Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (256)

Search Parameters:
Keywords = weld strength enhancement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5353 KiB  
Article
Evaluation of Hardfacing Layers Applied by FCAW-S on S355MC Steel and Their Influence on Its Mechanical Properties
by Fineas Morariu, Timotei Morariu, Alexandru Bârsan, Sever-Gabriel Racz and Dan Dobrotă
Materials 2025, 18(15), 3664; https://doi.org/10.3390/ma18153664 - 4 Aug 2025
Abstract
Enhancing the wear resistance of structural steels used in demanding industrial applications is critical for extending components’ lifespan and ensuring mechanical reliability. In this study, we investigated the influence of flux-cored arc welding (FCAW) hardfacing on the tensile behavior of S355MC steel. Protective [...] Read more.
Enhancing the wear resistance of structural steels used in demanding industrial applications is critical for extending components’ lifespan and ensuring mechanical reliability. In this study, we investigated the influence of flux-cored arc welding (FCAW) hardfacing on the tensile behavior of S355MC steel. Protective Fe-Cr-C alloy layers were deposited in one and two successive passes using automated FCAW, followed by tensile testing of specimens oriented at varying angles relative to the weld bead direction. The methodology integrated 3D scanning and digital image correlation to accurately capture geometric and deformation parameters. The experimental results revealed a consistent reduction in tensile strength and ductility in all the welded configurations compared to the base material. The application of the second weld layer further intensified this effect, while specimen orientation influenced the degree of mechanical degradation. Microstructural analysis confirmed carbide refinement and good adhesion, but also identified welding-induced defects and residual stresses as factors that contributed to performance loss. The findings highlight a clear trade-off between improved surface wear resistance and compromised structural properties, underscoring the importance of process optimization. Strategic selection of welding parameters and bead orientation is essential to balance functional durability with mechanical integrity in industrial applications. Full article
(This article belongs to the Special Issue Advances in Welding of Alloy and Composites (2nd Edition))
Show Figures

Figure 1

23 pages, 6098 KiB  
Article
Performance Optimization of Stacked Weld in Hydrogen Production Reactor Based on Response Surface Methodology–Genetic Algorithm
by Yu Liu, Hongtao Gu, Jincheng Zhang, Zhiyi Leng, Ziguang Wang and Shengfang Zhang
Coatings 2025, 15(8), 889; https://doi.org/10.3390/coatings15080889 (registering DOI) - 31 Jul 2025
Viewed by 255
Abstract
To address the issues of hydrogen embrittlement, creep, and fatigue that commonly occur in the welds of hydrogen production reactor operating under hydrogen exposure, high temperature and high pressure, this study proposes adding Si and Mo as reinforcing elements to the welding materials [...] Read more.
To address the issues of hydrogen embrittlement, creep, and fatigue that commonly occur in the welds of hydrogen production reactor operating under hydrogen exposure, high temperature and high pressure, this study proposes adding Si and Mo as reinforcing elements to the welding materials to enhance weld performance. Given the varying performance requirements of different weld layers in the stacked weld, a gradient performance optimization method for the stacked weld of hydrogen production reactors based on the response surface methodology (RSM)–genetic algorithm (GA) is proposed. Using tensile strength, the hydrogen embrittlement sensitivity index, fatigue strain strength, creep rate and weld performance evaluation indices, a high-precision regression model for Si and Mo contents and weld performance indices was established through RSM and analysis of variance (ANOVA). A multi-objective optimization mathematical model for gradient improvement of the stacked weld was also established. This model was solved using a GA to obtain the optimal element content combination added to the welding wire and the optimal weld thickness for each weld layer. Finally, submerged arc welding experiments of the stacked weld were conducted according to the optimization results. The results show that the tensile strength of the base layer, filling layer and cover layer of the stacked weld increased by 5.60%, 6.16% and 4.53%, respectively. Hydrogen embrittlement resistance increased by 70.56%, 52.40% and 45.16%, respectively. The fatigue and creep resistance were also improved. The experimental results validate the feasibility and accuracy of the proposed optimization method. Full article
Show Figures

