Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (186)

Search Parameters:
Keywords = weld-failure stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5167 KiB  
Article
Comparative Study of Local Stress Approaches for Fatigue Strength Assessment of Longitudinal Web Connections
by Ji Hoon Kim, Jae Sung Lee and Myung Hyun Kim
J. Mar. Sci. Eng. 2025, 13(8), 1491; https://doi.org/10.3390/jmse13081491 - 1 Aug 2025
Viewed by 142
Abstract
Ship structures are subjected to cyclic loading from waves and currents during operation, which can lead to fatigue failure, particularly at locations with structural discontinuities such as welds. Although various fatigue assessment methods have been developed, there is a lack of experimental data [...] Read more.
Ship structures are subjected to cyclic loading from waves and currents during operation, which can lead to fatigue failure, particularly at locations with structural discontinuities such as welds. Although various fatigue assessment methods have been developed, there is a lack of experimental data and comparative studies for actual ship structure details. This study addresses this limitation by evaluating the fatigue strength of longi-web connections in hull structures using local stress approaches, including hot spot stress, effective notch stress, notch stress intensity factor, and structural stress methods. Finite element analyses were conducted, and the predicted fatigue lives and failure locations were compared with experimental results. Although there are some differences between each method, all methods are valid and reasonable for predicting the primary failure locations and evaluating fatigue life. These findings provide a basis for considering suitable fatigue assessment methods for welded ship structures with respect to joint geometry and failure mechanisms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 8314 KiB  
Article
Effect of the Heat Affected Zone Hardness Reduction on the Tensile Properties of GMAW Press Hardening Automotive Steel
by Alfredo E. Molina-Castillo, Enrique A. López-Baltazar, Francisco Alvarado-Hernández, Salvador Gómez-Jiménez, J. Roberto Espinosa-Lumbreras, José Jorge Ruiz Mondragón and Víctor H. Baltazar-Hernández
Metals 2025, 15(7), 791; https://doi.org/10.3390/met15070791 - 13 Jul 2025
Viewed by 381
Abstract
An ultra-high-strength press-hardening steel (PHS) and a high-strength dual-phase steel (DP) were butt-joined by the gas metal arc welding (GMAW) process, aiming to assess the effects of a high heat input welding process on the structure-property relationship and residual stress. The post-weld microstructure, [...] Read more.
An ultra-high-strength press-hardening steel (PHS) and a high-strength dual-phase steel (DP) were butt-joined by the gas metal arc welding (GMAW) process, aiming to assess the effects of a high heat input welding process on the structure-property relationship and residual stress. The post-weld microstructure, the microhardness profile, the tensile behavior, and the experimentally obtained residual stresses (by x-ray diffraction) of the steels in dissimilar (PHS-DP) and similar (PHS-PHS, DP-DP) pair combinations have been analyzed. Results indicated that the ultimate tensile strength (UTS) of the dissimilar pair PHS-DP achieves a similar strength to the DP-DP joint, whereas the elongation was similar to that of the PHS-PHS weldment. The failure location of the tensile specimens was expected and systematically observed at the tempered and softer sub-critical heat-affected zone (SC-HAZ) in all welded conditions. Compressive residual stresses were consistently observed along the weldments in all specimens; the more accentuated negative RS were measured in the PHS joint attributed to the higher volume fraction of martensite; furthermore, the negative RS measured in the fusion zone (FZ) could be well correlated to weld restraint due to the sheet anchoring during the welding procedure, despite the presence of predominant ferrite and pearlite microstructures. Full article
(This article belongs to the Special Issue Welding and Joining of Advanced High-Strength Steels (2nd Edition))
Show Figures

