Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (781)

Search Parameters:
Keywords = well-to-tank

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1321 KiB  
Article
Detection of Cathelicidin-1 and Cathelicidin-2 Biomolecules in the Milk of Goats and Their Use as Biomarkers for the Diagnosis of Mastitis
by Maria V. Bourganou, Dimitra V. Liagka, Konstantinos Vougas, Daphne T. Lianou, Natalia G. C. Vasileiou, Konstantina S. Dimoveli, Antonis P. Politis, Nikos G. Kordalis, Efthymia Petinaki, Vasia S. Mavrogianni, George Th. Tsangaris, George C. Fthenakis and Angeliki I. Katsafadou
Animals 2025, 15(15), 2301; https://doi.org/10.3390/ani15152301 - 6 Aug 2025
Abstract
The objectives of the present work were as follows: (i) the detection of cathelicidin biomolecules in the milk of individual goats during the early stages of mastitis and their potential use for the diagnosis of mastitis at its early stage and (ii) the [...] Read more.
The objectives of the present work were as follows: (i) the detection of cathelicidin biomolecules in the milk of individual goats during the early stages of mastitis and their potential use for the diagnosis of mastitis at its early stage and (ii) the evaluation of the presence of cathelicidin proteins in the bulk-tank milk from goat and sheep farms. In an experimental study, after inoculation of Staphylococcus simulans into a mammary gland of goats, bacteriological and cytological examinations of milk samples, as well as proteomics examinations [two-dimensional gel electrophoresis analysis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF MS) analysis] were performed sequentially, from 4 to 48 h post-challenge. Cathelicidin-1 and cathelicidin-2 were detected consistently in milk samples obtained throughout the study, and spot optical densities obtained from PDQuest v.8.0 were recorded. Associations were calculated between the presence of mastitis in a mammary gland at a given timepoint and the detection of cathelicidin proteins in the respective milk sample. All inoculated mammary glands developed mastitis, confirmed by the consistent bacterial isolation from milk samples and the increased somatic cell content therein. Spot optical density of cathelicidin proteins was higher than in samples from contralateral mammary glands. There was a significant association between the presence of mastitis in a mammary gland and the detection of cathelicidin biomolecules in the respective milk sample; the overall accuracy was 81.8% (95% confidence interval: 70.4–90.2%). In a field investigation, the presence of cathelicidin proteins was evaluated in the bulk-tank milk of 32 dairy goat and 57 dairy sheep farms. In this part of the work, no cathelicidin proteins were detected in any bulk-tank milk sample of goat, 0.0% (95% confidence interval: 0.0–10.7%), or sheep, 0.0% (95% confidence interval: 0.0–6.3%), farms. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

27 pages, 18859 KiB  
Article
Application of a Hierarchical Approach for Architectural Classification and Stratigraphic Evolution in Braided River Systems, Quaternary Strata, Songliao Basin, NE China
by Zhiwen Dong, Zongbao Liu, Yanjia Wu, Yiyao Zhang, Jiacheng Huang and Zekun Li
Appl. Sci. 2025, 15(15), 8597; https://doi.org/10.3390/app15158597 (registering DOI) - 2 Aug 2025
Viewed by 160
Abstract
The description and assessment of braided river architecture are usually limited by the paucity of real geological datasets from field observations; due to the complexity and diversity of rivers, traditional evaluation models are difficult to apply to braided river systems in different climatic [...] Read more.
The description and assessment of braided river architecture are usually limited by the paucity of real geological datasets from field observations; due to the complexity and diversity of rivers, traditional evaluation models are difficult to apply to braided river systems in different climatic and tectonic settings. This study aims to establish an architectural model suitable for the study area setting by introducing a hierarchical analysis approach through well-exposed three-dimensional outcrops along the Second Songhua River. A micro–macro four-level hierarchical framework is adopted to obtain a detailed anatomy of sedimentary outcrops: lithofacies, elements, element associations, and archetypes. Fourteen lithofacies are identified: three conglomerates, seven sandstones, and four mudstones. Five elements provide the basic components of the river system framework: fluvial channel, laterally accreting bar, downstream accreting bar, abandoned channel, and floodplain. Four combinations of adjacent elements are determined: fluvial channel and downstream accreting bar, fluvial channel and laterally accreting bar, erosionally based fluvial channel and laterally accreting bar, and abandoned channel and floodplain. Considering the sedimentary evolution process, the braided river prototype, which is an element-based channel filling unit, is established by documenting three contact combinations between different elements and six types of fine-grained deposits’ preservation positions in the elements. Empirical relationships are developed among the bankfull channel depth, mean bankfull channel depth, and bankfull channel width. For the braided river systems, the establishment of the model promotes understanding of the architecture and evolution, and the application of the hierarchical analysis approach provides a basis for outcrop, underground reservoir, and tank experiments. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

