Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (450)

Search Parameters:
Keywords = weather station network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 11384 KiB  
Article
An AI-Driven Multimodal Monitoring System for Early Mastitis Indicators in Italian Mediterranean Buffalo
by Maria Teresa Verde, Mattia Fonisto, Flora Amato, Annalisa Liccardo, Roberta Matera, Gianluca Neglia and Francesco Bonavolontà
Sensors 2025, 25(15), 4865; https://doi.org/10.3390/s25154865 - 7 Aug 2025
Abstract
Mastitis is a significant challenge in the buffalo industry, affecting both milk production and animal health and resulting in economic losses. This study presents the first fully automated AI-driven thermal imaging system integrated with robotic milking, specifically developed for the real-time, non-invasive monitoring [...] Read more.
Mastitis is a significant challenge in the buffalo industry, affecting both milk production and animal health and resulting in economic losses. This study presents the first fully automated AI-driven thermal imaging system integrated with robotic milking, specifically developed for the real-time, non-invasive monitoring of udder health in Italian Mediterranean buffalo. Unlike traditional approaches, the system leverages the synchronized acquisition of thermal images during milking and compensates for environmental variables through a calibrated weather station. A transformer-based neural network (SegFormer) segments the udder area, enabling the extraction of maximum udder skin surface temperature (USST), which is significantly correlated with somatic cell count (SCC). Initial trials demonstrate the feasibility of this approach in operational farm environments, paving the way for scalable, precision diagnostics of subclinical mastitis. This work represents a critical step toward intelligent, automated systems for early detection and intervention, improving animal welfare and reducing antibiotic use. Full article
(This article belongs to the Collection Instrument and Measurement)
Show Figures

Figure 1

18 pages, 5296 KiB  
Article
Grid-Search-Optimized, Gated Recurrent Unit-Based Prediction Model for Ionospheric Total Electron Content
by Shuo Zhou, Ziyi Yang, Qiao Yu and Jian Wang
Technologies 2025, 13(8), 347; https://doi.org/10.3390/technologies13080347 - 7 Aug 2025
Abstract
Accurately predicting the ionosphere’s Total Electron Content (TEC) is significant for ensuring the regular operation of satellite navigation and communication systems and space weather prediction. To further improve the accuracy of TEC prediction, this paper proposes a TEC prediction model based on the [...] Read more.
Accurately predicting the ionosphere’s Total Electron Content (TEC) is significant for ensuring the regular operation of satellite navigation and communication systems and space weather prediction. To further improve the accuracy of TEC prediction, this paper proposes a TEC prediction model based on the grid-optimized Gate Recurrent Unit (GRU). This model has the following main features: (1) it uses statistical learning methods to interpolate the missing data of TEC observations; (2) it constructs a sliding time window by using the multi-dimensional time series features of two types of solar activity indices to support modeling; (3) It adopts grid search combined with optimization of network depth, time step length, and other hyperparameters to significantly enhance the model’s ability to extract the characteristics of the ionospheric 11-year cycle and seasonal variations. Taking the EGLIN station as an example, the proposed model is verified. The experimental results show that the root mean square error of the GRU model during the period from 2019 to 2020 was 0.78 TECU, which was significantly lower than those of the CCIR, URSI, and statistical machine learning models. Compared with the other three models, the RMSE error of the GRU model was reduced by 72.73%, 72.64%, and 57.38%, respectively. The above research verifies the advantages of the proposed model in predicting TEC and provides a new idea for ionospheric modeling. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