Figure 1

17 pages, 5744 KiB  
Article
Evaluation of Mechanical Characteristics of Tungsten Inert Gas (TIG) Welded Butt Joint of Inconel 600
by Arash Moradi, Fatemeh Marashi Najafi, Yong Chen and Mahmoud Chizari
J. Manuf. Mater. Process. 2025, 9(6), 177; https://doi.org/10.3390/jmmp9060177 - 28 May 2025
Viewed by 546
Abstract
Inconel 600 alloy has gained consideration as a favourable material for heat and power applications, particularly in turbine blades, due to its superior mechanical behaviour encompassing strength, toughness, oxidation resistance, and ductility. Tungsten Inert Gas (TIG) welding is one of the preferred techniques [...] Read more.
Inconel 600 alloy has gained consideration as a favourable material for heat and power applications, particularly in turbine blades, due to its superior mechanical behaviour encompassing strength, toughness, oxidation resistance, and ductility. Tungsten Inert Gas (TIG) welding is one of the preferred techniques for joining these alloys. Therefore, the investigation of the mechanical behaviour after the welding process is crucial for selecting the appropriate technique for joining Inconel 600 sheets. This research focuses on investigating the microstructure and mechanical behaviour of TIG-welded Inconel 600 through a series of tests, such as tensile, fatigue, creep, and hardness evaluations. In addition, microstructural analysis is combined with these mechanical evaluations to simulate the operating conditions experienced by turbine blades. Key parameters such as yield strength, tensile strength, and elongation have been evaluated through these analyses. The Ramberg–Osgood relationship has been investigated using the engineering and true stress–strain curves obtained from the welded specimens. The results of the fatigue test illustrate the relationship between strain amplitude and the number of cycles to failure for single and double-edge notched specimens. The test was performed at two different loads including 400 MPa and 250 MPa at a constant temperature of 650 °C, and the corresponding strain-time curves were recorded. The results showed rapid creep failure at 650 °C, suggesting that TIG welding may need to be optimized for high temperature applications. Full article
Show Figures

Figure 1

26 pages, 5303 KiB  
Article
Machine Learning-Based Prediction of Fatigue Fracture Locations in 7075-T651 Aluminum Alloy Friction Stir Welded Joints
by Guangming Mi, Guoqin Sun, Shuai Yang, Xiaodong Liu, Shujun Chen and Wei Kang
Metals 2025, 15(5), 569; https://doi.org/10.3390/met15050569 - 21 May 2025
Viewed by 585
Abstract
Friction stir welding (FSW) is a solid-state joining technique widely used for aluminum alloys in aerospace, automotive, and shipbuilding applications, yet the prediction of fatigue fracture locations within FSW joints remains challenging for structural-life assessment. In this study, we investigate fatigue fracture location [...] Read more.
Friction stir welding (FSW) is a solid-state joining technique widely used for aluminum alloys in aerospace, automotive, and shipbuilding applications, yet the prediction of fatigue fracture locations within FSW joints remains challenging for structural-life assessment. In this study, we investigate fatigue fracture location prediction in 7075-T651 aluminum alloy FSW joints by applying four machine learning methods—decision tree, logistic regression, a three-layer back-propagation artificial neural network (BP ANN), and a novel Quadratic Classification Neural Network (QCNN)—using maximum stress, stress amplitude, and stress ratio as input features. Evaluated on an experimental test set of eight loading conditions, the QCNN achieved the highest accuracy of 87.5%, outperforming BP ANN (75%), logistic regression (50%), and decision tree (37.5%). Building on QCNN outputs and incorporating relevant material property parameters, we derive a Regional Fracture Prediction Formula (RFPF) based on a Fourier-series quadratic expansion, enabling the rapid estimation of fracture zones under varying loads. These results demonstrate the QCNN’s superior predictive capability and the practical utility of the RFPF framework for the fatigue failure analysis and service-life assessment of FSW structures. Full article
(This article belongs to the Special Issue Fatigue Assessment of Metals)
Show Figures

Figure 1

15 pages, 16118 KiB  
Article
Axial Tensile Experiment of the Lap-Type Asymmetric K-Shaped Square Tubular Joints with Built-In Stiffeners
by Zhihua Zhong, Peiyu Peng, Zheweng Zhu, Xiang Ao, Shiwei Xiong, Jinkun Huang, Lihong Zhou and Xiaochuan Bai
Buildings 2025, 15(10), 1634; https://doi.org/10.3390/buildings15101634 - 13 May 2025
Viewed by 322
Abstract
To study the mechanical properties of asymmetric K-shaped square tubular joints with built-in stiffening rib lap joints, axial tensile tests were carried out on one K-shaped joint without built-in stiffening ribs and four K-shaped joints with built-in stiffening ribs using an electro-hydraulic servo [...] Read more.
To study the mechanical properties of asymmetric K-shaped square tubular joints with built-in stiffening rib lap joints, axial tensile tests were carried out on one K-shaped joint without built-in stiffening ribs and four K-shaped joints with built-in stiffening ribs using an electro-hydraulic servo structural testing system. The effects of the addition of stiffening ribs and the welding method of the stiffening ribs on the mechanical properties were studied comparatively. The failure mode of the K-shaped joint was obtained, and the strain distribution and peak displacement reaction force in the nodal region were analyzed. A finite element analysis of the K-shaped joint was carried out, and the finite element results were compared with the experimental results. The results showed that the addition of transverse reinforcement ribs and more complete welds shared the squeezing effect of the brace on the chord. Arranging more reinforcing ribs in the fittings makes the chord more uniformly stressed and absorbs more energy while increasing the flexural load capacity of the fittings’ side plates. The presence of a weld gives a short-lived temperature increase in the area around the crack, and the buckling of the structure causes the surface temperature in the buckling area to continue to increase for some time. The temperature change successfully localized where the structure was deforming and creating cracks. The addition of the reinforcing ribs resulted in a change in the deformation pattern of the model, and the difference occurred because the flexural capacity of the brace with the added reinforcing ribs was greater than that of the side plate buckling. Full article
(This article belongs to the Special Issue Application of Experiment and Simulation Techniques in Engineering)
Show Figures