Figure 1

18 pages, 8192 KiB  
Article
Microstructure, Mechanical Properties, and Tribological Behavior of Friction Stir Lap-Welded Joints Between SiCp/Al–Fe–V–Si Composites and an Al–Si Alloy
by Shunfa Xiao, Pinming Feng, Xiangping Li, Yishan Sun, Haiyang Liu, Jie Teng and Fulin Jiang
Materials 2025, 18(15), 3589; https://doi.org/10.3390/ma18153589 - 30 Jul 2025
Viewed by 221
Abstract
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of [...] Read more.
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of brake disks, this study fabricated a bimetallic structure of SiCp/Al–Fe–V–Si aluminum matrix composite and cast ZL101 alloy using friction stir lap welding (FSLW). Then, the microstructural evolution, mechanical properties, and tribological behavior of the FSLW joints were studied by XRD, SEM, TEM, tensile testing, and tribological tests. The results showed that the FSLW process homogenized the distribution of SiC particle reinforcements in the SiCp/Al–Fe–V–Si composites. The Al12(Fe,V)3Si heat-resistant phase was not decomposed or coarsened, and the mechanical properties were maintained. The FSLW process refined the grains of the ZL101 aluminum alloy through recrystallization and fragmented eutectic silicon, improving elongation to 22%. A metallurgical bond formed at the joint interface. Tensile fracture occurred within the ZL101 matrix, demonstrating that the interfacial bond strength exceeded the alloy’s load-bearing capacity. In addition, the composites exhibited significantly enhanced wear resistance after FSLW, with their wear rate reduced by approximately 40% compared to the as-received materials, which was attributed to the homogenized SiC particle distribution and the activation of an oxidative wear mechanism. Full article
Show Figures

Figure 1

21 pages, 3340 KiB  
Article
Simulation and Experimental Investigation on the Performance of Co-, Bi-, and La-Doped AgSnO2 Contact Interface Models
by Yihong Lv, Jingqin Wang, Yuxuan Wang, Yancai Zhu and Ying Zhang
Coatings 2025, 15(8), 885; https://doi.org/10.3390/coatings15080885 - 29 Jul 2025
Viewed by 239
Abstract
The inferior electrical conductivity and elevated hardness of AgSnO2 electrical contact materials have impeded their development. To investigate the effects of Co, Bi, and La doping on the stability and electrical properties of AgSnO2, this study established interfacial models of [...] Read more.
The inferior electrical conductivity and elevated hardness of AgSnO2 electrical contact materials have impeded their development. To investigate the effects of Co, Bi, and La doping on the stability and electrical properties of AgSnO2, this study established interfacial models of doped AgSnO2 based on first-principles calculations initiated from the atomic structures of constituent materials, subsequently computing electronic structure parameters. The results indicate that doping effectively enhances the interfacial stability and bonding strength of AgSnO2 and thereby predicted improved electrical contact performance. Doped SnO2 powders were prepared experimentally using the sol–gel method, and AgSnO2 contacts were fabricated using high-energy ball milling and powder metallurgy. Testing of wettability and electrical contact properties revealed reductions in arc energy, arcing time, contact resistance, and welding force post-doping. Three-dimensional profilometry and scanning electron microscopy (SEM) were employed to characterize electrical contact surfaces, elucidating the arc erosion mechanism of AgSnO2 contact materials. Among the doped variants, La-doped electrical contact materials exhibited optimal performance (the lowest interfacial energy was 1.383 eV/Å2 and wetting angle was 75.6°). The mutual validation of experiments and simulations confirms the feasibility of the theoretical calculation method. This study provides a novel theoretical method for enhancing the performance of AgSnO2 electrical contact materials. Full article
Show Figures