17 pages, 424 KiB  
Article
HyMePre: A Spatial–Temporal Pretraining Framework with Hypergraph Neural Networks for Short-Term Weather Forecasting
by Fei Wang, Dawei Lin, Baojun Chen, Guodong Jing, Yi Geng, Xudong Ge, Daoming Wei and Ning Zhang
Appl. Sci. 2025, 15(15), 8324; https://doi.org/10.3390/app15158324 - 26 Jul 2025
Viewed by 285
Abstract
Accurate short-term weather forecasting plays a vital role in disaster response, agriculture, and energy management, where timely and reliable predictions are essential for decision-making. Graph neural networks (GNNs), known for their ability to model complex spatial structures and relational data, have achieved remarkable [...] Read more.
Accurate short-term weather forecasting plays a vital role in disaster response, agriculture, and energy management, where timely and reliable predictions are essential for decision-making. Graph neural networks (GNNs), known for their ability to model complex spatial structures and relational data, have achieved remarkable success in meteorological forecasting by effectively capturing spatial dependencies among distributed weather stations. However, most existing GNN-based approaches rely on pairwise station connections, limiting their capacity to represent higher-order spatial interactions. Moreover, their dependence on supervised learning makes them vulnerable to spatial heterogeneity and temporal non-stationarity. This paper introduces a novel spatial–temporal pretraining framework, Hypergraph-enhanced Meteorological Pretraining (HyMePre), which combines hypergraph neural networks with self-supervised learning to model high-order spatial dependencies and improve generalization across diverse climate regimes. HyMePre employs a two-stage masking strategy, applying spatial and temporal masking separately, to learn disentangled representations from unlabeled meteorological time series. During forecasting, dynamic hypergraphs group stations based on meteorological similarity, explicitly capturing high-order dependencies. Extensive experiments on large-scale reanalysis datasets show that HyMePre outperforms conventional GNN models in predicting temperature, humidity, and wind speed. The integration of pretraining and hypergraph modeling enhances robustness to noisy data and improves generalization to unseen climate patterns, offering a scalable and effective solution for operational weather forecasting. Full article
Show Figures

Figure 1

23 pages, 8102 KiB  
Article
Ensemble Learning for Spatial Modeling of Icing Fields from Multi-Source Remote Sensing Data
by Shaohui Zhou, Zhiqiu Gao, Bo Gong, Hourong Zhang, Haipeng Zhang, Jinqiang He and Xingya Xi
Remote Sens. 2025, 17(13), 2155; https://doi.org/10.3390/rs17132155 - 23 Jun 2025
Viewed by 326
Abstract
Accurate real-time icing grid fields are critical for preventing ice-related disasters during winter and protecting property. These fields are essential for both mapping ice distribution and predicting icing using physical models combined with numerical weather prediction systems. However, developing precise real-time icing grids [...] Read more.
Accurate real-time icing grid fields are critical for preventing ice-related disasters during winter and protecting property. These fields are essential for both mapping ice distribution and predicting icing using physical models combined with numerical weather prediction systems. However, developing precise real-time icing grids is challenging due to the uneven distribution of monitoring stations, data confidentiality restrictions, and the limitations of existing interpolation methods. In this study, we propose a new approach for constructing real-time icing grid fields using 1339 online terminal monitoring datasets provided by the China Southern Power Grid Research Institute Co., Ltd. (CSPGRI) during the winter of 2023. Our method integrates static geographic information, dynamic meteorological factors, and ice_kriging values derived from parameter-optimized Empirical Bayesian Kriging Interpolation (EBKI) to create a spatiotemporally matched, multi-source fused icing thickness grid dataset. We applied five machine learning algorithms—Random Forest, XGBoost, LightGBM, Stacking, and Convolutional Neural Network Transformers (CNNT)—and evaluated their performance using six metrics: R, RMSE, CSI, MAR, FAR, and fbias, on both validation and testing sets. The stacking model performed best, achieving an R-value of 0.634 (0.893), RMSE of 3.424 mm (2.834 mm), CSI of 0.514 (0.774), MAR of 0.309 (0.091), FAR of 0.332 (0.161), and fbias of 1.034 (1.084), respectively, when comparing predicted icing values with actual measurements on pylons. Additionally, we employed the SHAP model to provide a physical interpretation of the stacking model, confirming the independence of selected features. Meteorological factors such as relative humidity (RH), 10 m wind speed (WS10), 2 m temperature (T2), and precipitation (PRE) demonstrated a range of positive and negative contributions consistent with the observed growth of icing. Thus, our multi-source remote-sensing data-fusion approach, combined with the stacking model, offers a highly accurate and interpretable solution for generating real-time icing grid fields. Full article
(This article belongs to the Special Issue Remote Sensing for High Impact Weather and Extremes (2nd Edition))
Show Figures