10 pages, 7568 KiB  
Article
The Influence of Fiber Tension During Filament Winding on the Modal Parameters of Composite Pressure Vessels
by Aleksander Kmiecik and Maciej Panek
Polymers 2025, 17(15), 2071; https://doi.org/10.3390/polym17152071 - 29 Jul 2025
Viewed by 218
Abstract
The aim of this paper is the investigation of changes in modal parameters of composite pressure vessel structures with different prestress states realized by varying fiber tension. Two series of vessels was manufactured and examined with different wound tensions, the first—3 N and [...] Read more.
The aim of this paper is the investigation of changes in modal parameters of composite pressure vessel structures with different prestress states realized by varying fiber tension. Two series of vessels was manufactured and examined with different wound tensions, the first—3 N and second—80 N, respectively. Other technological factors, such as the type and weight of carbon fiber used, as well as liner type, were kept constant. The vessels were examined with internal pressure equal to atmospheric and without pressure fittings. The modal tests were performed on storage tanks suspended on an elastic cord in the horizontal orientation to prevent the structure from being disturbed by vibrations. The examinations were focused only on the cylindrical part of the vessels. Based on modal analysis, parameters such as natural frequencies, dampings and modal shapes were determined. Research results indicate clear changes in natural frequencies and damping coefficients between the two investigated prestress states. It is interesting that natural frequencies for bending modes are higher in the case of structures with high fiber tension, while in the case of other vibration forms, the natural frequencies have smaller values in comparison with the first series. Full article
(This article belongs to the Special Issue Polymers and Polymer Composite Structures for Energy Absorption)
Show Figures