Figure 1

15 pages, 5165 KiB  
Article
Microstructure and Mechanical Properties of Shoulder-Assisted Heating Friction Plug Welding 6082-T6 Aluminum Alloy Using a Concave Backing Hole
by Defu Li and Xijing Wang
Metals 2025, 15(8), 838; https://doi.org/10.3390/met15080838 - 27 Jul 2025
Viewed by 215
Abstract
Shoulder-assisted heating friction plug welding (SAH-FPW) experiments were conducted to repair keyhole-like volumetric defects in 6082-T6 aluminum alloy, employing a novel concave backing hole technique on a flat backing plate. This approach yielded well-formed plug welded joints without significant macroscopic defects. Notably, the [...] Read more.
Shoulder-assisted heating friction plug welding (SAH-FPW) experiments were conducted to repair keyhole-like volumetric defects in 6082-T6 aluminum alloy, employing a novel concave backing hole technique on a flat backing plate. This approach yielded well-formed plug welded joints without significant macroscopic defects. Notably, the joints exhibited no thinning on the top surface while forming a reinforcing boss structure within the concave backing hole on the backside, resulting in a slight increase in the overall load-bearing thickness. The introduction of the concave backing hole led to distinct microstructural zones compared to joints welded without it. The resulting joint microstructure comprised five regions: the nugget zone, a recrystallized zone, a shoulder-affected zone, the thermo-mechanically affected zone, and the heat-affected zone. Significantly, this process eliminated the poorly consolidated ‘filling zone’ often associated with conventional plug repairs. The microhardness across the joints was generally slightly higher than that of the base metal (BM), with the concave backing hole technique having minimal influence on overall hardness values or their distribution. However, under identical welding parameters, joints produced using the concave backing hole consistently demonstrated higher tensile strength than those without. The joints displayed pronounced ductile fracture characteristics. A maximum ultimate tensile strength of 278.10 MPa, equivalent to 89.71% of the BM strength, was achieved with an elongation at fracture of 9.02%. Analysis of the grain structure revealed that adjacent grain misorientation angle distributions deviated from a random distribution, indicating dynamic recrystallization. The nugget zone (NZ) possessed a higher fraction of high-angle grain boundaries (HAGBs) compared to the RZ and TMAZ. These findings indicate that during the SAH-FPW process, the use of a concave backing hole ultimately enhances structural integrity and mechanical performance. Full article
(This article belongs to the Special Issue Advances in Welding and Joining of Alloys and Steel)
Show Figures

Figure 1

44 pages, 14734 KiB  
Article
Influence of Zn Content on the Corrosion and Mechanical Properties of Cast and Friction Stir-Welded Al-Si-Mg-Fe-Zn Alloys
by Xiaomi Chen, Kun Liu, Quan Liu, Jing Kong, Valentino A. M. Cristino, Kin-Ho Lo, Zhengchao Xie, Zhi Wang, Dongfu Song and Chi-Tat Kwok
Materials 2025, 18(14), 3306; https://doi.org/10.3390/ma18143306 - 14 Jul 2025
Viewed by 423
Abstract
With the ongoing development of lightweight automobiles, research on new aluminum alloys and welding technology has gained significant attention. Friction stir welding (FSW) is a solid-state joining technique for welding aluminum alloys without melting. In this study, novel squeeze-cast Al-Si-Mg-Fe-Zn alloys with different [...] Read more.
With the ongoing development of lightweight automobiles, research on new aluminum alloys and welding technology has gained significant attention. Friction stir welding (FSW) is a solid-state joining technique for welding aluminum alloys without melting. In this study, novel squeeze-cast Al-Si-Mg-Fe-Zn alloys with different Zn contents (0, 3.4, 6.5, and 8.3 wt%) were friction stir welded (FSWed) at a translational speed of 200 mm/min and a rotational speed of 800 rpm. These parameters were chosen based on the observations of visually sound welds, defect-free and fine-grained microstructures, homogeneous secondary phase distribution, and low roughness. Zn can affect the microstructure of Al-Si-Mg-Fe-Zn alloys, including the grain size and the content of secondary phases, leading to different mechanical and corrosion behavior. Adding different Zn contents with Mg forms the various amount of MgZn2, which has a significant strengthening effect on the alloys. Softening observed in the weld zones of the alloys with 0, 3.4, and 6.5 wt% Zn is primarily attributed to the reduction in Kernel Average Misorientation (KAM) and a decrease in the Si phase and MgZn2. Consequently, the mechanical strengths of the FSWed joints are lower as compared to the base material. Conversely, the FSWed alloy with 8.3 wt% Zn exhibited enhanced mechanical properties, with hardness of 116.3 HV0.2, yield strength (YS) of 184.4 MPa, ultimate tensile strength (UTS) of 226.9 MP, percent elongation (EL%) of 1.78%, and a strength coefficient exceeding 100%, indicating that the joint retains the strength of the as-cast one, due to refined grains and more uniformly dispersed secondary phases. The highest corrosion resistance of the FSWed alloy with 6.5%Zn is due to the smallest grain size and KAM, without MgZn2 and the highest percentage of {111} texture (24.8%). Full article
(This article belongs to the Special Issue Study on Electrochemical Behavior and Corrosion of Materials)
Show Figures