Figure 1

19 pages, 22095 KiB  
Article
Experimental and Numerical Investigation of Constant-Amplitude Fatigue Performance in Welded Joints of Steel Tubular Flange Connections for Steel Structures
by Huaguang Ni, Saicong Guo, Shujia Zhang and Honggang Lei
Buildings 2025, 15(9), 1574; https://doi.org/10.3390/buildings15091574 - 7 May 2025
Viewed by 451
Abstract
Welded joints of tubular flange connections (TFCs) for steel structures are prone to cumulative fatigue breakdown under oscillatory loading regimes. This study investigates the constant-amplitude fatigue performance of these welded connections through combined experimental testing and finite element analysis. Seven tubular flange connection [...] Read more.
Welded joints of tubular flange connections (TFCs) for steel structures are prone to cumulative fatigue breakdown under oscillatory loading regimes. This study investigates the constant-amplitude fatigue performance of these welded connections through combined experimental testing and finite element analysis. Seven tubular flange connection specimens were subjected to constant-amplitude fatigue tests, and the nominal stress range approach was employed to establish S-N curves for the TFC welds, which were then compared with existing design codes. Stress concentration behavior at the weld toe was analyzed using ABAQUS finite element software. Macro- and micro-scale examinations of fatigue fracture surfaces were conducted to elucidate the fatigue crack mechanisms. The results demonstrate an allowable stress range of 82.41 MPa at a 2-million-cycle fatigue strength, exceeding the specifications of current fatigue design codes. The finite element analysis shows that there is a significant stress concentration at the weld toe of the steel tube–flange weld, and the uneven stress distribution in the circumferential direction of the weld makes this position more prone to fatigue failure, which is consistent with the experimental phenomena. The derived fatigue design method for TFCs provides practical guidance for engineering applications. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 9327 KiB  
Article
Evaluation of Crack Formation in Heat Pipe-Welded Joints
by Min Ji Song, Keun Hyung Lee, Jun-Seob Lee, Heesan Kim, Woo Cheol Kim and Soo Yeol Lee
Materials 2025, 18(9), 2028; https://doi.org/10.3390/ma18092028 - 29 Apr 2025
Viewed by 468
Abstract
This study investigates the failure of a 750A dual-insulated pipeline, where cracks developed along the weld joints during heat supply resumption at the district heating facility. A comprehensive analysis was conducted through visual inspection, mechanical testing, microstructural characterization, finite element analysis (FEA), and [...] Read more.
This study investigates the failure of a 750A dual-insulated pipeline, where cracks developed along the weld joints during heat supply resumption at the district heating facility. A comprehensive analysis was conducted through visual inspection, mechanical testing, microstructural characterization, finite element analysis (FEA), and electrochemical corrosion testing. The results indicate that cracks were generated in the heat-affected zone (HAZ), primarily caused by galvanic corrosion and thermal expansion-induced stress accumulation. Open circuit potential (OCP) measurements in a 3 M NaCl solution confirmed that the HAZ was anodic, leading to the most vulnerable position to corrosion. Furthermore, localized electrochemical tests were conducted for respective microstructural regions within the HAZ. The results reveal that coarse-grained HAZ exhibited the lowest corrosion potential, giving rise to preferential corrosion, promoting pit formation, and serving as initiation sites for stress concentration and crack propagation. FEA simulations demonstrate that pre-existing microvoids in the HAZ act as stress concentration sites, undergoing a localized stress exceeding 475 MPa. These findings emphasize the importance of controlling microstructural stability and mechanical integrity in welded pipelines, particularly in corrosive environments subjected to thermal stresses. Full article
Show Figures

