Simulation and Experimental Investigation on the Performance of Co-, Bi-, and La-Doped AgSnO2 Contact Interface Models
Abstract
1. Introduction
2. Methods
2.1. Interface Model Construction and Parameter Settings
2.2. AgSnO2 Samples Preparation
3. Results and Discussion
3.1. Simulation Results
3.1.1. Interfacial Bonding Strength and Wettability Prediction
3.1.2. Density of States (DOS) Analysis
3.1.3. Mulliken Population Electronic Structure Analysis
3.2. Experimental Results
3.2.1. X-Ray Diffraction (XRD) Experiment
3.2.2. Wettability Analysis
3.2.3. Electrical Contact Experiment
3.2.4. Material Transfer Analysis
3.2.5. Arc Erosion Morphology Analysis
3.2.6. Arc Erosion and Material Transfer Behavior Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacimovic, J.; Felberbaum, L.; Giannini, E.; Teyssier, J. Electro-mechanical properties of composite materials for high-current contact applications. J. Phys. D Appl. Phys. 2014, 47, 125501. [Google Scholar] [CrossRef]
- Bai, X.; Lin, W.; Zhang, M. Contact Materials for Low Voltage Electric Apparatus. Electr. Eng. Mater. 2007, 3, 12–16. [Google Scholar] [CrossRef]
- Zhang, M. Development Situation of AgSnO2 Contact Materials and Their Applications in Relays. Electr. Eng. Mater. 2004, 4, 20–26. [Google Scholar] [CrossRef]
- Zheng, J.; Jiang, F.; Li, S.L. Study on New Types of Environmental Protection AgSnO2 Electrical Contact Materials. Adv. Mater. Res. 2013, 815, 400–403. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, G.; Huang, R.; Yu, L.; Wu, C. The influence of Sb2O3 on the interface wettability between Ag and SnO2. J. Alloys Compd. 2024, 1008, 176587. [Google Scholar] [CrossRef]
- Guo, D.; Hu, C. First-principles study on the electronic structure and optical properties for SnO2 with oxygen vacancy. Appl. Surf. Sci. 2012, 258, 6987–6992. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Z.; Chen, K.; Li, Y.; Shang, S. Review of Comparison of Silver Tin Oxide Contact Preparation Process and Arc Erosion Characteristics. Electr. Eng. Mater. 2021, 4, 3–9. [Google Scholar] [CrossRef]
- Shi, J. Review of Technological Evolution and Silver Conservation in Electrical Contact Materials. Powder Metall. Ind. 1999, 3, 33–36. [Google Scholar]
- Zhao, C.; Xu, G.; Yuan, M.; Wu, C. Research Progress of Silver Metal Oxide Electrical Contact Materials. Electr. Eng. Mater. 2025, 1, 39–47. [Google Scholar] [CrossRef]
- Jingqin, W.; Jingting, X.; Yancai, Z.; Delin, H.; Ningyi, L.; Defeng, C.; Peijian, G. Properties of AgSnO2 Contact Materials Doped with Different Concentrations of Cr. Materials 2022, 15, 4793. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Hu, Z.; Qiu, Y. Effect of Ni addition on the arc-erosion behavior of Ag-4 wt.%SnO2 electrical contact material. J. Alloys Compd. 2020, 829, 154487. [Google Scholar] [CrossRef]
- Yang, F.; Tang, J.; Zheng, X.; Zhang, L.; Shen, T. Preparation and Properties of La2O3 Doped AgSnO2 Electrical Contact Materials. Rare Met. Mater. Eng. 2018, 47, 182–187. [Google Scholar]
- Liu, X.; Wu, X.; Zhou, G.; Wang, J.; Huang, X.; Meng, L. Effect of Particle Size of ITO-Enhanced Phase on the Performance of AgSnO2 Contact Materials. Electr. Eng. Mater. 2025, 1, 5–8. [Google Scholar] [CrossRef]
- Wang, H.; Liu, W.; Yang, M.; Zhu, Y. Effect of Particle Size of Second Phase on Wettability and Electrical Contact Properties of AgSnO2 Contact Materials. Rare Met. Mater. Eng. 2022, 51, 24–29. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Teng, W.; Cui, D.; Zhou, X. Adhesion, Stability and Electronic Properties of Ag/SnO2 Interface from First-Principles Calculation. Cryst. Res. Technol. 2024, 59, 202400126. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Zhu, Y.; Chen, L.; Yu, S. First-principles Study on Interface Bonding Stability of Ag/SnO2 Composites. Chin. J. Rare Met. 2020, 44, 729–734. [Google Scholar] [CrossRef]