Figure 1

26 pages, 9010 KiB  
Article
Micro-Location Temperature Prediction Leveraging Deep Learning Approaches
by Amadej Krepek, Iztok Fister and Iztok Fister
Appl. Sci. 2025, 15(12), 6793; https://doi.org/10.3390/app15126793 - 17 Jun 2025
Viewed by 378
Abstract
Nowadays, technological progress has promoted the integration of artificial intelligence into modern human lives rapidly. On the other hand, extreme weather events in recent years have started to influence human well-being. As a result, these events have been addressed by artificial intelligence methods [...] Read more.
Nowadays, technological progress has promoted the integration of artificial intelligence into modern human lives rapidly. On the other hand, extreme weather events in recent years have started to influence human well-being. As a result, these events have been addressed by artificial intelligence methods more and more frequently. In line with this, the paper focuses on searching for predicting the air temperature in a particular Slovenian micro-location by using a weather prediction model Maximus based on a long-short term memory neural network learned by the long-term, lower-resolution dataset CERRA. During this huge experimental study, the Maximus prediction model was tested with the ICON-D2 general-purpose weather prediction model and validated with real data from the mobile weather station positioned at a specific micro-location. The weather station employs Internet of Things sensors for measuring temperature, humidity, wind speed and direction, and rain, while it is powered by solar cells. The results of comparing the Maximus proposed prediction model for predicting the air temperature in micro-locations with the general-purpose weather prediction model ICON-D2 has encouraged the authors to continue searching for an air temperature prediction model at the micro-location in the future. Full article
(This article belongs to the Special Issue Deep Learning and Data Mining: Latest Advances and Applications)
Show Figures

Figure 1

21 pages, 1560 KiB  
Article
Energy-Efficient Deployment Simulator of UAV-Mounted Base Stations Under Dynamic Weather Conditions
by Gyeonghyeon Min and Jaewoo So
Sensors 2025, 25(12), 3648; https://doi.org/10.3390/s25123648 - 11 Jun 2025
Viewed by 358
Abstract
In unmanned aerial vehicle (UAV)-mounted base station (MBS) networks, user equipment (UE) experiences dynamic channel variations because of the mobility of the UAV and the changing weather conditions. In order to overcome the degradation in the quality of service (QoS) of the UE [...] Read more.
In unmanned aerial vehicle (UAV)-mounted base station (MBS) networks, user equipment (UE) experiences dynamic channel variations because of the mobility of the UAV and the changing weather conditions. In order to overcome the degradation in the quality of service (QoS) of the UE due to channel variations, it is important to appropriately determine the three-dimensional (3D) position and transmission power of the base station (BS) mounted on the UAV. Moreover, it is also important to account for both geographical and meteorological factors when deploying UAV-MBSs because they service ground UE in various regions and atmospheric environments. In this paper, we propose an energy-efficient UAV-MBS deployment scheme in multi-UAV-MBS networks using a hybrid improved simulated annealing–particle swarm optimization (ISA-PSO) algorithm to find the 3D position and transmission power of each UAV-MBS. Moreover, we developed a simulator for deploying UAV-MBSs, which took the dynamic weather conditions into consideration. The proposed scheme for deploying UAV-MBSs demonstrated superior performance, where it achieved faster convergence and higher stability compared with conventional approaches, making it well suited for practical deployment. The developed simulator integrates terrain data based on geolocation and real-time weather information to produce more practical results. Full article
(This article belongs to the Special Issue Energy-Efficient Communication Networks and Systems: 2nd Edition)
Show Figures

Figure 1

15 pages, 1742 KiB  
Article
An Arduino-Based, Portable Weather Monitoring System, Remotely Usable Through the Mobile Telephony Network
by Ioannis Michailidis, Petros Mountzouris, Panagiotis Triantis, Gerasimos Pagiatakis, Andreas Papadakis and Leonidas Dritsas
Electronics 2025, 14(12), 2330; https://doi.org/10.3390/electronics14122330 - 6 Jun 2025
Viewed by 895
Abstract
The article describes an Arduino-based, portable, remotely usable weather monitoring station capable of measuring temperature, relative humidity, pressure, and carbon monoxide (CO) concentration and transmitting the collected data to the Cloud through the mobile telephony network. The main modules of the station are [...] Read more.
The article describes an Arduino-based, portable, remotely usable weather monitoring station capable of measuring temperature, relative humidity, pressure, and carbon monoxide (CO) concentration and transmitting the collected data to the Cloud through the mobile telephony network. The main modules of the station are as follows: a DHT11 sensor for temperature and relative humidity sensing, a BMP180 sensor for pressure monitoring (with temperature compensation), a MQ7 sensor for the monitoring of the CO concentration, an Arduino Uno board, a GSM SIM900 module, and a buzzer, which is activated when the temperature exceeds 35 °C. The station operates as follows: the Arduino Uno board gathers the data collected by the sensors and, by means of the GSM SIM900 module, it transmits the data to the Cloud by using the mobile telephony network as well as the ThingSpeak software which is an open-code IoT application that, among others, enables saving and recovering of sensing and monitoring data. The main novelty of this work is the combined use of the GSM network and the Cloud which enhances the portability and usability of the proposed system and enables remote collection of data in a straightforward way. Additional merits of the system are the easiness and the low cost of its development (owing to the easily available, low-cost hardware combined with an open-code software) as well as its modularity and scalability which allows its customization depending on specific application it is intended for. The system could be used for real-time, remote monitoring of essential environmental parameters in spaces such as farms, warehouses, rooms etc. Full article
Show Figures