Graphical abstract

27 pages, 18408 KiB  
Article
Optimizing Al7072 Grooved Joints After Gas Tungsten Arc Welding
by Wei Guo, Qinwei Yu, Pengshen Zhang, Shunjie Yao, Hui Wang and Hongliang Li
Metals 2025, 15(7), 767; https://doi.org/10.3390/met15070767 - 8 Jul 2025
Viewed by 211
Abstract
Aluminum alloy, due to its low melting point and high thermal conductivity, deforms and contracts significantly during welding. To mitigate this and achieve full penetration in a single pass, this study uses GTAW (Gas Tungsten Arc Welding) additive manufacturing and optimizes welding groove [...] Read more.
Aluminum alloy, due to its low melting point and high thermal conductivity, deforms and contracts significantly during welding. To mitigate this and achieve full penetration in a single pass, this study uses GTAW (Gas Tungsten Arc Welding) additive manufacturing and optimizes welding groove parameters via the Box-Behnken Response Surface Methodology. The focus is on improving tensile strength and penetration depth by analyzing the effects of groove angle, root face width, and root gap. The results show that groove angle most significantly affects tensile strength and penetration depth. Hardness profiles exhibit a W-shape, with base material hardness decreasing and weld zone hardness increasing as groove angle rises. Root face width reduces hardness fluctuation in the weld zone, and an appropriate root gap compensates for thermal expansion, enhancing joint performance. The interaction between root face width and root gap most impacts tensile strength, while groove angle and root face width interaction most affects penetration depth. The optimal welding parameters for 7xxx aluminum alloy GTAW are a groove angle of 70.8°, root face width of 1.38 mm, and root gap of 0 mm. This results in a tensile strength of 297.95 MPa and penetration depth of 5 mm, a 90.38% increase in tensile strength compared to the RSM experimental worst group. Microstructural analysis reveals the presence of β-Mg2Si and η-MgZn2 strengthening phases, which contribute to the material’s enhanced mechanical properties. Fracture surface examination exhibits characteristic ductile fracture features, including dimples and shear lips, confirming the material’s high ductility. The coexistence of these strengthening phases and ductile fracture behavior indicates excellent overall mechanical performance, balancing strength and plasticity. Full article
Show Figures

