Energetic Valorization of Leather Solid Waste Through Thermochemical and Biochemical Methods
Abstract
1. Introduction
- 1.
- Untanned leather solid waste (ULSW): This includes leftovers mainly from beamhouse processing, i.e., trimmed raw hide or liming skin. Fleshing waste contains about 87% of water, 4–6% dry wt. of proteins (e.g., collagen, keratin, elastin), and 1–2% dry wt. fat, so due to biological degradation, its handling and discharge is complicated. Islam et al. found that fleshing contained 82.57% of volatile matter, a low C/N ratio of 2.64, and a high pH of 10.99 [13].
- 2.
- Tanned solid leather waste (TLSW): TLSW is leather tanned via (i) mineral tanning agents, i.e., chromium (III) salts, producing the so-called wet blue leather, or alternative minerals, like aluminum and silicates, which produce wet white leather, or via (ii) vegetable tanning agents that employ vegetable tannins such as plant polyphenols [12,14]. In this work, we will focus on the main types of TLSW, specifically:
- Vegetable-tanned leather solid waste (VLSW), i.e., leather tanned using tannins that are complex and heterogeneous polyphenolic secondary metabolites produced by plants, ranging from 500 to 20,000 Da, which are applied as tanning agents in leather manufacturing [15]. Tannin types are divided into hydrolysable, from pyrogallol (e.g., chestnut, valonea, and tara extracts), condensed, containing polyhydroxyflavan-3-ol oligomers (e.g., mimosa and quebracho), and complex tannins. In VLSW, the chemical nature of the chosen tannin influences the aging of the material, as well as the deterioration of collagen.
- 3.
- Finished or post-consumer leather waste (FCLW): This includes industrial waste, i.e., leather trimmings, crust leather buffing dust, and finished leather scraps, as well as used leather goods, such as shoes, bags, and the end products of leather industry [12]. Due to the difficulties related to disposal, the majority of these wastes are directly discarded without proper treatment, causing environmental pollution [12] not only because of chromium but also because of the surface protective coating containing polymers, organic or inorganic pigments, lacquers, etc. [7].
2. Thermochemical Methods
2.1. Pyrolysis Processes
2.2. Gasification Processes
2.3. Hydrothermal Processes
3. Biochemical Processes: Anaerobic Digestion
4. Treatments Based on Waste Types
4.1. Untanned Leather
4.2. Tanned Leather
4.2.1. Chromium-Tanned Leather
4.2.2. Vegetable-Tanned Leather
4.3. Finished and Post-Consumer Leather
4.4. Mixed Waste
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| LSW | Leather Solid Waste |
| USLW | Untanned Leather Solid Waste |
| TLSW | Tanned Leather Solid Waste |
| CLSW | Chromium-tanned Leather Solid Waste |
| VLSW | Vegetable-tanned Leather Solid Waste |
| FLSW | Finished or Post-consumer Leather Solid Waste |
| HT | Hydrothermal Treatment |
| HTC | Hydrothermal Carbonization |
| HTL | Hydrothermal Liquefaction |
| HTG | Hydrothermal Gasification |
| SCWG | Supercritical Water Gasification |
| HHV | High Heating Value |
| TRL | Technology Readiness Level |
| VS | Volatile Solids |
References
- Kurup, H.V.; Clark, C.I.M.; Dega, R.K. Footwear and orthopaedics. Foot Ankle Surg. 2012, 18, 79–83. [Google Scholar] [CrossRef]
- Kaliappa, K.; Thanikaivelan, P.; Kumar, P.S.; Jagadeeswaran, R.; Chandrasekaran, B. Thermal insulation studies on leather clothing: Relevance to structure—Property relationship. In Proceedings of the 31st IULTCS 4 Congress, Valencia, Spain, 28–30 September 2011. [Google Scholar]
- Muralidharan, V.; Palanivel, S.; Balaraman, M. Turning problem into possibility: A comprehensive review on leather solid waste intra–valorization attempts for leather processing. J. Clean. Prod. 2022, 367, 133021. [Google Scholar] [CrossRef]
- El Moujahed, S.; Errachidi, F.; Oualid, H.A.; Botezatu-Dediu, A.V.; Chahdi, F.O.; Rodi, Y.K.; Dinica, R.M. Extraction of insoluble fibrous collagen for characterization and crosslinking with phenolic compounds from pomegranate byproducts for leather tanning applications. RSC Adv. 2022, 12, 4175–4186. [Google Scholar] [CrossRef]
- Sundar, V.J.; Gnanamani, A.; Muralidharan, C.; Chandrababu, N.K.; Mandal, A.B. Recovery and utilization of proteinous wastes of leather making: A review. Rev. Environ. Sci. Biotechnol. 2011, 10, 151–163. [Google Scholar] [CrossRef]
- Karuppiah, K.; Sankaranarayanan, B.; Ali, S.M.; Jabbour, C.J.C.; Bhalaji, R.K.A. Inhibitors to circular economy practices in the leather industry using an integrated approach: Implications for sustainable development goals in emerging economies. Sustain. Prod. Consum. 2021, 27, 1554–1568. [Google Scholar] [CrossRef]
- Sivakumar, V. Towards Environmental Protection and Process Safety in Leather processing—A Comprehensive Analysis and Review. Process Saf. Environ. Prot. 2022, 163, 703–726. [Google Scholar] [CrossRef]
- Rosu, L.; Varganici, D.; Crudu, M.; Rosu, D. Influence of different tanning agents on bovine leather thermal degradation. J. Therm. Anal. Calorim. 2018, 134, 583–594. [Google Scholar] [CrossRef]
- Saha, R.; Nandi, R.; Saha, B. Sources and toxicity of hexavalent chromium. J. Coord. Chem. 2011, 64, 1782–1806. [Google Scholar] [CrossRef]
- Kanagaraj, J.; Senthilvelan, T.; Panda, R.; Sundar, K. Eco–friendly waste management strategies for greener environment towards sustainable development in leather industry: A comprehensive review. J. Clean. Prod. 2015, 89, 1–17. [Google Scholar] [CrossRef]
- Li, Y.; Guo, R.; Lu, W.; Zhu, D. Research progress on resource utilization of leather solid waste. J. Leather Sci. Eng. 2019, 1, 6. [Google Scholar] [CrossRef]