Figure 1

16 pages, 14336 KiB  
Article
Three-Dimensional Binary Marker: A Novel Underwater Marker Applicable for Long-Term Deployment Scenarios
by Alaaeddine Chaarani, Patryk Cieslak, Joan Esteba, Ivan Eichhardt and Pere Ridao
J. Mar. Sci. Eng. 2025, 13(8), 1442; https://doi.org/10.3390/jmse13081442 - 28 Jul 2025
Viewed by 294
Abstract
Traditional 2D optical markers degrade quickly in underwater applications due to sediment accumulation and marine biofouling, becoming undetectable within weeks. This paper presents a Three-Dimensional Binary Marker, a novel passive fiducial marker designed for underwater Long-Term Deployment. The Three-Dimensional Binary Marker addresses the [...] Read more.
Traditional 2D optical markers degrade quickly in underwater applications due to sediment accumulation and marine biofouling, becoming undetectable within weeks. This paper presents a Three-Dimensional Binary Marker, a novel passive fiducial marker designed for underwater Long-Term Deployment. The Three-Dimensional Binary Marker addresses the 2D-markers limitation through a 3D design that enhances resilience and maintains contrast for computer vision detection over extended periods. The proposed solution has been validated through simulation, water tank testing, and long-term sea trials for 5 months. In each stage, the marker was compared based on detection per visible frame and the detection distance. In conclusion, the design demonstrated superior performance compared to standard 2D markers. The proposed Three-Dimensional Binary Marker provides compatibility with widely used fiducial markers, such as ArUco and AprilTag, allowing quick adaptation for users. In terms of fabrication, the Three-Dimensional Binary Marker uses additive manufacturing, offering a low-cost and scalable solution for underwater localization tasks. The proposed marker improved the deployment time of fiducial markers from a couple of days to sixty days and with a range up to seven meters, providing robustness and reliability. As the marker survivability and detection range depend on its size, it is still a valuable innovation for Autonomous Underwater Vehicles, as well as for inspection, maintenance, and monitoring tasks in marine robotics and offshore infrastructure applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 5184 KiB  
Article
Evolution Characteristics of Urban Heat Island Circulation for Loess Tableland Valley Towns
by Zhuolei Yu, Yi Wang, Jukun Wang, Xiaoxue Wang and Songheng Wu
Buildings 2025, 15(15), 2649; https://doi.org/10.3390/buildings15152649 - 27 Jul 2025
Viewed by 149
Abstract
Urban heat island circulation (UHIC) determines the wind and thermal environments in urban areas. For Loess Tableland valley towns, the evolution characteristics of the UHIC over this negative terrain are not well understood, and therefore, it is important to investigate the evolution characteristics. [...] Read more.
Urban heat island circulation (UHIC) determines the wind and thermal environments in urban areas. For Loess Tableland valley towns, the evolution characteristics of the UHIC over this negative terrain are not well understood, and therefore, it is important to investigate the evolution characteristics. A city-scale computational fluid dynamics (CSCFD) model is used, and simulation results are validated by the water tank experiment. The evolution process over such negative terrain can be divided into transient and quasi-steady stages, and in the transient stage, the airflow pattern evolves from thermal convection to city-scale closed circulation, while that in the quasi-steady stage is only city-scale closed circulation. In order to further reveal the characteristics of city-scale closed circulation, the sensitivities of different factors influencing the start time, outflow time, mixing height and heat island intensity are analyzed, and the most significant factors influencing these four parameters are urban heat flux, slope height, slope height, and potential temperature lapse rate, respectively. Finally, the dimensionless mixing height and heat island intensity for the valley town increase by 56.80% and 128.68%, respectively, compared to those for the flat city. This study provides guidance for the location and layout of built-up areas in the valley towns. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

20 pages, 2336 KiB  
Article
Microbial DNA-Based Monitoring of Underground Crude Oil Storage Bases Using Water-Sealed Rock-Cavern Tanks
by Ayae Goto, Shunichi Watanabe, Katsumasa Uruma, Yuki Momoi, Takuji Oomukai and Hajime Kobayashi
Water 2025, 17(15), 2197; https://doi.org/10.3390/w17152197 - 23 Jul 2025
Viewed by 283
Abstract
Strategic petroleum reserves are critical for energy security. In Japan, 0.5 million kiloliters of crude oil (12% of the state-owned reserves) is stored using underground rock-cavern tanks, which comprise unlined horizontal tunnels bored into bedrock. Crude oil is held within the tank by [...] Read more.
Strategic petroleum reserves are critical for energy security. In Japan, 0.5 million kiloliters of crude oil (12% of the state-owned reserves) is stored using underground rock-cavern tanks, which comprise unlined horizontal tunnels bored into bedrock. Crude oil is held within the tank by water inside the tank, the pressure of which is kept higher than that of the crude oil by natural groundwater and irrigation water. This study applied microbial DNA-based monitoring to assess the water environments in and around national petroleum-stockpiling bases (the Kuji, Kikuma, and Kushikino bases) using the rock-cavern tanks. Forty-five water samples were collected from the rock-cavern tanks, water-supply tunnels, and observation wells. Principal-component analysis and hierarchical clustering indicated that microbial profiles of the water samples reflect the local environments of their origins. Particularly, the microbial profiles of water inside the rock-cavern tanks were distinct from other samples, revealing biological conditions and hence environmental characteristics within the tanks. Moreover, the clustering analysis indicated distinct features of water samples that have not been detected by other monitoring methods. Thus, microbial DNA-based monitoring provides valuable information on the in situ environments of rock-cavern tanks and can serve as an extremely sensitive measurement to monitor the underground oil storage. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