Figure 1

19 pages, 12239 KiB  
Article
Research and Parameter Analysis of Lateral Resistance Performance of Assembled Corrugated Steel Plate Shear Wall
by Jianian He, Zheng Chen, Dongzhuo Zhao and Shizhe Chen
Appl. Sci. 2025, 15(8), 4369; https://doi.org/10.3390/app15084369 - 15 Apr 2025
Viewed by 386
Abstract
Corrugated steel plate shear walls (CSPSWs) exhibit excellent energy dissipation capacity and lateral resistance performance due to their unique “accordion structure”, making them a highly promising seismic component in prefabricated buildings. The assembled CSPSWs utilize bolted connections on both sides, which align with [...] Read more.
Corrugated steel plate shear walls (CSPSWs) exhibit excellent energy dissipation capacity and lateral resistance performance due to their unique “accordion structure”, making them a highly promising seismic component in prefabricated buildings. The assembled CSPSWs utilize bolted connections on both sides, which align with the energy-saving and emission-reduction trends of prefabricated construction. Compared to traditional welded connections, this method reduces the impact on frame columns during seismic deformation and allows for easier post-damage replacement. Through experimental and finite element analysis, this study systematically investigates the lateral mechanical behavior of assembled CSPSWs and compares them with flat steel plate shear walls (FSPSWs), revealing the stress mechanisms and failure modes of corrugated structures. Additionally, parametric analysis quantifies the influence of plate thickness, width/height ratio, and wave height on structural performance. Experimental results demonstrate that CSPSWs significantly outperform FSPSWs in out-of-plane displacement resistance and energy dissipation efficiency. Parametric analysis indicates that increasing plate thickness and width/height ratio enhances energy dissipation, while increasing wave height negatively affects energy dissipation capacity. This research provides theoretical support for the optimal design and engineering application of assembled corrugated steel plate shear walls. Full article
Show Figures

Figure 1

16 pages, 5342 KiB  
Article
Enhancing the Reliability of Shearing Tools: A Modular Approach with Weld Deposition Technology
by Daniela Maria Iovanas and Adela-Eliza Dumitrascu
Materials 2025, 18(7), 1527; https://doi.org/10.3390/ma18071527 - 28 Mar 2025
Viewed by 296
Abstract
The increasing demand for sustainable and cost-effective manufacturing solutions has led to the development of innovative approaches to enhance the durability and reliability of cutting tools. This study presents a novel method for manufacturing shearing tools utilizing interchangeable modular elements loaded by deposition [...] Read more.
The increasing demand for sustainable and cost-effective manufacturing solutions has led to the development of innovative approaches to enhance the durability and reliability of cutting tools. This study presents a novel method for manufacturing shearing tools utilizing interchangeable modular elements loaded by deposition welding with covered electrodes. Using Weibull distribution modeling, a comparative reliability analysis between conventionally manufactured shear tools and the proposed modular design demonstrates a significant increase in the mean time to failure (MTTF). The least squares method (LSM) estimation was used in order to determine the shearing tools’ lifetime, expressed by reliability indices. Experimental results confirm that the modular tools achieve more than double the lifetime of traditional counterparts, with improved resistance to wear and mechanical stress. These findings highlight the potential for widespread industrial application, optimizing tool performance and sustainability in manufacturing processes. Full article
(This article belongs to the Special Issue Advanced Additive Manufacturing and Application)
Show Figures