- Ali, A.M.; Khan, A.; Shahbaz, M.; Rashid, M.I.; Imran, M.; Shahzad, K.; Mahpudz, A.B. A renewable and sustainable framework for clean fuel towards circular economy for solid waste generation in leather tanneries. Fuel 2023, 351, 128962. [Google Scholar] [CrossRef]
- Islam, M.; Basak, S.; Rouf, M.A.; Hossain, M.D.; Rabeya, T. Anaerobic digestion of tannery solid waste by mixing with different substrates. Bangladesh J. Sci. Ind. Res. 2014, 49, 119–124. [Google Scholar] [CrossRef]
- Covington, A.D. Modern tanning chemistry. Chem. Soc. Rev. 1997, 26, 111–126. [Google Scholar] [CrossRef]
- Sebestyén, Z.; Jakab, E.; Badea, E.; Barta, E.; Sendrea, C.; Czégény, Z. Thermal degradation study of vegetable tannins and vegetable tanned leathers. J. Anal. Appl. Pyrolysis 2018, 138, 178–187. [Google Scholar] [CrossRef]
- Rao, J.; Thanikaivelan, P.; Sreeram, K.J.; Nair, B. Green Route for the Utilization of Chrome Shavings (Chromium–Containing Solid Waste) in Tanning Industry. Environ. Sci. Technol. 2002, 36, 1372–1376. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, J.; Han, W. The status and developments of leather solid waste treatment: A mini-review. Waste Manag. Res. 2016, 34, 399–408. [Google Scholar] [CrossRef]
- Guo, Z.-R.; Zhang, G.; Fang, J.; Dou, X. Enhanced chromium recovery from tanning wastewater. J. Clean. Prod. 2006, 14, 75–79. [Google Scholar] [CrossRef]
- Kolomazník, K.; Adamek, M.; Andel, I.; Barinova, M. Leather waste—Potential threat to human health, and a new technology of its treatment. J. Hazard. Mater. 2008, 160, 514–520. [Google Scholar] [CrossRef]
- Bahillo, A.; Armesto, L.; Cabanillas, A.; Otero, J. Thermal valorization of footwear leather wastes in bubbling fluidized bed combustion. Waste Manag. 2004, 24, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Alemu, L.G.; Kefale, G.Y.; Hailu, R.; Tilahun, A.; Minbale, E.; Eyasu, A. Toward Sustainable Leather Processing: A Comprehensive Review of Cleaner Production Strategies and Environmental Impacts. Adv. Mater. Sci. Eng. 2024, 2024, 8117915. [Google Scholar] [CrossRef]
- Chojnacka, K.; Skrzypczak, D.; Mikula, K.; Witek, A.; Izydorczyk, G.; Kuligowski, K.; Bandrów, P.; Kułażyński, M. Progress in sustainable technologies of leather wastes valorization as solutions for the circular economy. J. Clean. Prod. 2021, 313, 127902. [Google Scholar] [CrossRef]
- Chandy, S.; Shanthakumar, S. Zero waste discharge in tannery industries—An achievable reality? A recent review. J. Environ. Manag. 2023, 335, 117508. [Google Scholar] [CrossRef]
- Natarajan, T.S.; Natarajan, K.; Bajaj, H.C.; Tayade, R.J. Study on identification of leather industry wastewater constituents and its photocatalytic treatment. Int. J. Environ. Sci. Technol. 2013, 10, 855–864. [Google Scholar] [CrossRef]
- Famielec, S. Chromium concentrate recovery from solid tannery waste in a thermal process. Materials 2020, 13, 1533. [Google Scholar] [CrossRef] [PubMed]
- Kluska, J.; Turzyński, T.; Ochnio, M.; Kardaś, D. Characteristics of ash formation in the process of combustion of pelletised leather tannery waste and hardwood pellets. Renew. Energy 2020, 149, 1246–1253. [Google Scholar] [CrossRef]
- Velusamy, M.; Chakali, B.; Ganesan, S.; Tinwala, F.; Srinivasan; Venkatachalam, S. Investigation on pyrolysis and incineration of chrome–tanned solid waste from tanneries for effective treatment and disposal: An experimental study. Environ. Sci. Pollut. Res. 2020, 27, 29778–29790. [Google Scholar] [CrossRef]
- Liu, J.; Luo, L.; Hu, Y.; Wang, F.; Zheng, X.; Tang, K. Kinetics and mechanism of thermal degradation of vegetable–tanned leather fiber. J. Leather Sci. Eng. 2019, 1, 9. [Google Scholar] [CrossRef]
- Parisi, M.; Nanni, A.; Colonna, M. Recycling of Chrome–Tanned Leather and Its Utilization as Polymeric Materials and in Polymer–Based Composites: A Review. Polymers 2021, 13, 429. [Google Scholar] [CrossRef]
- Xia, L.; Li, C.; Zhou, S.; Fu, Z.; Wang, Y.; Lyu, P.; Zhang, J.; Zhang, C.; Xu, W. Utilization of Waste Leather Powders for Highly Effective Removal of Dyes from Water. Polymers 2019, 11, 1786. [Google Scholar] [CrossRef]
- Vidaurre, M.; Pérez, S.; Zuazua, A.; Martín, C. From the leather industry to building sector: Exploration of potential applications of discarded solid wastes. J. Clean. Prod. 2021, 291, 125960. [Google Scholar] [CrossRef]
- Garcia, N.; Reis, E.; Budemberg, E.; Agostini, D.; Salmazo, L.; Cabrera, F.; Job, A. Natural rubber/leather waste composite foam: A new eco–friendly material and recycling approach. J. Appl. Polym. Sci. 2015, 132, 41636. [Google Scholar] [CrossRef]
- Raksaksri, L.; Phunpeng, V. Leather–like composite materials prepared from natural rubber and two leather wastes: Wet blue leather and finished leather. J. Elastomers Plast. 2022, 54, 1254–1276. [Google Scholar] [CrossRef]
- Stefan, D.; Bosomoiu, M.; Constantinescu, R.; Ignat, M. Composite Polymers from Leather Waste to Produce Smart Fertilizers. Polymers 2021, 13, 4351. [Google Scholar] [CrossRef]
- Dang, M.; Li, Y.; Yang, M. Biodegradable Waterborne Polyurethane Grafted with Gelatin Hydrolysate via solvent-free copolymerization for potential porous scaffold material. J. Mech. Behav. Biomed. Mater. 2019, 92, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Thanikaivelan, P.; Narayanan, N.T.; Pradhan, B.K.; Ajayan, P.M. Collagen based magnetic nanocomposites for oil removal applications. Sci. Rep. 2012, 2, 230. [Google Scholar] [CrossRef]
- Suslova, O.; Maistrenko, L.; Rudnieva, K.; Moshynets, O.; Potochylova, V.; Mokrousova, L. Collagen–Based Gel with Antimicrobial Activity from Leather Waste. In Proceedings of the ICAMS 2022—9th International Conference on Advanced Materials and Systems, Bucharest, Romania, 26–28 October 2022; pp. 155–160. [Google Scholar] [CrossRef]