Figure 1

14 pages, 3388 KiB  
Article
A Flake Powder Metallurgy Approach for Fabricating Al/CNT Composites: Combining Dual-Matrix and Shift-Speed Ball Milling to Optimize Mechanical Properties
by Hamed Rezvanpour and Alberto Vergnano
Designs 2025, 9(4), 82; https://doi.org/10.3390/designs9040082 - 1 Jul 2025
Viewed by 342
Abstract
This study presents a novel flake powder metallurgy approach for fabricating Al/CNT composites, combining the dual-matrix (DM) method with shift-speed ball milling (SSBM) to optimize mechanical performance. Samples prepared via DM-SSBM were systematically compared to those produced by conventional high-speed ball milling (HSBM), [...] Read more.
This study presents a novel flake powder metallurgy approach for fabricating Al/CNT composites, combining the dual-matrix (DM) method with shift-speed ball milling (SSBM) to optimize mechanical performance. Samples prepared via DM-SSBM were systematically compared to those produced by conventional high-speed ball milling (HSBM), single-stage SSBM, and dual-matrix (DM) routes. Tensile testing revealed that the DM1MR50-SSBM composite achieved a superior balance of strength and ductility, with an ultimate tensile strength of ~267 MPa, elongation of ~9.9%, and the highest energy absorption capacity (~23.4 MJ/m3) among all tested samples. In contrast, the HSBM sample, while achieving the highest tensile strength (~328 MPa), exhibited limited elongation (~4.7%), resulting in lower overall toughness. The enhanced mechanical response of the DM-SSBM composites is attributed to improved CNT dispersion, refined cold-welding interfaces, and pure Al matrix softness, which together facilitate superior load transfer and hinder crack propagation under tensile stress. In the final consolidated state, aluminum forms a continuous matrix embedding the CNTs, justifying the use of the term “aluminum matrix” to describe the composite structure. These findings highlight the DM-SSBM approach as a promising method for developing lightweight, high-toughness aluminum composites suitable for energy-absorbing structural applications. Full article
(This article belongs to the Special Issue Post-manufacturing Testing and Characterization of Materials)
Show Figures

Figure 1

13 pages, 7340 KiB  
Article
Research on the Constitutive Relationship of the Coarse-Grained Heat-Affected Zone in Ship Thick-Plate Welded Joints of Ship Structures
by Linzhi Xu, Pengyu Zhan, Tao Yi, Shukai Zhang, Jian He and Mengzhen Li
J. Mar. Sci. Eng. 2025, 13(7), 1260; https://doi.org/10.3390/jmse13071260 - 29 Jun 2025
Viewed by 302
Abstract
This study addresses the constitutive relationship of the welded coarse-grained heat-affected zone (CGHAZ) in 80-mm-thick DH36 marine steel plates. By integrating quasi-static tensile testing, digital image correlation (DIC) technology, and metallographic analysis, we systematically investigated the mechanical property differences and underlying mechanisms between [...] Read more.
This study addresses the constitutive relationship of the welded coarse-grained heat-affected zone (CGHAZ) in 80-mm-thick DH36 marine steel plates. By integrating quasi-static tensile testing, digital image correlation (DIC) technology, and metallographic analysis, we systematically investigated the mechanical property differences and underlying mechanisms between the CGHAZ and base metal (BM). High-precision DIC technology enabled strain field characterization at the microscale in the CGHAZ, while the Ramberg-Osgood model was adopted to establish a dual-material constitutive equation. The results demonstrate that grain coarsening induced by welding thermal cycles significantly influenced the mechanical responses: the CGHAZ exhibited enhanced tensile strength but reduced plastic compatibility due to decreased grain boundary density. Notably, gradient differences in elastic modulus (CGHAZ: 184 GPa vs. BM: 213 GPa) and yield strength (CGHAZ: 363 MPa vs. BM: 373 MPa) between the BM and CGHAZ necessitate strict differentiation in engineering design. This work overcomes the limitations of oversimplified CGHAZ properties in conventional design approaches, providing a novel methodology for strength assessment and lightweight design of marine structures. The findings offer critical theoretical insights and practical guidelines for enhancing the reliability of offshore engineering equipment. Full article
Show Figures