Figure 1

25 pages, 15290 KiB  
Article
Research on Mechanical Properties of Non-Directly Welded Reinforced Casings Under High Stress Ratio
by Yiwei Fang, Yuming Li, Kuntao Xing and Zhe Liu
Buildings 2025, 15(7), 1042; https://doi.org/10.3390/buildings15071042 - 24 Mar 2025
Viewed by 253
Abstract
Aiming at the requirement of high stress ratio reinforcement in space steel structures, a novel method for enshancing the load-bearing capacity of casings through indirect welding to produce a reinforced steel pipe is introduced. To investigate how the mechanical properties of steel pipe [...] Read more.
Aiming at the requirement of high stress ratio reinforcement in space steel structures, a novel method for enshancing the load-bearing capacity of casings through indirect welding to produce a reinforced steel pipe is introduced. To investigate how the mechanical properties of steel pipe members change when reinforced using this method, a series of welding reinforcement axial compression tests were designed, incorporating local reinforcements at various positions and with different initial stress ratios. By comparing the reinforced specimens with those left unreinforced, we obtained insights into the failure modes, ultimate bearing capacities, and strain data of the steel pipes. To further validate the findings, 236 finite element models were developed. These models allowed for a comprehensive analysis of the numerical results alongside the experimental data, taking into account the thermal effects of welding. Quantitative analyses were performed to assess the impact of the initial stress ratio, initial defects, welding heat effects, slenderness ratio, the area ratio between the reinforcement and the pipe, and the length of the reinforcement on the ultimate bearing capacity of the reinforced members. The findings indicate that residual stresses resulting from the welding process have a minimal influence on the ultimate bearing capacity. The method maintains over 75% of its efficiency even at initial stress ratios up to 0.8. Additionally, the study elucidates the rules governing the impact of localized reinforcement on the mechanical properties of loaded steel pipe members. Combining the theoretical calculations with numerical simulations, an empirical formula for estimating the ultimate bearing capacity of the reinforced pipe specimens was derived. The relative error of the formula is less than 10% with the experimental outcomes and the finite element analysis results thereby offering a reliable tool for engineering applications. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 9179 KiB  
Article
Multiscale Synergistic Strengthening-Toughening Mechanisms in Lanthanum Oxide-Modified Coiled Tubing Welding Wire Deposited Metal
by Yuke Yang, Xiaocong Yang, Chengning Li and Xinjie Di
Metals 2025, 15(4), 353; https://doi.org/10.3390/met15040353 - 23 Mar 2025
Viewed by 389
Abstract
With the increasingly demanding service conditions of coiled tubing, its welded joints require superior synergistic strength-toughness properties to meet comprehensive mechanical performance requirements. This study achieved synergistic optimization of strength and toughness in deposited metal via lanthanum microalloying technology and elucidated microstructural evolution [...] Read more.
With the increasingly demanding service conditions of coiled tubing, its welded joints require superior synergistic strength-toughness properties to meet comprehensive mechanical performance requirements. This study achieved synergistic optimization of strength and toughness in deposited metal via lanthanum microalloying technology and elucidated microstructural evolution mechanisms and fracture failure mechanisms via multi-scale characterization techniques. The results demonstrate that lanthanum oxide addition effectively modifies inclusion characteristics, inducing phase transformation from O-Mn-Si-Al-Ti to O-Mn-Si-Al-Ti-S-La, with average particle size significantly decreased from 0.19 μm to 0.12 μm. The deposited metal microstructure comprises lath bainite and granular bainite. The addition of 0.5 wt.% lanthanum oxide results in significant microstructural refinement: average grain size decreases from 1.16 ± 1.18 μm to 1.02 ± 1.00 μm, while granular bainite volume fraction decreases from 8.6% to 4.7%. The microstructural optimization also enhances mechanical properties substantially: yield strength increases from 628 ± 14 MPa to 673 ± 12 MPa, and impact toughness improves from 160 ± 6 J to 189 ± 6 J. Mechanistic analysis revealed that proper addition of lanthanum (0.5 wt.%) promotes grain refinement via heterogeneous nucleation and modifies inclusion morphology, effectively inhibiting crack initiation. However, excessive addition (1.0 wt.%) induces inclusion clustering, forming stress concentration sites that degrade mechanical properties. Full article
Show Figures