- Ashokkumar, M.; Narayanan, N.T.; Reddy, A.L.M.; Gupta, B.K.; Chandrasekaran, B.; Talapatra, S.; Ajayan, P.M.; Thanikaivelan, P. Transforming collagen wastes into doped nanocarbons for sustainable energy applications. Green Chem. 2012, 14, 1689–1695. [Google Scholar] [CrossRef]
- Pedersen, T.H.; Conti, F. Improving the circular economy via hydrothermal processing of high–density waste plastics. Waste Manag. 2017, 68, 24–31. [Google Scholar] [CrossRef]
- Sims, R.; Mabee, W.; Saddler, J.; Taylor, M. An overview of second generation biofuel technologies. Bioresour. Technol. 2009, 101, 1570–1580. [Google Scholar] [CrossRef] [PubMed]
- Amin, S. Review on biofuel oil and gas production processes from microalgae. Energy Convers. Manag. 2009, 50, 1834–1840. [Google Scholar] [CrossRef]
- Jiang, K.; Cheng, C.; Ran, M.; Lu, Y.; Wu, Q. Preparation of a biochar with a high calorific value from chestnut shells. New Carbon Mater. 2018, 33, 183–187. [Google Scholar] [CrossRef]
- Hurt, R.H. Structure, properties, and reactivity of solid fuels. Symp. (Int.) Combust. 1998, 27, 2887–2904. [Google Scholar] [CrossRef]
- Demirbas, A. Thermochemical Conversion Processes. In Biofuels: Securing the Planet’s Future Energy Needs; Springer: London, UK, 2009; pp. 261–304. [Google Scholar] [CrossRef]
- He, Y.; Li, N.; Dong, M.; Wei, S.; Zhao, W.; Gao, Y.; Liu, H.; Wang, W.; Wang, T.; Wang, K.; et al. Enhancing light aromatics production by pre-cracking and enriching effect in catalytic pyrolysis of waste polypropylene over encapsulated ZSM-5@SBA-15 composites. Appl. Catal. B Environ. 2026, 382, 125917. [Google Scholar] [CrossRef]
- Ruan, R.; Ding, K.; Liu, S.; Peng, P.; Zhou, N.; He, A.; Chen, P.; Cheng, Y.; Wang, Y.; Liu, Y.; et al. Chapter 12—Gasification and pyrolysis of waste. In Current Developments in Biotechnology and Bioengineering; Kataki, R., Pandey, A., Khanal, S.K., Pant, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 263–297. [Google Scholar] [CrossRef]
- Nazari, L.; Xu, C.; Ray, M.B. Advanced Technologies (Biological and Thermochemical) for Waste–to–Energy Conversion. In Advanced and Emerging Technologies for Resource Recovery from Wastes; Springer: Singapore, 2021; pp. 55–95. [Google Scholar] [CrossRef]
- Tarafdar, A.; Sirohi, R. Thermo—Chemical Processes for Food Waste Treatment. In Sustainable Technologies for Food Waste Management; CRC Press: Boca Raton, FL, USA, 2024; pp. 40–48. [Google Scholar] [CrossRef]
- Burra, K.G.; Gupta, A.K. Thermochemical Reforming of Wastes to Renewable Fuels. In Energy for Propulsion: A Sustainable Technologies Approach; Runchal, A.K., Gupta, A.K., Kushari, A., De, A., Aggarwal, S.K., Eds.; Springer: Singapore, 2018; pp. 395–428. [Google Scholar] [CrossRef]
- Kumar, S. Sub– and Supercritical Water Technology for Biofuels. In Advanced Biofuels and Bioproducts; Lee, J.W., Ed.; Springer: New York, NY, USA, 2013; pp. 147–183. [Google Scholar] [CrossRef]
- Hoekman, S.; Leland, A.; Felix, L. Hydrothermal Carbonization (HTC) of Biomass for Energy Applications. In Biomass Preprocessing and Pretreatments for Production of Biofuels; CRC Press: Boca Raton, FL, USA, 2018; pp. 196–254. [Google Scholar] [CrossRef]
- Özçimen, D.; İnan, B.; Koçer, A.T.; Bostyn, S.; Gökalp, İ. Hydrothermal carbonization processes applied to wet organic waste streams. Int. J. Energy Res. 2022, 46, 16109–16126. [Google Scholar] [CrossRef]
- Shi, Y.; Zeng, Q.; Yan, J.; Wang, L. Chapter 6—Hydrothermal treatment of combustion/incineration residues. In Treatment and Utilization of Combustion and Incineration Residues; Wang, L., Tsang, D., Yan, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 95–111. [Google Scholar] [CrossRef]
- Theppitak, S.; Dai, X.; Hungwe, D.; Yoshikawa, K. Gasification and Properties of Chars Derived Food Waste by Pyrolytic and Hydrothermal Carbonizations. IOP Conf. Ser. Earth Environ. Sci. 2019, 265, 12005. [Google Scholar] [CrossRef]
- Sethuraman, C.; Srinivas, K.; Sekaran, G. Production of Short Chain Aliphatic Hydrocarbon Fuel Gases—A new Renewable Energy Sources from Chrome Tanned Leather Wastes by Pyrolysis. Int. J. Res. Stud. Sci. Eng. Technol. 2014, 1, 22–32. [Google Scholar]
- Gallorini, R.; Aquilia, S.; Bello, C.; Ciardelli, F.; Pinna, M.; Papini, A.M.; Rosi, L. Pyrolysis of spent rapeseed meal: A circular economy example for waste valorization. J. Anal. Appl. Pyrolysis 2023, 174, 106138. [Google Scholar] [CrossRef]
- Butler, E.; Devlin, G.; Meier, D.; Mcdonnell, K. A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renew. Sustain. Energy Rev. 2011, 15, 4171–4186. [Google Scholar] [CrossRef]
- Sun, X.; Zhu, Z.; Zaman, F.; Huang, Y.; Guan, Y. Detection and kinetic simulation of animal hair/wool wastes pyrolysis toward high–efficiency and sustainable management. Waste Manag. 2021, 131, 305–312. [Google Scholar] [CrossRef] [PubMed]
- González, M.; Peinado, M.; Vaquero, J.J.; Nozal, L.; Aguirre, J.L.; González, S. Micro–wave–Assisted Pyrolysis of Leather Waste. Energies 2022, 15, 1273. [Google Scholar] [CrossRef]
- Yılmaz, O.; Kantarli, I.; Yuksel, M.; Saglam, M.; Yanik, J. Conversion of leather wastes to useful products. Resour. Conserv. Recycl. 2007, 49, 436–448. [Google Scholar] [CrossRef]
- Kan, T.; Strezov, V.; Evans, T. Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters. Renew. Sustain. Energy Rev. 2015, 57, 1126–1140. [Google Scholar] [CrossRef]
- Al Arni, S. Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew. Energy 2018, 124, 197–201. [Google Scholar] [CrossRef]
- Jahirul, M.I.; Rasul, M. Recent Developments in Biomass Pyrolysis for Bio–Fuel Production, Its Potential for Commercial Applications. In Recent Researches in Environmental and Geological Sciences; WSEAS Press: Athens, Greece, 2012. [Google Scholar]
- Fahmy, T.; Fahmy, Y.; Mobarak, F.; El, M.; Abouzeid, R. Biomass pyrolysis: Past, present, and future. Environ. Dev. Sustain. 2020, 22, 17–32. [Google Scholar] [CrossRef]