Figure 1

17 pages, 2681 KiB  
Article
Ensemble Learning-Based Soft Computing Approach for Future Precipitation Analysis
by Shiu-Shin Lin, Kai-Yang Zhu, Chen-Yu Wang, Chou-Ping Yang and Ming-Yi Liu
Atmosphere 2025, 16(6), 669; https://doi.org/10.3390/atmos16060669 - 1 Jun 2025
Viewed by 343
Abstract
This study integrated the strengths of ensemble learning and soft computing to develop a future regional rainfall model for evaluating the complex characteristics of island precipitation. Soft computing uses the well-developed adaptive neuro-fuzzy inference system, which has been successfully applied in atmospheric hydrology [...] Read more.
This study integrated the strengths of ensemble learning and soft computing to develop a future regional rainfall model for evaluating the complex characteristics of island precipitation. Soft computing uses the well-developed adaptive neuro-fuzzy inference system, which has been successfully applied in atmospheric hydrology and combines the features of neural networks and fuzzy logic. This combination enables artificial intelligence (AI) to effectively represent reasoning derived from complex data and expert experience. Due to the multiple atmospheric and hydrological factors that influence rainfall, the nonlinear interrelations among them are highly intricate. Nonlinear principal component analysis can extract nonlinear features from the data, reduce dimensionality, and minimize the adverse effects of data noise and excessive input factors on soft computing, which may otherwise result in poor model performance. Ultimately, ensemble learning enhances prediction accuracy and reduces uncertainty. This study used Tamsui and Kaohsiung in Taiwan as case study locations. Historical monthly rainfall data (January 1950 to December 2005) from Tamsui Station and Kaohsiung Station of the Central Weather Administration, along with historical and varied emission scenario data (RCP 4.5 and RCP 8.5) from three AR5 GCM models (ACCESS 1.0, CSIRO-MK3.6.0, MRI-CGCM3), were used to evaluate future regional rainfall trends and uncertainties through the method proposed in this study. The research findings indicate the following: (1) Ensemble learning results demonstrate that all examined general circulation models effectively simulate historical rainfall trends. (2) The average rainfall trends under the RCP 4.5 emission scenario are generally consistent with historical rainfall trends. (3) The exceedance probabilities of future rainfall during the mid-term (2061–2080) and long-term (2081–2100) suggest that Kaohsiung may experience precipitation events with higher rainfall than historical data during dry seasons (October to April of next year), while Tamsui Station may exhibit greater variability in terms of exceedance probabilities. (4) Under both the RCP 4.5 and RCP 8.5 emission scenarios, the percentage changes in future rainfall variability at Kaohsiung Station during dry seasons are higher than those during wet seasons (May to September), indicating an increased risk of extreme precipitation events during dry seasons. Full article
(This article belongs to the Special Issue The Hydrologic Cycle in a Changing Climate (2nd Edition))
Show Figures