Figure 1

16 pages, 4443 KiB  
Article
Factors Affecting Mechanical Properties of Impulse Friction Stir Welded AA2024-T351 Under Static and Cyclic Loads
by Iuliia Morozova, Aleksei Obrosov, Anton Naumov, Vesselin Michailov and Nikolay Doynov
Machines 2025, 13(6), 529; https://doi.org/10.3390/machines13060529 - 17 Jun 2025
Viewed by 242
Abstract
This study investigates the factors affecting the mechanical performance of conventional and impulse friction stir welded (FSW and IFSW) AA2024-T351 joints under static and cyclic loading. Emphasis is placed on the influence of fracture-inducing features such as oxide inclusions, constituent particle distributions, crystallographic [...] Read more.
This study investigates the factors affecting the mechanical performance of conventional and impulse friction stir welded (FSW and IFSW) AA2024-T351 joints under static and cyclic loading. Emphasis is placed on the influence of fracture-inducing features such as oxide inclusions, constituent particle distributions, crystallographic texture, and precipitation state. A series of IFSW welds produced at varying impulse parameters were compared to conventional FSW welds in terms of microhardness, tensile strength, fatigue life, and Taylor factor distribution. IFSW joints demonstrated a significant improvement in tensile strength and elongation, particularly at higher impulse frequencies. Enhanced material mixing due to the reciprocating tool motion in IFSW resulted in finer particle distribution, more favorable crystallographic texture, and reduced weld pitch, all contributing to increased ductility and strength. Fractographic analyses revealed that fatigue failures primarily initiated in the stir zone, typically at unplasticized metallic inclusions. However, IFSW joints displayed longer fatigue lives, particularly when impulse parameters were optimized. These findings underline the complex interplay of microstructural and textural factors in determining weld performance, highlighting IFSW as a promising technique for enhancing the durability of high-strength aluminum welds. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

15 pages, 17068 KiB  
Article
Comparison of Microstructure and Mechanical Properties of Ultra-Narrow Gap-Welded and Submerged Arc-Welded Q355E HSLA Steel
by Youqi Wang, Renge Li, Qingnian Wen, Wenkai Xiao, Shang Wu, Xian Zhai and Fuju Zhang
Materials 2025, 18(12), 2805; https://doi.org/10.3390/ma18122805 - 14 Jun 2025
Viewed by 446
Abstract
Reasonable welding methods are of great significance for optimizing the microstructure and ensuring the mechanical properties of welded joints. In this study, ultra-narrow gap welding (UNGW) and submerged arc welding (SAW) were employed to weld Q355E high-strength low-alloy (HSLA) steel thick plates, and [...] Read more.
Reasonable welding methods are of great significance for optimizing the microstructure and ensuring the mechanical properties of welded joints. In this study, ultra-narrow gap welding (UNGW) and submerged arc welding (SAW) were employed to weld Q355E high-strength low-alloy (HSLA) steel thick plates, and the microstructure and mechanical properties of the welded joints were systematically characterized. The UNGW welded joint exhibits superior comprehensive mechanical properties: a room-temperature tensile strength of 664 MPa with 43.1% elongation at fracture, along with higher microhardness and enhanced impact performance at −40 °C, all of which significantly outperform SAW welded joints. This advantage primarily stems from the faster cooling rate during UNGW, which promotes the formation of beneficial acicular ferrite in the joint microstructure. This study provides theoretical support and technical guidance for welding HSLA steel thick plates. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