- Font, R. Chapter 9—Decomposition of Organic Wastes: Thermal Analysis and Evolution of Volatiles. In Recent Advances, Techniques and Applications; Vyazovkin, S., Koga, N., Schick, C., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2018; pp. 339–397. [Google Scholar] [CrossRef]
- Jaffari, Z.H.; Hong, J.; Park, K.Y. A systematic review of innovations in tannery solid waste treatment: A viable solution for the circular economy. Sci. Total Environ. 2024, 948, 174848. [Google Scholar] [CrossRef]
- Marcilla, A.; León, M.; García, Á.N.; Bañón, E.; Martínez, P. Upgrading of Tannery Wastes under Fast and Slow Pyrolysis Conditions. Ind. Eng. Chem. Res. 2012, 51, 3246–3255. [Google Scholar] [CrossRef]
- Ramola, S.; Mohan, D.; Masek, O.; Méndez, A.; Tsubota, T. (Eds.) Engineered Biochar Fundamentals, Preparation, Characterization and Applications; Springer Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Oliveira, L.C.A.; Coura, C.V.Z.; Guimarães, I.R.; Gonçalves, M. Removal of organic dyes using Cr–containing activated carbon prepared from leather waste. J. Hazard. Mater. 2011, 192, 1094–1099. [Google Scholar] [CrossRef]
- Oliveira, L.C.A.; Guerreiro, M.C.; Gonçalves, M.; Oliveira, D.Q.L.; Costa, L.C.M. Preparation of activated carbon from leather waste: A new material containing small particle of chromium oxide. Mater. Lett. 2008, 62, 3710–3712. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, R.; Zhang, W.; Yuan, Y.; Lai, B. High–efficiency adsorption of tetracycline by the prepared waste collagen fiber–derived porous biochar. RSC Adv. 2019, 9, 39355–39366. [Google Scholar] [CrossRef]
- Stejskal, J.; Fahanwi, A.N.; Saha, P.; Prokes, J. Carbonized Leather Waste: A Review and Conductivity Outlook. Polymers 2023, 15, 1028. [Google Scholar] [CrossRef]
- Konikkara, N.; Kennedy, L.J.; Vijaya, J.J. Preparation and characterization of hierarchical porous carbons derived from solid leather waste for supercapacitor applications. J. Hazard. Mater. 2016, 318, 173–185. [Google Scholar] [CrossRef]
- Martínez, D.; Lemus, I.L.A.; Mascorro, I.; Gallegos, A. Leather Waste–Derived Biochar with High Performance for Supercapacitors. J. Electrochem. Soc. 2018, 165, A2061–A2068. [Google Scholar] [CrossRef]
- Grycová, B.; Klemencová, K.; Leštinský, P.; Stejskal, J.; Sáha, T.; Trchová, M.; Prokeš, J. Conductivity of carbonized and activated leather waste. Sustain. Chem. Pharm. 2023, 35, 101172. [Google Scholar] [CrossRef]
- Liu, Z.; Han, G. Production of solid fuel biochar from waste biomass by low temperature pyrolysis. Fuel 2015, 158, 159–165. [Google Scholar] [CrossRef]
- Ongen, A.; Ozcan, H.K.; Arayıcı, S. An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling. J. Hazard. Mater. 2013, 263, 361–366. [Google Scholar] [CrossRef]
- Khan, A.S.; Chowdhury, S.A. Potential of energy from tannery waste in Bangladesh. In Proceedings of the 2nd International Conference on the Developments in Renewable Energy Technology (ICDRET 2012), Dhaka, Bangladesh, 5–7 January 2012; pp. 1–5. [Google Scholar]
- Mozhiarasi, V.; Krishna, B.B.; Nagabalaji, V.; Srinivasan, S.V.; Bhaskar, T.; Suthanthararajan, R. Chapter 10—Leather industry waste based biorefinery. In Waste Biorefinery; Bhaskar, T., Varjani, S., Pandey, A., Rene, E.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 267–304. [Google Scholar] [CrossRef]
- Baruah, D.; Baruah, D.C. Modeling of biomass gasification: A review. Renew. Sustain. Energy Rev. 2014, 39, 806–815. [Google Scholar] [CrossRef]
- Zaccariello, L.; Montagnaro, F. Fluidised bed gasification of biomasses and wastes to produce hydrogen–rich syn–gas—A review. J. Chem. Technol. Biotechnol. 2023, 98, 1878–1887. [Google Scholar] [CrossRef]
- Ferreira, S.D.; Junges, J.; Scopel, B.; Manera, C.; Osório, E.; Lazzarotto, I.P.; Godinho, M. Steam Gasification of Biochar Derived from the Pyrolysis of Chrome–Tanned Leather Shavings. Chem. Eng. Technol. 2019, 42, 2530–2538. [Google Scholar] [CrossRef]
- Mishra, S.; Upadhyay, R.K. Review on biomass gasification: Gasifiers, gasifying mediums, and operational parameters. Mater. Sci. Energy Technol. 2021, 4, 329–340. [Google Scholar] [CrossRef]
- Watkinson, P.; Lisbôa, A. Gasification, pyrolysis, and combustion. In Spouted and Spout–Fluid Beds: Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 2010; pp. 250–268. [Google Scholar] [CrossRef]
- Lewis, A.D. Gasification of Biomass, Coal, and Petroleum Coke at High Heating Rates and Elevated Pressure/Evaluacion del rendimiento productivo en dos poblaciones de cuyes bajo condiciones de campo y galpones del proyecto Mejocuy. Ph.D. Dissertation, Brigham Young University, Provo, UT, USA, 2014. [Google Scholar]
- Senneca, O.; Salatino, P. Overlapping of heterogeneous and purely thermally activated solid–state processes in the combustion of a bituminous coal. Combust Flame 2006, 144, 578–591. [Google Scholar] [CrossRef]
- Yang, J.; He, Q.; Yang, L. A review on hydrothermal co–liquefaction of biomass. Appl. Energy 2019, 250, 926–945. [Google Scholar] [CrossRef]
- de Souza, G.B.M.; Pereira, M.B.; Mourão, L.C.; Santos, M.P.D.; de Oliveira, J.A.; Garde, I.A.A.; Alonso, C.G.; Jegatheesan, V.; Cardozo-Filho, L. Supercritical water technology: An emerging treatment process for contaminated wastewaters and sludge. Rev. Environ. Sci. Biotechnol. 2022, 21, 75–104. [Google Scholar] [CrossRef]
- Castello, D.; Pedersen, T.H.; Rosendahl, L.A. Continuous hydrothermal liquefaction of biomass: A critical review. Energies 2018, 11, 3165. [Google Scholar] [CrossRef]
- Lee, J.; Hong, J.; Jang, D.; Park, K.Y. Hydrothermal carbonization of waste from leather processing and feasibility of produced hydrochar as an alternative solid fuel. J. Environ. Manag. 2019, 247, 115–120. [Google Scholar] [CrossRef]