Figure 1

18 pages, 18531 KiB  
Article
Fatigue Life Analysis of Cyclone Separator Group Structure in a Reactor Device
by Yilian Shan, Jiye Sun, Xianglong Zhu, Yanhui Tian, Junyao Zhou, Yuzhe Ding, Benjie Ding, Jianke Du and Minghua Zhang
Materials 2025, 18(6), 1214; https://doi.org/10.3390/ma18061214 - 9 Mar 2025
Viewed by 896
Abstract
In the chlorination industry, the reactor is a crucial equipment in which the chlorination reaction takes place. However, when the reactor is subjected to complex conditions such as high temperatures (e.g., >200 °C) and high pressures (e.g., >10 MPa), its structural integrity is [...] Read more.
In the chlorination industry, the reactor is a crucial equipment in which the chlorination reaction takes place. However, when the reactor is subjected to complex conditions such as high temperatures (e.g., >200 °C) and high pressures (e.g., >10 MPa), its structural integrity is significantly compromised, leading to severe safety issues. In this study, the fatigue life of a reactor is analyzed, with particular focus on the fatigue behavior of the cyclone separator under varying working conditions, such as changes in the temperature, pressure, and chemical environment. Using finite element simulations under steady-state conditions and the S-N curve from fatigue testing, the fatigue life and potential weak points of the reactor under different amplitudes and vibration frequencies are analyzed and predicted. This analysis is conducted using a combined simulation approach with ABAQUS and Fe-Safe software, v 6.14. This work also considers the periodic vibrations at the base of the cyclone separator within the reactor. Fatigue simulations under different vibration conditions are performed to further assess the fatigue life of the reactor, providing a theoretical basis for the optimization of design and ensuring operational safety. In addition, the influence of welding zones on the fatigue life is discussed. The results indicate that the welding defects and stress concentration may cause the welded joint to become a critical weak point for fatigue failure. Therefore, the fatigue performance of the welding zone should be carefully considered during the design phase. Full article
Show Figures

Figure 1

24 pages, 17505 KiB  
Article
Bayesian Updating of Fatigue Crack Growth Parameters for Failure Prognosis of Miter Gates
by Anita Brown, Brian Eick, Travis Fillmore and Hai Nguyen
Materials 2025, 18(5), 1172; https://doi.org/10.3390/ma18051172 - 6 Mar 2025
Viewed by 896
Abstract
Navigable waterways play a vital role in the efficient transportation of millions of tons of cargo annually. Inland traffic must pass through a lock, which consists of miter gates. Failures and closures of these gates can significantly disrupt waterborne commerce. Miter gates often [...] Read more.
Navigable waterways play a vital role in the efficient transportation of millions of tons of cargo annually. Inland traffic must pass through a lock, which consists of miter gates. Failures and closures of these gates can significantly disrupt waterborne commerce. Miter gates often experience fatigue cracking due to their loading and welded connections. Repairing every crack can lead to excessive miter gate downtime and serious economic impacts. However, if the rate of crack growth is shown to be sufficiently slow, e.g., using Paris’ law, immediate repairs may be deemed unnecessary, and this downtime can be avoided. Paris’ law is often obtained from laboratory testing with detailed crack measurements of specimens with relatively simple geometry. However, Paris’ law parameters for an in situ structure will likely deviate from those predicted from physical testing due to variations in loading and materials and a far more complicated geometry. To improve Paris’ law parameter prediction, this research proposes a framework that utilizes (1) convenient vision-based tracking of crack evolution both in the laboratory and the field and (2) numerical model estimation of stress intensity factors (SIFs). This study’s methodology provides an efficient tool for Paris’ law parameter prediction that can be updated as more data become available through vision-based monitoring and provide actionable information about the criticality of existing cracks. Full article
(This article belongs to the Special Issue Evaluation of Fatigue and Creep-Fatigue Damage of Steel)
Show Figures