27 pages, 9265 KiB  
Article
Seismic Behavior and Resilience of an Endplate Rigid Connection for Circular Concrete-Filled Steel Tube Columns
by Yu Gao, Peilin Zhu, Junping Liu and Feng Lou
Buildings 2025, 15(12), 2035; https://doi.org/10.3390/buildings15122035 - 13 Jun 2025
Viewed by 463
Abstract
A novel endplate bolted rigid joint is proposed in this study for connecting circular concrete-filled steel tube (CCFT) columns to wide-flange (WF) steel beams. The seismic performance and potential failure mechanisms of the proposed joint were investigated through quasi-static cyclic tests and finite [...] Read more.
A novel endplate bolted rigid joint is proposed in this study for connecting circular concrete-filled steel tube (CCFT) columns to wide-flange (WF) steel beams. The seismic performance and potential failure mechanisms of the proposed joint were investigated through quasi-static cyclic tests and finite element (FE) simulations. This study aims to address several engineering challenges commonly observed in existing joint configurations, including an irrational force-resisting mechanism, complicated detailing and installation, on-site construction difficulties, constraints on beam size, and limited repairability. By optimizing the force transfer path, the new joint effectively reduces the number of critical tension welds, thereby enhancing the ductility and reliability. The experimental results indicate that the joint exhibits adequate flexural strength, stiffness, and ductility, with stable moment–rotation hysteresis loops under cyclic loading. Moreover, full restoration of the joint can be achieved by replacing only the steel beam and endplate, facilitating post-earthquake repair. FE analysis reveals that, under the ultimate bending moment at the beam end, multiple through cracks develop in the high-strength grout—which serves as a key load-transferring component—and significant debonding occurs between the grout and the surrounding steel members. However, due to confinement from adjacent components, these internal cracks do not compromise the overall strength and stiffness of the joint. This research provides an efficient and practical connection solution, along with valuable experimental insights, for the application of CCFT columns in moment-resisting frames located in high seismic zones. Full article
Show Figures

Figure 1

55 pages, 20925 KiB  
Review
Current Trends and Emerging Strategies in Friction Stir Spot Welding for Lightweight Structures: Innovations in Tool Design, Robotics, and Composite Reinforcement—A Review
by Suresh Subramanian, Elango Natarajan, Ali Khalfallah, Gopal Pudhupalayam Muthukutti, Reza Beygi, Borhen Louhichi, Ramesh Sengottuvel and Chun Kit Ang
Crystals 2025, 15(6), 556; https://doi.org/10.3390/cryst15060556 - 11 Jun 2025
Cited by 1 | Viewed by 1927
Abstract
Friction stir spot welding (FSSW) is a solid-state joining technique increasingly favored in industries requiring high-quality, defect-free welds in lightweight and durable structures, such as the automotive, aerospace, and marine industries. This review examines the current advancements in FSSW, focusing on the relationships [...] Read more.
Friction stir spot welding (FSSW) is a solid-state joining technique increasingly favored in industries requiring high-quality, defect-free welds in lightweight and durable structures, such as the automotive, aerospace, and marine industries. This review examines the current advancements in FSSW, focusing on the relationships between microstructure, properties, and performance under load. FSSW offers numerous benefits over traditional welding, particularly for joining both similar and dissimilar materials. Key process parameters, including tool design, rotational speed, axial force, and dwell time, are discussed for their impact on weld quality. Innovations in robotics are enhancing FSSW’s accuracy and efficiency, while numerical simulations aid in optimizing process parameters and predicting material behavior. The addition of nano/microparticles, such as carbon nanotubes and graphene, has further improved weld strength and thermal stability. This review identifies areas for future research, including refining robotic programming, using artificial intelligence for autonomous welding, and exploring nano/microparticle reinforcement in FSSW composites. FSSW continues to advance solid-state joining technologies, providing critical insights for optimizing weld quality in sheet material applications. Full article
Show Figures