- Lachos, D.; Torres, P.C.; Abaide, E.R.; Zabot, G.L.; De Castilhos, F. Hydrothermal carbonization and Liquefaction: Differences, progress, challenges, and opportunities. Bioresour. Technol. 2022, 343, 126084. [Google Scholar] [CrossRef] [PubMed]
- Madenoglu, T.; Boukis, N.; Saglam, M.; Yüksel, M. Supercritical water gasification of real biomass feedstocks in continuous flow system. Int. J. Hydrogen Energy 2011, 36, 14408–14415. [Google Scholar] [CrossRef]
- Kandasamy, R.; Venkatesan, S.K.; Uddin, M.I.; Ganesan, S. Chapter 1—Anaerobic biovalorization of leather industry solid waste and production of high value–added biomolecules and biofuels. In Biovalorisation of Wastes to Renewable Chemicals and Biofuels; Rathinam, N.K., Sani, R.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–25. [Google Scholar] [CrossRef]
- Moktadir, M.; Rahman, M. Energy production from leather solid wastes by anaerobic digestion: A critical review. Renew. Sustain. Energy Rev. 2022, 161, 112378. [Google Scholar] [CrossRef]
- Jameel, M.K.; Mustafa, M.A.; Ahmed, H.S.; Mohammed, A.J.; Ghazy, H.; Shakir, M.N.; Lawas, A.M.; Mohammed, S.K.; Idan, A.H.; Mahmoud, Z.H.; et al. Biogas: Production, properties, applications, economic and challenges: A review. Results Chem. 2024, 7, 101549. [Google Scholar] [CrossRef]
- Sun, G.; Tang, W.; Gu, Q.; Li, L.; Duan, Y.; Chen, Y.; Lu, X.; Sun, Z.; Qian, X.; Duan, L. Reaction mechanisms and N–containing compound formation during shoe manufacturing waste pyrolysis. Fuel Process. Technol. 2023, 244, 107699. [Google Scholar] [CrossRef]
- Almeida, A.F.; Pereira, I.; Silva, P.; Neto, M.P.; Crispim, A.C.; Pilão, R.; Ribeiro, A. Pyrolysis of leather trimmings in a fixed bed reactor. J. Am. Leather Chem. Assoc. 2017, 112, 112–120. [Google Scholar]
- Amdouni, S.; Trabelsi, A.B.H.; Elasmi, A.M.; Chagtmi, R.; Haddad, K.; Jamaaoui, F.; Khedhira, H.; Chérif, C. Tannery fleshing wastes conversion into high value–added biofuels and bio–chars using pyrolysis process. Fuel 2021, 294, 120423. [Google Scholar] [CrossRef]
- Ongen, A.; Arayıcı, S. Thermal treatment of fleshing residue for producing syngas. Int. J. Glob. Warm. 2014, 6, 149–159. [Google Scholar] [CrossRef]
- Mohamadi-Baghmolaei, M.; Zahedizadeh, P.; Hajizadeh, A.; Zendehboudi, S. Hydrogen production through catalytic supercritical water gasification: Energy and char formation assessment. Energy Convers. Manag. 2022, 268, 115922. [Google Scholar] [CrossRef]
- Guan, Y.; Liu, C.; Peng, Q.; Zaman, F.; Zhang, H.; Jin, Z.; Wang, A.; Wang, W.; Huang, Y. Pyrolysis kinetics behavior of solid leather wastes. Waste Manag. 2019, 100, 122–127. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, M.; Gao, J.; Li, J. Review of the influencing factors of secondary organic aerosol formation and aging mechanism based on photochemical smog chamber simulation methods. J. Environ. Sci. 2023, 123, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Wells, H.C.; Sizeland, K.H.; Edmonds, R.L.; Aitkenhead, W.; Kappen, P.; Glover, C.; Johannessen, B.; Haverkamp, R.G. Stabilizing Chromium from Leather Waste in Biochar. ACS Sustain. Chem. Eng. 2014, 2, 1864–1870. [Google Scholar] [CrossRef]
- Filho, A.T.; Lange, L.C.; de Melo, G.C.B.; Praes, G.E. Pyrolysis of chromium rich tanning industrial wastes and utilization of carbonized wastes in metallurgical process. Waste Manag. 2016, 48, 448–456. [Google Scholar] [CrossRef]
- Marcilla, A.; García, A.N.; León, M.; Martínez, P.; Bañón, E. Study of the influence of NaOH treatment on the pyrolysis of different leather tanned using thermogravimetric analysis and Py/GC–MS system. J. Anal. Appl. Pyrolysis 2011, 92, 194–201. [Google Scholar] [CrossRef]
- Undri, A.; Meini, S.; Rosi, L.; Frediani, M.; Frediani, P. Microwave pyrolysis of polymeric materials: Waste tires treatment and characterization of the value–added products. J. Anal. Appl. Pyrolysis 2013, 103, 149–158. [Google Scholar] [CrossRef]
- Motasemi, F.; Afzal, M.T. A review on the microwave–assisted pyrolysis technique. Renew. Sustain. Energy Rev. 2013, 28, 317–330. [Google Scholar] [CrossRef]
- Czirok, I.S.; Jakab, E.; Czégény, Z.; Badea, E.; Babinszki, B.; Tömösközi, S.; May, Z.; Sebestyén, Z. Thermal characterization of leathers tanned by metal salts and vegetable tannins. J. Anal. Appl. Pyrolysis 2023, 173, 106035. [Google Scholar] [CrossRef]
- Sethuraman, C.; Srinivas, K.; Sekaran, G. Conversion of Hazardous leather solid waste into fuels and products. In Proceedings of the C2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite, GHTC–SAS 2013, Trivandrum, India, 23–24 August 2013; pp. 274–279. [Google Scholar] [CrossRef]
- Poletto, P.; Dettmer, A.; Bacca, V.; Collazzo, G.; Foletto, E.; Godinho, M. Activated Carbon from Leather Shaving Waste. Part I. Pyrolysis and Physical Activation. J. Am. Leather Chem. Assoc. 2016, 111, 325–333. [Google Scholar]
- Yanik, J.; Ebale, S.; Kruse, A.; Saglam, M.; Yüksel, M. Biomass gasification in supercritical water: Part 1. Effect of the nature of biomass. Fuel 2007, 86, 2410–2415. [Google Scholar] [CrossRef]
- Agustini, C.B.; Spier, F.; da Costa, M.; Gutterres, M. Biogas production for anaerobic co–digestion of tannery solid wastes under presence and absence of the tanning agent. Resour. Conserv. Recycl. 2018, 130, 51–59. [Google Scholar] [CrossRef]
- Zupančič, G.D.; Jemec, A. Anaerobic digestion of tannery waste: Semi–continuous and anaerobic sequencing batch reactor processes. Bioresour. Technol. 2010, 101, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Pati, A.; Chaudhary, R.; Subramani, S. A review on management of chrome–tanned leather shavings: A holistic paradigm to combat the environmental issues. Environ. Sci. Pollut. Res. 2014, 21, 11266–11282. [Google Scholar] [CrossRef]
