, including proteins, pigments, lipids, vitamins, and ingredients for cosmetics and animal feed. Despite their potential, downstream processing remains a major bottleneck in microalgae biorefineries, particularly in achieving high extraction efficiency with low energy and chemical [...] Read more.
Microalgae are a promising source of valuable compounds, including proteins, pigments, lipids, vitamins, and ingredients for cosmetics and animal feed. Despite their potential, downstream processing remains a major bottleneck in microalgae biorefineries, particularly in achieving high extraction efficiency with low energy and chemical input. While several extraction methods exist, few balance efficiency with selectivity and sustainability. Recently, mild and selective techniques such as Pulsed Electric Field (PEF) and Enzymatic Hydrolysis (EH) have gained attention, both individually and in combination. This review provides the first comprehensive comparative analysis of PEF and EH, emphasizing their mechanisms of action, specific cellular targets, and potential for integration into a cascaded, wet-route biorefinery process. Studies involving PEF, EH, and their sequential application (PEF-EH and EH-PEF) are analyzed, focusing on microalgae species, operational conditions, and extraction yields. The advantages and challenges of each method, including compound selectivity, environmental impact, and economic feasibility, are critically evaluated. The goal is to gain insight into whether the synergistic use of PEF and EH can enhance the recovery of intracellular compounds while improving the overall sustainability and efficiency of microalgae-based bioprocessing. Full article
(This article belongs to the Special Issue Process Intensification towards Sustainable Biorefineries)
Show Figures

Figure 1

26 pages, 2605 KB  
Article
A Formulation–Process–Product Integrated Design Method for Accelerating Pharmaceutical Tablet Development via the High-Shear Wet Granulation and Tableting Route
by Zichen Liang, Xuefang Tang, Liping Chen, Yifei Liu, Shuying Zhao, Xiao Ma, Gan Luo and Bing Xu
Pharmaceutics 2025, 17(3), 322; https://doi.org/10.3390/pharmaceutics17030322 - 2 Mar 2025
Viewed by 4401
Abstract
Background/Objectives: Tablet is the most popular oral solid dosage form, and high-shear wet granulation and tableting (HSWGT) is a versatile technique for manufacturing tablets. The conventional pharmaceutical development for HSWGT is carried out in a step-by-step mode, which is inefficient and may [...] Read more.
Background/Objectives: Tablet is the most popular oral solid dosage form, and high-shear wet granulation and tableting (HSWGT) is a versatile technique for manufacturing tablets. The conventional pharmaceutical development for HSWGT is carried out in a step-by-step mode, which is inefficient and may result in local optimal solutions. Inspired by the co-design philosophy, a formulation–process–product integrated design (FPPID) framework is innovatively brought forward to enable the target-oriented and simultaneous exploration of the formulation design space and the process design space. Methods: A combination of strategies, such as a material library, model-driven design (MDD), and simulation-supported solution generation, are used to manage the complexity of the multi-step development processes of HSWGT. The process model was developed at the intermediate level by incorporating dimensionless parameters from the wet granulation regime map approach into the process of the partial least square (PLS) model. The tablets tensile strength (TS) and solid fraction (SF) could be predicted from the starting materials’ properties and process parameters. The material library was used to diversify the model input and improve the model’s generalization ability. Furtherly, the mixture properties calculation model and the process model were interconnected. Results: A four-step FPPID methodology including the target definition, the formulation simulation, the process simulation, and the solution generation was implemented. The performance of FPPID was demonstrated through the efficient development of high-drug-loading tablets. Conclusions: As a holistic design method, the proposed FPPID offers great opportunity for designers to handle the complex interplay in the sequential development stages, facilitate instant decisions, and accelerate product development. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

Back to TopTop