Figure 1

28 pages, 8016 KiB  
Article
Supervised Machine Learning Models for Predicting SS304H Welding Properties Using TIG, Autogenous TIG, and A-TIG
by Subhodwip Saha, Barun Haldar, Hillol Joardar, Santanu Das, Subrata Mondal and Srinivas Tadepalli
Crystals 2025, 15(6), 529; https://doi.org/10.3390/cryst15060529 - 1 Jun 2025
Viewed by 1122
Abstract
This investigation explores the application of supervised machine learning regression approaches to predict various responses, including penetration, bead width, bead height, hardness, ultimate tensile strength, and percentage elongation in autogenous TIG-, A-TIG-, and TIG-welded joints of SS304H, which is considered as an advanced [...] Read more.
This investigation explores the application of supervised machine learning regression approaches to predict various responses, including penetration, bead width, bead height, hardness, ultimate tensile strength, and percentage elongation in autogenous TIG-, A-TIG-, and TIG-welded joints of SS304H, which is considered as an advanced high-temperature resistant material. The machine learning (ML) models were constructed based on the data gathered from 50 experimental runs, considering eight key input variables: gas flow rate, torch angle, filler material, welding pass, flux application, root gap, arc gap, and heat input. A total of 80% of the collected dataset was used for training the models, while the remaining 20% was reserved for testing their performance. Six ML algorithms—Artificial Neural Network (ANN), K-Nearest Neighbors (KNN), Support Vector Regression (SVR), Random Forest (RF), Gradient Boosting Regression (GBR), and Extreme Gradient Boosting (XGBoost)—were implemented to assess their predictive accuracy. Among these, the XGBoost model has demonstrated the highest predictive capability, achieving R2 scores of 0.886 for penetration, 0.926 for width, 0.915 for weld bead height, 0.868 for hardness, 0.906 for ultimate tensile strength, and 0.926 for percentage elongation, along with the lowest values of RMSE, MAE, and MSE across all responses. The outcomes establish that machine learning models, particularly XGBoost, can accurately predict welding characteristics, marking a significant advancement in the optimization of TIG welding parameters. Consequently, integrating such predictive models can substantially enhance the precision, reliability, and overall efficiency of welding processes. Full article
Show Figures

Figure 1

16 pages, 4408 KiB  
Article
Evaluation of Adhesive Seams of High-Density Polyethylene Geomembrane Subjected to Wetting and Freeze-Thaw Cycles
by Xianlei Zhang, Jialong Zhai, Yuan Tang and Yunyun Wu
Materials 2025, 18(10), 2368; https://doi.org/10.3390/ma18102368 - 20 May 2025
Viewed by 477
Abstract
The seaming of geomembranes (GMBs) is a critical aspect of their successful functioning as barriers to liquid, with bonding and welding being the commonly employed methods. Due to the limitations of conventional welding methods at the connection points between the geomembrane and the [...] Read more.
The seaming of geomembranes (GMBs) is a critical aspect of their successful functioning as barriers to liquid, with bonding and welding being the commonly employed methods. Due to the limitations of conventional welding methods at the connection points between the geomembrane and the structure, extrusion welding often results in damage at the seams. The bonding method, which has lower requirements for construction conditions, has emerged as a currently viable alternative seaming technique. Bonding techniques are widely applied in small reservoirs and embankments. This study investigates the performance of high-density polyethylene (HDPE) GMB seams bonded using asphalt-based adhesive (ABA) and non-asphalt-based adhesive (NABA). Seam tensile tests were conducted under wetting and freeze-thaw cycles (FTCs) conditions to evaluate the mechanical properties of the seamed GMBs. The results indicated that the seam strength of specimens bonded with ABA increased as wetting time and FTCs increased (with a maximum increase of 113.8%). In contrast, specimens bonded with NABA exhibited decreased seam strength under similar conditions (with a maximum decrease of 93.4%). Both types of specimens exhibited enhanced seam strength with increasing seam width. Due to wetting and FTCs, the seam efficiency of NABA-bonded specimens decreased, while that of ABA-bonded specimens showed slight improvement. However, the improved seam efficiency remained below 1.2%, an extremely small value. The axial tensile strength of bonded specimens was significantly lower than that of seamless specimens, failing to fulfill long-term safety operation requirements. Therefore, bonding method should be used cautiously at non-critical structural components where the welding is impractical but repair and replacement are relatively simple. The findings provide insight for GMB installers and design engineers in order to improve the performance of HDPE GMB seams. Full article
Show Figures

Figure 1

Back to TopTop