- Wang, S.; Liu, T.; Xiao, X.; Luo, S. Advances in microbial remediation for heavy metal treatment: A mini review. J. Leather Sci. Eng. 2021, 3, 1. [Google Scholar] [CrossRef]
- Chagtmi, R.; Hassen, A.; Abdallah, A.B.; Maaoui, A.; Lopez, G.; Cortazar, M.; Khedira, H.; Chaden, C.; Olazar, M. Valorization potential of dried tannery fleshing wastes (TFW) through pyrolysis in the leather industry: Kinetic and thermodynamic investigations. Sustain. Chem. Pharm. 2023, 33, 101130. [Google Scholar] [CrossRef]
- Simioni, T.; Matos, E.; Bacca, V.; Perondi, D.; Godinho, M.; Dettmer, A. Pyrolysis of chromed leather waste shavings in fluidized bed. J. Am. Leather Chem. Assoc. 2014, 109, 342–352. [Google Scholar]
- Alagöz, O.; Çakan, S.; İsmail, İ. Pyrolysis of chromed leather waste with CaO obtained from waste marble to prevent environmental pollution. Chem. Pap. 2024, 78, 7213–7227. [Google Scholar] [CrossRef]
- Hemati, S.; Udayakumar, S.; Wesley, C.; Biswal, S.; Nur-A-Tomal, M.S.; Sarmadi, N.; Pahlevani, F.; Sahajwalla, V. Thermal Transformation of Secondary Resources of Carbon–Rich Wastes into Valuable Industrial Applications. J. Compos. Sci. 2023, 7, 8. [Google Scholar] [CrossRef]
- Midilli, A. Gasification of Leather Residues—Part II. Conversion into Combustible Gases and the Effects of Some Operational Parameters. Energy Sources 2004, 26, 45–53. [Google Scholar] [CrossRef]
- Dudyński, M.; Dudyński, K.; Kluska, J.; Ochnio, M.; Kazimierski, P.; Kardaś, D. Gasification of leather waste for energy production: Laboratory scale and industrial tests. Int. J. Energy Res. 2021, 45, 18540–18553. [Google Scholar] [CrossRef]
- Gil, R.R.; Girón, R.P.; Lozano, M.S.; Ruiz, B.; Fuente, E. Pyrolysis of biocollagenic wastes of vegetable tanning. Optimization and kinetic study. J. Anal. Appl. Pyrolysis 2012, 98, 129–136. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, J.; Li, X.; Wang, F.; Luo, L.; Pei, Y.; Lei, Y.; Tang, K. Assessment of the pyrolysis kinetics and mechanism of vegetable–tanned leathers. J. Anal. Appl. Pyrolysis 2022, 164, 105502. [Google Scholar] [CrossRef]
- Debina, B.; Bacaoui, A.; Didier, T.F.A.; Daouda, K.; Rahman, A.; Yaacoubi, A.; Benoît, L. Hydro–thermal carbonization of vegetable–tanned leather shavings (HTC–VTS) for environmental remediation: Optimization of process conditions. R. Soc. Open Sci. 2023, 10, 230302. [Google Scholar] [CrossRef]
- Van Rensburg, M.; Nkomo, S.L.; Mkhize, N.M. Characterization and pyrolysis of post–consumer leather shoe waste for the recovery of valuable chemicals. Detritus 2021, 14, 92–107. [Google Scholar] [CrossRef]
- Silva, F.; Direito, D.; Pilão, R.; Ribeiro, A.M. Valorisation of Leather Wastes from the Footwear Industry via Pyrolysis: Product Yields and Characterisation. In Proceedings of the 3rd International Conference on Water Energy Food and Sustainability (ICoWEFS 2023), Leiria, Portugal, 10–12 May 2023; da Costa Sanches Galvão, J.R., Brito, P., Neves, F.D.S., de Amorim Almeida, H., de Jesus Martins Mourato, S., Nobre, C., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 203–213. [Google Scholar]
- Zhang, Z.; Hu, Y.; Wang, F.; Zheng, X.; Liu, J.; Tang, K. Pyrolysis of sulfuric acid–treated chrome–tanned leather wastes: Kinetics, mechanism and evolved gas analysis. Waste Manag. 2022, 143, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kang, G.; Liu, Z.; Yu, J.; Gao, S. Co–pyrolysis kinetics and pyrolysis product distribution of various tannery wastes. J. Fuel Chem. Technol. 2021, 49, 1638–1647. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Zhang, M.; Kaya, M.; Wang, F.; Tang, K. Co–pyrolysis of chrome–tanned leather shavings with wheat straw: Thermal behavior, kinetics and pyrolysis products. Energy 2024, 301, 131733. [Google Scholar] [CrossRef]
- Hu, Y.; Xia, Z.; Wang, X.; Xing, B.; Chen, Q.; Yu, F.; Zhou, N. Enhanced co–pyrolysis of textile and leather waste with Ca/Fe–enriched sludge ash: Catalytic effect on thermal behavior, volatile composition, and biochar formation. Fuel 2024, 373, 132272. [Google Scholar] [CrossRef]
- Karki, R.; Chuenchart, W.; Surendra, K.C.; Shrestha, S.; Raskin, L.; Sung, S.; Hashimoto, A.; Khanal, S. Anaerobic co–digestion: Current status and perspectives. Bioresour. Technol. 2021, 330, 125001. [Google Scholar] [CrossRef]
- Priebe, G.; Kipper, E.; Gusmão, A.L.; Marcilio, N.; Mariliz, G. Anaerobic Digestion of Chrome–tanned Leather Waste for Biogas Production. J. Clean. Prod. 2016, 129, 410–416. [Google Scholar] [CrossRef]
- Kameswari, K.S.B.; Kalyanaraman, C.; Subramanian, P.; Thanasekaran, K. Enhancement of Biogas Generation by Addition of Lipase in the Co–Digestion of Tannery Solid Wastes. Clean 2011, 39, 781–786. [Google Scholar] [CrossRef]
- Kameswari, K.S.B.; Kalyanaraman, C.; Umamaheswari, B.; Thanasekaran, K. Enhancement of bio–gas generation during co–digestion of tannery solid wastes through optimization of mix proportions of substrates. Clean Technol. Environ. Policy 2013, 16, 1067–1080. [Google Scholar] [CrossRef]
- Polizzi, C.; Alatriste, F.; Munz, G. Modeling the Disintegration Process in Anaerobic Di–gestion of Tannery Sludge and Fleshing. Front. Environ. Sci. 2017, 5, 37. [Google Scholar] [CrossRef]
- Bayrakdar, A. Anaerobic Co–digestion of Tannery Solid Wastes: A Comparison of Single and Two–Phase Anaerobic Digestion. Waste Biomass Valorization 2020, 11, 1727–1735. [Google Scholar] [CrossRef]
- Rajamani, S.; Mulder, A. Biological Liquefaction and Anaerobic Digestion of Waste Fleshings Integrated with Sludge and Bio-Energy Generation—A Novel and Sustainable Development. In Proceedings of the XXXVI IULTCS Congress, Addis Ababa, Ethiopia, 3–5 November 2021; Available online: https://mail.allpi.int/phocadownload/2021/WLC-IULTCS/oral/011.pdf (accessed on 2 November 2025).