- Wang, J.; Qiao, H.; Song, F.; Yuan, Y.; Liu, S.; Matsumoto, N.H. Effect of SnO2 content on properties and microstructure of Ag/SnO2 electric contact materials. In Materials Science and Engineering, Proceedings of the IOP Conference Series, Qingdao, China, 10–12 July 2020; IOP Publishing: Bristol, UK, 2020; Volume 770, p. 012063. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H.; Zhang, G.; Wei, Q.; Yuan, Y. First-principles investigation on elastic and thermody-namic properties of Pnnm-CN under high pressure. Aip Adv. 2016, 6, 1–11. [Google Scholar] [CrossRef]
- Li, C.; Jiao, L.; Chen, Z.; Wang, J.; Hu, M.; Chen, Z. Elasticity, hardness and anisotropies of bc-BnCN (n = 1, 2, 4). Sci. Sin. 2016, 46, 1–13. [Google Scholar] [CrossRef]
- Khechba, M.; Bouabellou, A.; Hanini, F. Effect of Al Doping on the Structural and Optical Properties of SnO2 Thin Films Elaborated by Sol-Gel Technique. J. New Technol. Mater. 2017, 7, 72–75. [Google Scholar] [CrossRef]
- Liu, J.D.; Wang, X.; Du, X.M.; Xie, M.; Li, J.G.; Zhao, S.Q.; Zhou, Y.Z.; Zhang, Q.; Fang, J.H. Structural and elastic properties of AgNi10 alloy studied with ab-initio calculations. Mater. Technol. 2022, 56, 149–157. [Google Scholar] [CrossRef]
- Cao, Y.X.; Wang, Y.H.; Li, H.; Chen, W.X. Study of Asphalt Behavior on Pre-Wet Aggregate Surface Based on Molecular Dynamics Simulation and Surface Energy Theory. Coatings 2023, 13, 1799. [Google Scholar] [CrossRef]
- Xu, Y.X.; Chen, L.; Pei, F.; Chang, K.K.; Du, Y. Effect of the modulation ratio on the interface structure of TiAlN/TiN and TiAlN/ZrN multilayers: First-principles and experimental investigations. Acta Mater. 2017, 130, 281–288. [Google Scholar] [CrossRef]
- Carbó-Dorca, R.; Bultinck, P. Quantum Mechanical Basis for Mulliken Population Analysis. J. Math. Chem. 2004, 36, 231–239. [Google Scholar] [CrossRef]
- Tian, W.; Chen, H. Insight into the mechanical, thermodynamics and superconductor properties of NbRuB via first-principles calculation. Sci. Rep. 2016, 6, 19055. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Yang, H.; Gao, M.; Zhang, E.; Liang, Z.; Han, P. Enhanced photoelectric performance of (2Al, S) co-doped rutile SnO2. RSC Adv. 2017, 7, 42940–42945. [Google Scholar] [CrossRef]
- Dou, J.; Liu, H.; Mao, D.; Li, Y. First-principle Calculations of Interfacial Properties and Wettability of WC/Cu and W/Cu Composites. Spec. Cast. Nonferrous Alloys 2025, 45, 547–554. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Tian, B.; An, J.; Zhao, Z.; Volinsky, A.A.; Liu, Y.; Song, K. Arc erosion behavior of the Al2O3-Cu/(W, Cr) electrical contacts. Compos. Part B Eng. 2019, 160, 110–118. [Google Scholar] [CrossRef]
- Diego, G.; Marcus, H.; Frank, B.; Peter, S. Investigation on Contact Resistance Behavior of Switching Contacts Using a Newly Developed Model Switch. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 939–949. [Google Scholar] [CrossRef]
- Wu, C.; Zhao, Q.; Li, N.; Wang, H.; Yi, D.; Weng, W. Influence of fabrication technology on arc erosion of Ag/10SnO2 electrical contact materials. J. Alloys Compd. 2018, 766, 161–177. [Google Scholar] [CrossRef]
- Jiang, N.; Feng, Y.; Fan, X.; Liu, Z.; Yu, M.; Zhang, T.; Wang, J. Anti-arc erosion capability and mechanism of Ag-Ni-La2Sn2O7 composites in different atmospheres. Trans. Mater. Heat Treat. 2024, 45, 39–54. [Google Scholar] [CrossRef]