Figure 1

34 pages, 25406 KiB  
Article
Study on Fatigue Life and Fracture Behaviour of Similar and Dissimilar Resistance Spot-Welded Joints of Titanium Grade 2 Alloy and Austenitic Stainless Steel 304
by Marwan T. Mezher, Alejandro Pereira and Tomasz Trzepieciński
Appl. Sci. 2025, 15(4), 1938; https://doi.org/10.3390/app15041938 - 13 Feb 2025
Viewed by 1295
Abstract
Resistance spot welding (RSW) is now the primary joining process used in the automobile and aerospace sectors. Mechanical parts, when put into service, often undergo cyclic stress. As a result, avoiding fatigue failure should be the top priority when designing these parts. Given [...] Read more.
Resistance spot welding (RSW) is now the primary joining process used in the automobile and aerospace sectors. Mechanical parts, when put into service, often undergo cyclic stress. As a result, avoiding fatigue failure should be the top priority when designing these parts. Given that spot welds are a type of localised joining that results in intrinsic circumferential notches, they increase the likelihood of stress concentrations and subsequent fatigue failures of the structure. Most of the fatigue failures in automotive parts originate around a spot weld. To that end, this study seeks to examine the mechanical properties and fatigue behaviour RSW joints made of titanium (Ti) grade 2 alloy and AISI 304 austenitic stainless steel (ASS) with equal and unequal thicknesses of 0.5 and 1 mm. Based on the mechanical properties and fatigue life results, the maximum tensile shear strength and fatigue life for the RSW titanium joint were 613 MPa and 7.37 × 105 cycles for the 0.5–0.5 mm case, 374.7 MPa and 1.39 × 106 cycles for the 1–1 mm case, and 333.5 MPa and 7.69 × 105 cycles for the 1–0.5 mm case, respectively. The maximum shear strength and fatigue life of ASS welded joints were 526.8 MPa and 4.56 × 106 cycles for the 1–1 mm case, 515.2 MPa and 3.35 × 106 cycles for the 0.5–0.5 mm case, and 369.5 MPa and 7.39 × 105 cycles for the 1–0.5 mm case, respectively. The assessment of the shear strength and fatigue life of the dissimilar joints revealed that the maximum shear strength and fatigue life recorded were 183.9 MPa and 6.47 × 105 cycles for the 1 mm Ti–0.5 mm ASS case, 115 MPa and 3.7 × 105 cycles for the 1 mm Ti–1 mm ASS case, 156 MPa and 4.11 × 105 cycles for the 0.5 mm Ti–0.5 mm ASS case, and 129 MPa and 4.11 × 105 cycles for the 0.5 mm Ti–1 mm ASS case. The fatigue life of titanium and stainless steel welded joints is significantly affected by the thickness, particularly at maximum applied stress (0.9% UTS), meaning that similar thicknesses achieve a greater fatigue life than unequal thicknesses. Conversely, the fatigue life of the dissimilar joint reached the greatest extent when an unequal thickness combination was used. The ductile failure of similar Ti and ASS welded joints was demonstrated by the scanning electron microscopy (SEM) examination of fatigue-fractured surfaces under the high-cycle fatigue (HCF) regime, in contrast to the brittle failure noticed in the low-cycle fatigue (LCF) regime. Brittle failure was confirmed by the SEM fatigue of dissimilar joint fractured surfaces due to interfacial failure. The Ti and ASS fractured surfaces presented river-like cleavage facets. On the Ti side, tiny elongated dimples suggest ductile failure before fracture. The topography results showed that the roughness topography parameters of similar and dissimilar fractured specimens made from Ti grade 2 and AISI 304 for the HCF regime were lower than those of the fractured specimens with LCF. The current study is expected to have practical benefits for the aerospace and automotive industries, particularly the manufacturing of body components with an improved strength-to-weight ratio. Full article
Show Figures

Figure 1

29 pages, 28581 KiB  
Review
Peening Techniques for Mitigating Chlorine-Induced Stress Corrosion Cracking of Dry Storage Canisters for Nuclear Applications
by Subin Antony Jose, Merbin John, Manoranjan Misra and Pradeep L. Menezes
Materials 2025, 18(2), 438; https://doi.org/10.3390/ma18020438 - 18 Jan 2025
Cited by 3 | Viewed by 907
Abstract
Fusion-welded austenitic stainless steel (ASS) was predominantly employed to manufacture dry storage canisters (DSCs) for the storage applications of spent nuclear fuel (SNF). However, the ASS weld joints are prone to chloride-induced stress corrosion cracking (CISCC), a critical safety issue in the nuclear [...] Read more.
Fusion-welded austenitic stainless steel (ASS) was predominantly employed to manufacture dry storage canisters (DSCs) for the storage applications of spent nuclear fuel (SNF). However, the ASS weld joints are prone to chloride-induced stress corrosion cracking (CISCC), a critical safety issue in the nuclear industry. DSCs were exposed to a chloride-rich environment during storage, creating CISCC precursors. The CISCC failure leads to nuclear radiation leakage. Therefore, there is a critical need to enhance the CISCC resistance of DSC weld joints using promising repair techniques. This review article encapsulates the current state-of-the-art of peening techniques for mitigating the CISCC in DSCs. More specifically, conventional shot peening (CSP), ultrasonic impact peening (UIP), and laser shock peening (LSP) were elucidated with a focus on CISCC mitigation. The underlying mechanism of CISCC mitigation in each process was summarized. Finally, this review provides recent advances in surface modification techniques, repair techniques, and developments in welding techniques for CISCC mitigation in DSCs. Full article
(This article belongs to the Special Issue Corrosion Mechanism and Protection Technology of Metallic Materials)
Show Figures

Figure 1

Back to TopTop