- Krounbi, L.; Enders, A.; Anderton, C.; Engelhard, M.; Hestrin, R.; Torres, D.; Dynes, J.; Lehmann, J. Sequential Ammonia and Carbon Dioxide Adsorption on Pyrolyzed Biomass to Recover Waste Stream Nutrients. ACS Sustain. Chem. Eng. 2020, 8, 7121–7131. [Google Scholar] [CrossRef] [PubMed]
- Phillips, H. THE CHEMISTRY OF LEATHER. J. R. Soc. Arts 1954, 102, 824–875. [Google Scholar]
- Albu, M.; Deselnicu, V.; Ioannidis, I.; Deselnicu, D.; Ciprian, C. Chemical functionalization and stabilization of type I collagen with organic tanning agents. Korean J. Chem. Eng. 2014, 32, 354–361. [Google Scholar] [CrossRef]
- Stelmach, S.; Ignasiak, K.; Czardybon, A.; Bigda, J. Evaluation of bio-oils in terms of fuel properties. Processes 2023, 11, 3317. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, H.; Shi, J.; Ai, X.; Que, Z.; Nie, H.; Xu, C.; Huang, R.; Fu, Y.; Yang, W. Separated two-stage hydrothermal liquefaction of livestock manure for high-quality bio-oil with low-nitrogen content: Insights on nitrogen migration and evolution. Chem. Eng. J. 2023, 477, 146999. [Google Scholar] [CrossRef]
- Fang, C.; Jiang, X.; Lv, G.; Yan, J.; Deng, X. Nitrogen–containing gaseous products of chrome–tanned leather shavings during pyrolysis and combustion. Waste Manag. 2018, 78, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Wei, Y.; Huang, Z.; Chen, Y.; Tursunov, O.; Cheng, S.; Yang, H.; Yang, Y. The nitrogen transformation and controlling mechanism of NH3 and HCN conversion during the catalytic pyrolysis of amino acid. Fuel 2023, 333, 126215. [Google Scholar] [CrossRef]
- Forero-Nuñez; Velásquez, J.M.; Sierra, F. Energetic improvement of tanned leather solid wastes by thermal treatment. Ing. Y Desarro. 2015, 33, 1–17. [Google Scholar] [CrossRef]
- Bowden, W. Gasification—Achieving zero waste. J. Am. Leather Chem. Assoc. 2003, 98, 19–25. [Google Scholar]
- Kamińska-Pietrzak, N.; Smoliński, A. Selected Environmental Aspects of Gasification and Co–Gasification of Various Types of Waste. J. Sustain. Min. 2021, 12, 4. [Google Scholar] [CrossRef]
- Stemann, J.; Putschew, A.; Ziegler, F. Hydrothermal carbonization: Process water characterization and effects of water recirculation. Bioresour. Technol. 2013, 143, 139–146. [Google Scholar] [CrossRef]
- Zhang, X.; Zhan, L.; Yang, Y.; Wu, Y.; Song, X.; Li, R. Investigation on hydrothermal-pyrolysis process to eliminate S-pollution from corncob residue utilization: Experiment and life cycle assessment. Fuel 2024, 362, 130810. [Google Scholar] [CrossRef]
- Saha, P.; Saha, N.; Mazumder, S.; Reza, M.T. Transformation of sulfur during co-hydrothermal carbonization of coal waste and food waste. Energies 2021, 14, 2271. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, L.; Liu, T.; Huang, Z.; Tian, L.; Huang, Q.; Yanjiao, G. NO emissions during oxygen-enriched combustion of sewage sludge and corresponding hydrochar. Sep. Purif. Technol. 2024, 344, 127288. [Google Scholar] [CrossRef]
- Wang, Y.; Gou, L.; Dai, L.; Wang, Y. Hydrothermal carbonization of combined sodium citrate–thermal pretreated sewage sludge for the production of low-nitrogen clean solid fuels. J. Anal. Appl. Pyrolysis 2025, 187, 106987. [Google Scholar] [CrossRef]
- Bonoli, M.; Salomoni, C.; Caputo, A.; Francioso, O.; Palenzona, D. Anaerobic Digestion of High–Nitrogen Tannery By–products in a Multiphase Process for Biogas Production. Chem. Eng. Trans. 2014, 37, 271–276. [Google Scholar] [CrossRef]
- Agustini, C.; da Costa, M.; Gutterres, M. Biogas production from tannery solid wastes—Scale-up and cost-saving analysis. J. Clean. Prod. 2018, 187, 158–164. [Google Scholar] [CrossRef]
- Lytras, G.; Lytras, C.; Mathioudakis, D.; Papadopoulou, K.; Lyberatos, G. Food Waste Valorization Based on Anaerobic Digestion. Waste Biomass Valorization 2021, 12, 1677–1697. [Google Scholar] [CrossRef]
- Okolie, J.A.; Epelle, E.I.; Tabat, M.E.; Orivri, U.; Amenaghawon, A.N.; Okoye, P.U.; Gunes, B. Waste biomass valorization for the production of biofuels and value–added products: A comprehensive review of thermochemical, biological and integrated processes. Process Saf. Environ. Prot. 2022, 159, 323–344. [Google Scholar] [CrossRef]
- Munir, M.T.; Mansouri, S.S.; Udugama, I.A.; Baroutian, S.; Gernaey, K.V.; Young, B.R. Resource recovery from organic solid waste using hydrothermal processing: Opportunities and challenges. Renew. Sustain. Energy Rev. 2018, 96, 64–75. [Google Scholar] [CrossRef]
- Ghadge, R.; Nagwani, N.; Saxena, N.; Dasgupta, S.; Sapre, A. Design and scale-up challenges in hydrothermal liquefaction process for biocrude production and its upgradation. Energy Convers. Manag. X 2022, 14, 100223. [Google Scholar] [CrossRef]
- Mazhkoo, S.; Soltanian, S.; Odebiyi, H.O.; Norouzi, O.; Ubene, M.; Hayder, A.; Pourali, O.; Santos, R.M.; Brown, R.C.; Dutta, A. Process intensification in hydrothermal liquefaction of biomass: A review. J. Environ. Chem. Eng. 2025, 13, 115722. [Google Scholar] [CrossRef]
| References | Technology | Operational Conditions | Products | HHV | Advantages |
|---|---|---|---|---|---|
| Almeida et al., 2017 [97] | Pyrolysis | 490–800 °C, 15 °C min−1, N2, semi-batch reactor | 21.4–30.1% char 12.2–18.0% liquid 52.0–66.4% gas | Char: 18 MJ kg−1 Gas: 1.08 MJ m−3 | Cr stabilized >600 °C |
| Amdouni et al., 2021 [98] | Pyrolysis | 500–700 °C, 15 °C min−1, 1 h, fixed-bed reactor | 60.0% bio-oil 35.9% gas | Gas: 10 MJ m−3 | Ca and Na as inert catalysts |
| Ongen & Arayıcı, 2014 [99] | Gasification | 850–900 °C, O2, air, moisture | CO, H2, CH4, CO2 | Gas: 12.6 MJ m−3 | High syngas quality |
| Mohamadi-Baghmolaei et al., 2022 [100] | SWG | 300–750 °C | 89.3% H2-rich syngas | - | Catalyst reduces char |
| Lee et al., 2019 [90] | HTC | 180–200 °C, 30 min | 82.9% char | Char: 27.3 MJ kg−1 | Low N and S |
| References | Technology | Operational Conditions | Products | HHV | Advantages |
|---|---|---|---|---|---|