18 pages, 1422 KiB  
Article
Potable Water Recovery for Space Habitation Systems Using Hybrid Life Support Systems: Biological Pretreatment Coupled with Reverse Osmosis for Humidity Condensate Recovery
by Sunday Adu, William Shane Walker and William Andrew Jackson
Membranes 2025, 15(7), 212; https://doi.org/10.3390/membranes15070212 - 16 Jul 2025
Viewed by 590
Abstract
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station [...] Read more.
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station (ISS). The main contaminants in HC are primarily low-molecular-weight organics and ammonia. This has caused operational issues due to microbial growth in the Water Process Assembly (WPA) storage tank as well as failure of downstream systems. In addition, treatment of this wastewater primarily uses adsorptive and exchange media, which must be continually resupplied and represent a significant life-cycle cost. This study demonstrates the integration of a membrane-aerated biological reactor (MABR) for pretreatment and storage of HC, followed by brackish water reverse osmosis (BWRO). Two system configurations were tested: (1) periodic MABR fluid was sent to batch RO operating at 90% water recovery with the RO concentrate sent to a separate waste tank; and (2) periodic MABR fluid was sent to batch RO operating at 90% recovery with the RO concentrate returned to the MABR (accumulating salinity in the MABR). With an external recycle tank (configuration 2), the system produced 2160 L (i.e., 1080 crew-days) of near potable water (dissolved organic carbon (DOC) < 10 mg/L, total nitrogen (TN) < 12 mg/L, total dissolved solids (TDS) < 30 mg/L) with a single membrane (weight of 260 g). When the MABR was used as the RO recycle tank (configuration 1), 1100 L of permeate could be produced on a single membrane; RO permeate quality was slightly better but generally similar to the first configuration even though no brine was wasted during the run. The results suggest that this hybrid system has the potential to significantly enhance the self-sufficiency of space habitats, supporting sustainable extraterrestrial human habitation, as well as reducing current operational problems on the ISS. These systems may also apply to extreme locations such as remote/isolated terrestrial locations, especially in arid and semi-arid regions. Full article
(This article belongs to the Special Issue Advanced Membranes and Membrane Technologies for Wastewater Treatment)
Show Figures

Figure 1

18 pages, 1812 KiB  
Article
Testing Concrete for the Construction of Winemaking Tanks
by Eleftherios K. Anastasiou, Alexandros Liapis, Eirini-Chrysanthi Tsardaka, Alexandros Chortis and Argyris Gerovassiliou
Appl. Sci. 2025, 15(14), 7816; https://doi.org/10.3390/app15147816 - 11 Jul 2025
Viewed by 213
Abstract
This work focuses on the design of concrete for the construction of winemaking tanks, as well as coating behaviour and stability of the systems in wine immersion. More specifically, alternative laboratory concrete mixtures were investigated by replacing cement with natural pozzolan and using [...] Read more.
This work focuses on the design of concrete for the construction of winemaking tanks, as well as coating behaviour and stability of the systems in wine immersion. More specifically, alternative laboratory concrete mixtures were investigated by replacing cement with natural pozzolan and using silicate aggregates and quartz sand as filler in order to obtain self-compacting concrete of strength class C 20/25. The optimal mixture was selected and further tests were carried out on the mechanical properties of permeability, durability and thermal conductivity. Three coatings and plain concrete were tested for their leachability of heavy metals in wine. The results show that the selected composition with 20% cement replacement by natural pozzolan has the desired workability and strength and is comparable to a reference concrete without natural pozzolan. The leachability tests show that heavy metals do not leach out upon contact with wine, but only calcium and potassium oxide, which can be easily addressed by coating or treating the surface of the concrete. Also, the optimum coating did not influence the pH of the wine. Full article
(This article belongs to the Special Issue Emerging Concrete Technologies and Applications)
Show Figures