- Fan, Y.; Han, X.; Chen, L.; Peng, Y.; Liang, Y.; Li, G. Effect of Ni and NiO Additives on the Electrical Contact Property of AgSnO2 Composites. Electr. Eng. Mater. 2025, 2, 17–21. [Google Scholar] [CrossRef]
- He, B.; Wei, C.; Liu, B.; Ding, S.; Shi, Z. Three-dimensional surface roughness characterization and application. Opt. Precis. Eng. 2018, 26, 1994–2011. [Google Scholar] [CrossRef]
- Gold, G.; Helmreich, K. A physical surface roughness model and its applications. IEEE Trans. Microw. Theory Tech. 2017, 65, 3720–3732. [Google Scholar] [CrossRef]
Parameter | Ag Cell | SnO2 Cell | Ag (111) | SnO2 (100) | AgSnO2 Interface Model |
---|---|---|---|---|---|
Cutoff Energy/eV | 517 | 571.4 | 400 | 400 | 450 |
K-points | 4 × 4 × 4 | 5 × 5 × 8 | 6 × 5 × 1 | 4 × 2 × 1 | 9 × 5 × 1 |
Material | Atomic Ratio (Ag: SnO2: X) | Mass Ratio (Ag: SnO2: X) |
---|---|---|
AgSnO2 | 60:21 | 88%:12% |
AgSnO2-Co | 54:20:1 | 86.71%:12.41%:0.88% |
AgSnO2-Bi | 54:20:1 | 84.82%:12.14%:3.04% |
AgSnO2-La | 54:20:1 | 85.69%:12.27%:2.04% |
Interface Model | Separation Work (eV/Å2) | Interfacial Energy (eV/Å2) | ||
---|---|---|---|---|
AgSnO2 | 0.119 | 0.024 | 1.879 | 1.784 |
AgSnO2-Co | 0.132 | 0.024 | 1.697 | 1.589 |
AgSnO2-Bi | 0.111 | 0.024 | 1.773 | 1.686 |
AgSnO2-La | 0.149 | 0.024 | 1.508 | 1.383 |
Model | Charge Population | |||||
---|---|---|---|---|---|---|
Ag | O | Sn | Co | Bi | La | |
AgSnO2 | 0.032 | −0.830 | 1.740 | |||
AgSnO2-Co | 0.034 | −0.831 | 1.740 | 1.92 | ||
AgSnO2-Bi | 0.032 | −0.828 | 1.688 | 2.23 | ||
AgSnO2-La | 0.034 | −0.831 | 1.746 | 1.88 |
Model | Bond Population/Average Value | ||||
---|---|---|---|---|---|
Ag-Ag | O-Ag | O-Sn | O-O | O-X | |
AgSnO2 | −0.08–0.65/ 0.178 | 0.02–0.29/ 0.192 | 0.29–0.47/ 0.357 | −0.11–−0.06/ −0.075 | |
AgSnO2-Co | −0.04–0.66/ 0.178 | 0.01–0.36/ 0.188 | 0.29–0.49/ 0.361 | −0.11–−0.01/ −0.052 | 0.31–0.39/ 0.33 |
AgSnO2-Bi | −0.03–0.66/ 0.175 | 0.01–0.29/ 0.173 | 0.30–0.48/ 0.366 | −0.11–−0.07/ −0.077 | 0.23–0.37/ 0.282 |
AgSnO2-La | −0.17–0.66/ 0.209 | 0.01–0.35/ 0.206 | 0.22–0.52/ 0.374 | −0.14–−0.04/ −0.077 | 0.06–0.22/ 0.187 |
Material | Crystal Size (nm) |
---|---|
AgSnO2 | 40.6 |
AgSnO2-Co | 39.5 |
AgSnO2-Bi | 39.8 |
AgSnO2-La | 36.8 |
Material | Ssk | Sz (μm) | Smr1 (%) | Vmp (μm3/μm2) |
---|---|---|---|---|
AgSnO2 | 1.064 | 1039.327 | 2.997 | 1.889 |
AgSnO2-Co | 1.031 | 557.046 | 10.190 | 1.504 |
AgSnO2-Bi | 1.047 | 710.075 | 8.092 | 1.685 |
AgSnO2-La | 1.024 | 509.996 | 18.906 | 1.074 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Y.; Wang, J.; Wang, Y.; Zhu, Y.; Zhang, Y. Simulation and Experimental Investigation on the Performance of Co-, Bi-, and La-Doped AgSnO2 Contact Interface Models. Coatings 2025, 15, 885. https://doi.org/10.3390/coatings15080885
Lv Y, Wang J, Wang Y, Zhu Y, Zhang Y. Simulation and Experimental Investigation on the Performance of Co-, Bi-, and La-Doped AgSnO2 Contact Interface Models. Coatings. 2025; 15(8):885. https://doi.org/10.3390/coatings15080885
Chicago/Turabian StyleLv, Yihong, Jingqin Wang, Yuxuan Wang, Yancai Zhu, and Ying Zhang. 2025. "Simulation and Experimental Investigation on the Performance of Co-, Bi-, and La-Doped AgSnO2 Contact Interface Models" Coatings 15, no. 8: 885. https://doi.org/10.3390/coatings15080885
APA StyleLv, Y., Wang, J., Wang, Y., Zhu, Y., & Zhang, Y. (2025). Simulation and Experimental Investigation on the Performance of Co-, Bi-, and La-Doped AgSnO2 Contact Interface Models. Coatings, 15(8), 885. https://doi.org/10.3390/coatings15080885