| Velusamy et al., 2020 [27] | Pyrolysis | 500 °C | 49–52% bio-oil 28–31% char 18–20% gas | Bio-oil: 28 MJ kg−1 | Cr in char |
| González et al., 2022 [59] | Microwaveassisted pyrolysis | – | 35–45% bio-oil 40–55% solids 6–15% gas | Char: 12–14 MJ kg−1 | Benzonitriles and phenols in bio-oil |
| Czirok et al., 2023 [108] | TG, TG/MS, Py-GC/MS | Up to 900 °C, 20 °C min−1, under Ar | ↑ char with ↑ Cr, nitrile formation above 400 °C | – | Cr catalyzes nitriles |
| Marcilla et al., 2012 [67] | Flash and slow pyrolysis | Flash: 450–550 °C, 30 min Slow: 750 °C at 10 °C min−1 | Flash: ↑ liquid and solid Slow: ↑ gas | – | Phenols, nitriles, and aromatics in bio-oil |
| Sethuraman et al., 2014 [55] | Batch gasification | 700 °C, batch reactor | 33.03% gas 6.20% light hydrocarbons | – | Renewable gas stream |
| Simioni et al., 2014 [117] | Fluidized-bed pyrolysis | 450–550 °C, 15–24 °C s−1 | ↑ bio-oil above 550 °C | – | Alcohols, ketones, and aromatics |
| Poletto et al., 2016 [110] | Semi-continuous pyrolysis | 450 °C, screw reactor | 26.8% bio-oil 34.7% gas | – | Bio-oil: 75% N-compounds and phenols |
| Alagöz et al., 2024 [118] | Catalyzed pyrolysis | 500 °C, 50 °C L min−1, 20 min, CaO | ↑ bio-oil with CaO (49%) | Bio-oil: 31.2 MJ kg−1 | ↑ H2, CO2, and acetylene |
| Filho et al., 2016 [104] | Pyrolysis | 8.5 h at 380–440 °C | Biochar for iron ore pellets | – | 76.47% Cr recovery |
| Ferreira et al., 2023 [82] | Pyrolysis + gasification | 450 °C pyrolysis; steam gasification | 26.8% bio-oil 38.5% char H2-rich syngas | Syngas: 22.05 MJ kg−1 | Cr-rich ash and N/O bio-oil |
| Midilli, 2004 [120] | Down-draft gasification | 966–1050 °C, 486–584 Nm3 m−2 h−1 | 29–33% combustible gases | – | Cr(VI)-free gas |
| Dudyński et al., 2021 [121] | Up-draft and industrial gasification | Lab-scale and 2.5 MW pilot, 850 °C, 2 s residence time | Syngas | 4.1–6.5 MJ m−3 | Cr2O3-rich ash |
| References | Technology | Operational Conditions | Products | HHV | Advantages |
|---|---|---|---|---|---|
| Gil et al., 2012 [122] | Pyrolysis | 750 °C, 5 °C min−1, 1 h | Bio-oil, biochar, and gas | Bio-oil and char with high HHV (16–17 MJ kg−1) | Oil: phenols, nitriles, 2,5-diketopiperazines, and alkanes Gas: CO, CO2, CH4, and H2 |
| Sebestyén et al., 2018 [15] | Py-GC/MS | 400 °C | Volatile compounds | – | Condensed tannins |
| Hu et al., 2022 [123] | Py-GC/MS | 500 °C | Gas, oil, and char | – | Gas: CO2, H2O, NH3 Oil: nitriles, phenols, hydrocarbons |
| González et al., 2022 [59] | Microwave-assisted pyrolysis | – | Bio-oil and char | 16–17 MJ kg−1 | Lower ash and moisture |
| Debina et al., 2023 [124] | HTC | 190 °C, 75 min | Hydrochar (85%) | – | Oxygenated groups, porous C/Ca structure in char |
| References | Technology | Operational Conditions | Products | HHV | Advantages |
|---|---|---|---|---|---|
| Sethuraman et al., 2013 [109] | Pyrolysis and Gasification | Pyrolysis: 600 °C Gasification: 600–800 °C, O2 (1.44 g h−1) | Fuel gases, and fuel oil precursors | – | Gas: 30% CO2, 10% H2, hydrocarbons Liquid: miscible with naphtha, kerosene, and diesel |
| Van Rensburg et al., 2021 [125] | Pyrolysis | 450–650 °C, 10 min | Char, gas, and liquid | Bio-oil: 33.6 MJ kg−1 Char: 25.6 MJ kg−1 | Liquid: nitrogenated compounds and finishing additives |
| Silva et al., 2024 [126] | Pyrolysis (fixed-bed) | 444–875 °C, vary particle size (up to 10 mm) | Char, gas, and liquid | Char: 23.1 MJ kg−1 Liquid: 15.1 MJ kg−1 | Gas: CO, CO2, CH4, H2 Liquid: alcohols, phenols, alkenes, and aromatics |
| References | Technology | Feedstocks | Products | Advantages |
|---|---|---|---|---|
| Zhang et al., 2021/2022 [127,128] | Co-pyrolysis | Tanning sludge, CLSW, and buffing dust (2:3:5 ratio) | Oil and gas yields ↑ by 15% | Reduced energy activation; improved product quality |
| Liu et al., 2024 [129] | Co-pyrolysis | Wheat straw and CLSW | Condensable and non-condensable gases | Low fixed carbon, highly volatile matter, and high ash content |
| Hu et al., 2024 [130] | Co-pyrolysis | Waste textiles, LSW, and Ca/Fe-rich sludge ash | Gases with reduced acids and nitrogen compounds | Ash accelerated weight loss rate (12.8% min−1) |
| Kameswari et al., 2011/2013 [133,134] | AD | ULSW, tannery sludge, and lipase | Biogas yield ↑ 15% 385 mLbiogas gVS−1 | Retention time ↓ (45 days) Improved hydrolysis |
| Islam et al., 2014 [13] | AD | ULSW, sewage (1:1), cow and dung (25%) | 476 Lgas gVS−1 73% CH4 | 52% VS destruction |
| Polizzi et al., 2017 [135] | AD | Tannery sludge, and ULSW | Methane: 0.26 m3 kgVS−1 (sludge), 0.47 m3 kgVS−1 (ULSW) | Biodegradability model |
| Bayrakdar, 2020 [136] | Single/Two-phase AD | Tannery sludge and ULSW | Single-phase: 0.46 m3 kg−1 Two-phase: 0.40 m3 kg CH4−1 | Rinsing reduces H2S but causes foam |
| Rajamani et al., 2021 [137] | AD | Tannery sludge and ULSW | Biogas: 0.5 m3 biogas kg−1 Digestate | Biogas for electricity Digestate as fertilizer |
| Priebe et al., 2016 [132] | AD | Soybean, CLSW, and ULSW sludges | Biogas (CLSW): 162.2 mL g−1, 73.7% CH4 | Degradable substrates and improved inhibition by Cr |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gobbo, M.; Gallorini, R.; Rosi, L. Energetic Valorization of Leather Solid Waste Through Thermochemical and Biochemical Methods. Energies 2025, 18, 6493. https://doi.org/10.3390/en18246493
Gobbo M, Gallorini R, Rosi L. Energetic Valorization of Leather Solid Waste Through Thermochemical and Biochemical Methods. Energies. 2025; 18(24):6493. https://doi.org/10.3390/en18246493
Chicago/Turabian StyleGobbo, Mariasole, Riccardo Gallorini, and Luca Rosi. 2025. "Energetic Valorization of Leather Solid Waste Through Thermochemical and Biochemical Methods" Energies 18, no. 24: 6493. https://doi.org/10.3390/en18246493
APA StyleGobbo, M., Gallorini, R., & Rosi, L. (2025). Energetic Valorization of Leather Solid Waste Through Thermochemical and Biochemical Methods. Energies, 18(24), 6493. https://doi.org/10.3390/en18246493