Figure 1

39 pages, 16838 KiB  
Article
Control of Nonlinear Systems Using Fuzzy Techniques Based on Incremental State Models of the Variable Type Employing the “Extremum Seeking” Optimizer
by Basil Mohammed Al-Hadithi and Gilberth André Loja Acuña
Appl. Sci. 2025, 15(14), 7791; https://doi.org/10.3390/app15147791 - 11 Jul 2025
Viewed by 234
Abstract
This work presents the design of a control algorithm based on an augmented incremental state-space model, emphasizing its compatibility with Takagi–Sugeno (T–S) fuzzy models for nonlinear systems. The methodology integrates key components such as incremental modeling, fuzzy system identification, discrete Linear Quadratic Regulator [...] Read more.
This work presents the design of a control algorithm based on an augmented incremental state-space model, emphasizing its compatibility with Takagi–Sugeno (T–S) fuzzy models for nonlinear systems. The methodology integrates key components such as incremental modeling, fuzzy system identification, discrete Linear Quadratic Regulator (LQR) design, and state observer implementation. To optimize controller performance, the Extremum Seeking Control (ESC) technique is employed for the automatic tuning of LQR gains, minimizing a predefined cost function. The control strategy is formulated within a generalized framework that evolves from conventional discrete fuzzy models to a higher-order incremental-N state-space representation. The simulation results on a nonlinear multivariable thermal mixing tank system validate the effectiveness of the proposed approach under reference tracking and various disturbance scenarios, including ramp, parabolic, and higher-order polynomial signals. The main contribution of this work is that the proposed scheme achieves zero steady-state error for reference inputs and disturbances up to order N−1 by employing the incremental-N formulation. Furthermore, the system exhibits robustness against input and load disturbances, as well as measurement noise. Remarkably, the ESC algorithm maintains its effectiveness even when noise is present in the system output. Additionally, the proposed incremental-N model is applicable to fast dynamic systems, provided that the system dynamics are accurately identified and the model is discretized using a suitable sampling rate. This makes the approach particularly relevant for control applications in electrical systems, where handling high-order reference signals and disturbances is critical. The incremental formulation, thus, offers a practical and effective framework for achieving high-performance control in both slow and fast nonlinear multivariable processes. Full article
Show Figures

Figure 1

31 pages, 2143 KiB  
Article
Alternative Fuels in the Maritime Industry: Emissions Evaluation of Bulk Carrier Ships
by Diego Díaz-Cuenca, Antonio Villalba-Herreros, Teresa J. Leo and Rafael d’Amore-Domenech
J. Mar. Sci. Eng. 2025, 13(7), 1313; https://doi.org/10.3390/jmse13071313 - 8 Jul 2025
Viewed by 807
Abstract
The maritime industry remains a significant contributor to global greenhouse gas (GHG) emissions. In this article, a systematic study has been performed on the alternative fuel emissions of large cargo ships under different route scenarios and propulsion systems. For this purpose, a set [...] Read more.
The maritime industry remains a significant contributor to global greenhouse gas (GHG) emissions. In this article, a systematic study has been performed on the alternative fuel emissions of large cargo ships under different route scenarios and propulsion systems. For this purpose, a set of key performance indicators (KPIs) are evaluated, including total equivalent CO2 emissions (CO2eq), CO2eq emissions per unit of transport mass and CO2eq emissions per unit of transport mass per distance. The emissions analysis demonstrates that Liquified Natural Gas (LNG) paired with Marine Gas Oil (MGO) emerges as the most viable short-term solution in comparison with the conventional fuel oil propulsion. Synthetic methanol (eMeOH) paired with synthetic diesel (eDiesel) is identified as the most promising long-term fuel combination. When comparing the European Union (EU) emission calculation system (FuelEU) with the International Maritime Organization (IMO) emission metrics, a discrepancy in emissions reduction outcomes has been observed. The IMO approach appears to favor methanol (MeOH) and liquefied natural gas (LNG) over conventional fuel oil. This is attributed to the fact that the IMO metrics do not consider unburned methane emissions (methane slip) and emissions in the production of fuels (Well-to-Tank). Full article
Show Figures

Figure 1

20 pages, 2072 KiB  
Article
Effects of Feeding Newly Hatched Larvae on the Growth, Survival, and Growth Patterns of Kawakawa (Euthynnus affinis) Larvae and Juveniles
by Lynn Nuruki, Aki Miyashima, Yasuo Agawa and Yoshifumi Sawada
Animals 2025, 15(13), 1997; https://doi.org/10.3390/ani15131997 - 7 Jul 2025
Viewed by 346
Abstract
This study investigated the effects of feeding striped beakfish (Oplegnathus fasciatus) newly hatched larvae on the survival and growth of kawakawa (Euthynnus affinis) larvae and juveniles, as well as their relative growth patterns. Fertilized eggs of kawakawa were reared [...] Read more.
This study investigated the effects of feeding striped beakfish (Oplegnathus fasciatus) newly hatched larvae on the survival and growth of kawakawa (Euthynnus affinis) larvae and juveniles, as well as their relative growth patterns. Fertilized eggs of kawakawa were reared in 1 m3 experimental tanks until 13 days post-hatch (dph). From 3 to 8 dph, larvae were fed enriched rotifers, and from 9 to 12 dph, they were assigned to two experimental groups: one receiving only a formulated diet and the other receiving a combination of the formulated diet and 10,000 striped beakfish newly hatched larvae every day in each tank. The group fed newly hatched larvae exhibited approximately 36% greater growth than the group fed only the formulated diet. However, survival at 13 dph was approximately 34% lower, suggesting that further investigation is needed to determine the optimal feeding quantity of newly hatched larvae. The relative growth patterns of larvae and juveniles reared in a commercial 30 m3 tank showed morphological traits characteristic of scombrid fish, such as a longer preanal length and upper jaw length. Growth patterns varied at three key body lengths (notochord length or standard length; 3, 8–10, and 30 mm), as well as at their corresponding standard lengths. In kawakawa, the upper jaw exhibited early accelerated growth compared to other scombrid species. This characteristic is believed to facilitate the early onset of piscivory under captive conditions. Full article
Show Figures

Figure 1

12 pages, 3521 KiB  
Article
Effect of Alternating Magnetic Field Intensity on Microstructure and Corrosion Properties of Deposited Metal in 304 Stainless Steel TIG Welding
by Jinjie Wang, Jiayi Li, Haokai Wang, Zan Ju, Juan Fu, Yong Zhao and Qianhao Zang
Metals 2025, 15(7), 761; https://doi.org/10.3390/met15070761 - 6 Jul 2025
Viewed by 326
Abstract
Stainless steel, due to its exceptional comprehensive properties, has been widely adopted as the primary material for liquid cargo tank containment systems and pipelines in liquefied natural gas (LNG) carriers. However, challenges such as hot cracking, excessive deformation, and the deterioration of welded [...] Read more.
Stainless steel, due to its exceptional comprehensive properties, has been widely adopted as the primary material for liquid cargo tank containment systems and pipelines in liquefied natural gas (LNG) carriers. However, challenges such as hot cracking, excessive deformation, and the deterioration of welded joint performance during stainless steel welding significantly constrain the construction quality and safety of LNG carriers. While conventional tungsten inert gas (TIG) welding can produce high-integrity welds, it is inherently limited by shallow penetration depth and low efficiency. Magnetic field-assisted TIG welding technology addresses these limitations by introducing an external magnetic field, which effectively modifies arc morphology, refines grain structure, enhances penetration depth, and improves corrosion resistance. In this study, TIG bead-on-plate welding was performed on 304 stainless steel plates, with a systematic investigation into the dynamic arc behavior during welding, as well as the microstructure and anti-corrosion properties of the deposited metal. The experimental results demonstrate that, in the absence of a magnetic field, the welding arc remains stable without deflection. As the intensity of the alternating magnetic field intensity increases, the arc exhibits pronounced periodic oscillations. At an applied magnetic field intensity of 30 mT, the maximum arc deflection angle reaches 76°. With increasing alternating magnetic field intensity, the weld penetration depth gradually decreases, while the weld width progressively expands. Specifically, at 30 mT, the penetration depth reaches a minimum value of 1.8 mm, representing a 44% reduction compared to the non-magnetic condition, whereas the weld width peaks at 9.3 mm, corresponding to a 9.4% increase. Furthermore, the ferrite grains in the weld metal are significantly refined at higher alternating magnetic field intensities. The weld metal subjected to a 30 mT alternating magnetic field exhibits the highest breakdown potential, the lowest corrosion rate, and the most protective passive film, indicating superior corrosion resistance compared to other tested conditions. Full article
(This article belongs to the Special Issue Advanced Metal Welding and Joining Technologies—2nd Edition)
Show Figures

Graphical abstract

62 pages, 3413 KiB  
Review
Biofuels, E-Fuels, and Waste-Derived Fuels: Advances, Challenges, and Future Directions
by Zeki Yılbaşı
Sustainability 2025, 17(13), 6145; https://doi.org/10.3390/su17136145 - 4 Jul 2025
Viewed by 1032
Abstract
The imperative to decarbonize global energy systems and enhance energy security necessitates a transition towards ecofuels, broadly classified as biofuels, waste-derived fuels, and electrofuels (e-Fuels). The primary goal of this review is to provide a holistic and comparative evaluation of these three pivotal [...] Read more.
The imperative to decarbonize global energy systems and enhance energy security necessitates a transition towards ecofuels, broadly classified as biofuels, waste-derived fuels, and electrofuels (e-Fuels). The primary goal of this review is to provide a holistic and comparative evaluation of these three pivotal ecofuel pillars under a unified framework, identifying their strategic niches in the energy transition by critically assessing their interconnected technical, economic, and policy challenges. It offers a comparative dissection of inherent resource constraints, spanning biomass availability, the immense scale of renewable electricity required for e-Fuels, sustainable carbon dioxide (CO2) sourcing, and the complexities of utilizing non-biodegradable wastes, identifying that true feedstock sustainability and holistic lifecycle management are paramount, cross-cutting limitations for all pathways. This review critically highlights how the current global reliance on fossil fuels for electricity production (approx. 60%) and the upstream emissions embodied in renewable energy infrastructure challenge the climate neutrality claims of ecofuels, particularly e-Fuels, underscoring the necessity for comprehensive well-to-wheels (WtW) lifecycle assessments (LCAs) over simpler tank-to-wheels (TtW) approaches. This perspective is crucial as emerging regulations demand significant greenhouse gas (GHG) emission reductions (70–100%) compared to fossil fuels. Ultimately, this synthesis argues for a nuanced, technologically neutral deployment strategy, prioritizing specific ecofuels for hard-to-abate sectors, and underscores the urgent need for stable, long-term policies coupled with robust and transparent LCA methodologies to guide a truly sustainable energy transition. Full article
Show Figures

Figure 1

17 pages, 2975 KiB  
Article
Investigating the Impact of Organic Loading Rates and Magnetic Nanoparticles on the Performance and Stability of Continuous Stirred Tank Reactors
by Asim Ali, Adham Mohammed Alnadish, Sallahuddin Panhwar, Hareef Ahmed Keerio, Abdul Waheed and Rasool Bux Mahar
Processes 2025, 13(7), 2126; https://doi.org/10.3390/pr13072126 - 4 Jul 2025
Viewed by 1236
Abstract
Research on energy demand is advancing, with the addition of nanomaterials in anaerobic digestion increasing stability, accelerating hydrolysis, and reducing microbial inhibition. However, further research is needed to determine the mechanisms, ideal dosages, and long-term impacts. This work used continuous stir tank reactors [...] Read more.
Research on energy demand is advancing, with the addition of nanomaterials in anaerobic digestion increasing stability, accelerating hydrolysis, and reducing microbial inhibition. However, further research is needed to determine the mechanisms, ideal dosages, and long-term impacts. This work used continuous stir tank reactors (CSTRs) to experimentally examine the biocompatibility of iron oxide nanoparticles (Fe3O4-NPs) at a concentration of 75 mg/L at various organic loading rates (OLRs) of 0.3, 0.8, and 1.3 gVS/L.d (CSTRs). The efficiency of the reactors was observed by considering various parameters, such as pH, soluble chemical oxygen demand (sCOD), TVFA formation and degradation, total solids (TS), and volatile solids (VS) removal, as well as methane (CH4) generation. Hence, it was found that the reactor with added NPs (R1) yielded an optimum 725.9 mL/gVS of CH4 and this was achieved at the lowest OLR of 0.3 gVS/Ld. However, another reactor (R2, without NPs), exhibited more stabilized results, ranging from 372.8 to 424.4 mL/gVS at 0.3 to 1.3 gVS/Ld of OLR, respectively. Therefore, in R1, the maximum removal of sCOD, TVFAs, and VS was achieved at 90%, 74%, and 93%, respectively, as compared to R2. Full article
(This article belongs to the Special Issue Advances in Biomass Conversion and Biorefinery Applications)
Show Figures

Figure 1

21 pages, 6136 KiB  
Article
A ROS-Based Online System for 3D Gaussian Splatting Optimization: Flexible Frontend Integration and Real-Time Refinement
by Li’an Wang, Jian Xu, Xuan An, Yujie Ji, Yuxuan Wu and Zhaoyuan Ma
Sensors 2025, 25(13), 4151; https://doi.org/10.3390/s25134151 - 3 Jul 2025
Viewed by 576
Abstract
The 3D Gaussian splatting technique demonstrates significant efficiency advantages in real-time scene reconstruction. However, when its initialization process relies on traditional SfM methods (such as COLMAP), there are obvious bottlenecks, such as high computational resource consumption, as well as the decoupling problem between [...] Read more.
The 3D Gaussian splatting technique demonstrates significant efficiency advantages in real-time scene reconstruction. However, when its initialization process relies on traditional SfM methods (such as COLMAP), there are obvious bottlenecks, such as high computational resource consumption, as well as the decoupling problem between camera pose optimization and map construction. This paper proposes an online 3DGS optimization system based on ROS. Through the design of a loose-coupling architecture, it realizes real-time data interaction between the frontend SfM/SLAM module and backend 3DGS optimization. Using ROS as a middleware, this system can access the keyframe poses and point-cloud data generated by any frontend algorithms (such as ORB-SLAM, COLMAP, etc.). With the help of a dynamic sliding-window strategy and a rendering-quality loss function that combines L1 and SSIM, it achieves online optimization of the 3DGS map. The experimental data shows that compared with the traditional COLMAP-3DGS process, this system reduces the initialization time by 90% and achieves an average PSNR improvement of 1.9 dB on the TUM-RGBD, Tanks and Temples, and KITTI datasets. Full article
Show Figures

Figure 1

Back to TopTop