Figure 1

18 pages, 4522 KiB  
Article
Summer Thermal Comfort in Urban Squares: The Case of Human Tower Exhibitions in Catalonia
by Òscar Saladié, Anna Boqué-Ciurana, Júlia Sevil and Jon Xavier Olano Pozo
Atmosphere 2025, 16(6), 666; https://doi.org/10.3390/atmos16060666 - 1 Jun 2025
Viewed by 670
Abstract
Global warming and the increasing frequency and intensity of heat waves are resulting in more frequent unfavourable weather conditions for outdoor activities, especially during the summer. The building environment can alter weather conditions, resulting in higher temperatures (urban heat island). Human towers are [...] Read more.
Global warming and the increasing frequency and intensity of heat waves are resulting in more frequent unfavourable weather conditions for outdoor activities, especially during the summer. The building environment can alter weather conditions, resulting in higher temperatures (urban heat island). Human towers are cultural activities that typically take place outdoors and were declared a UNESCO Intangible Cultural Heritage in 2010. The objectives of this study are (i) to analyse the weather conditions (i.e., temperature and relative humidity) during the human tower exhibitions, (ii) to determine discomfort during the exhibitions based on the heat index (HI) resulting from the combination of temperature and humidity, and (iii) to compare records from the square with those recorded in the nearest automatic meteorological station (AMS) belonging to the Catalan Meteorological Service network. To determine the weather conditions in the squares during the human tower exhibitions, a pair of sensors recorded temperature and relative humidity data in six exhibitions performed in the summer of 2024. The temperature exceeded 30 °C in five of the six human tower exhibitions analysed. In the cases of the Santa Anna exhibition (El Vendrell) and the Sant Fèlix exhibition (Vilafranca del Penedès), one of the sensors recorded temperatures above 30 °C throughout the entire duration of the exhibition. There was a predominance of HI values falling within the caution threshold in the two sensors of three exhibitions and within the extreme caution threshold in the two sensors of the other three exhibitions. The temperature is higher in urban squares than in the surrounding rural areas. The key factor is the urban heat island phenomenon, which poses health risks to both human tower builders and attendees. Adaptation measures are therefore necessary to guarantee the safety of the participants. Full article
(This article belongs to the Special Issue Urban Heat Islands, Global Warming and Effects)
Show Figures

Figure 1

20 pages, 19278 KiB  
Article
New Model for Weather Stations Integrated to Intelligent Meteorological Forecasts in Brasilia
by Thomas Alexandre da Silva, Andre L. M. Serrano, Erick R. C. Figueiredo, Geraldo P. Rocha Filho, Fábio L. L. de Mendonça, Rodolfo I. Meneguette and Vinícius P. Gonçalves
Sensors 2025, 25(11), 3432; https://doi.org/10.3390/s25113432 - 29 May 2025
Viewed by 764
Abstract
This paper presents a new model for low-cost solar-powered Automatic Weather Stations based on the ESP-32 microcontroller, modern sensors, and intelligent forecasts for Brasilia. The proposed system relies on compact, multifunctional sensors and features an open-source firmware project and open-circuit board design. It [...] Read more.
This paper presents a new model for low-cost solar-powered Automatic Weather Stations based on the ESP-32 microcontroller, modern sensors, and intelligent forecasts for Brasilia. The proposed system relies on compact, multifunctional sensors and features an open-source firmware project and open-circuit board design. It includes a BME688, AS7331, VEML7700, AS3935 for thermo-hygro-barometry (plus air quality), ultraviolet irradiance, luximetry, and fulminology, besides having a rainfall gauge and an anemometer. Powered by photovoltaic panels and batteries, it operates uninterruptedly under variable weather conditions, with data collected being sent via WiFi to a Web API that adapts the MZDN-HF (Meteorological Zone Delimited Neural Network–Hourly Forecaster) model compilation for Brasilia to produce accurate 24 h multivariate forecasts, which were evaluated through MAE, RMSE, and R2 metrics. Installed at the University of Brasilia, it demonstrates robust hardware performance and strong correlation with INMET’s A001 data, suitable for climate monitoring, precision agriculture, and environmental research. Full article
Show Figures

Figure 1

38 pages, 11794 KiB  
Article
Comparing Monitoring Networks to Assess Urban Heat Islands in Smart Cities
by Marta Lucas Bonilla, Ignacio Tadeo Albalá Pedrera, Pablo Bustos García de Castro, Alexander Martín-Garín and Beatriz Montalbán Pozas
Appl. Sci. 2025, 15(11), 6100; https://doi.org/10.3390/app15116100 - 28 May 2025
Viewed by 647
Abstract
The increasing frequency and intensity of heat waves, combined with urban heat islands (UHIs), pose significant public health challenges. Implementing low-cost, real-time monitoring networks with distributed stations within the smart city framework faces obstacles in transforming urban spaces. Accurate data are essential for [...] Read more.
The increasing frequency and intensity of heat waves, combined with urban heat islands (UHIs), pose significant public health challenges. Implementing low-cost, real-time monitoring networks with distributed stations within the smart city framework faces obstacles in transforming urban spaces. Accurate data are essential for assessing these effects. This paper compares different network types in a medium-sized city in western Spain and their implications for UHI identification quality. The study first presents a purpose-built monitoring network using Open-Source platforms, IoT technology, and LoRaWAN communications, adhering to World Meteorological Organization guidelines. Additionally, it evaluates two citizen weather observer networks (CWONs): one from a commercial smart device company and another from a global community connecting environmental sensor data. The findings highlight several advantages of bespoke monitoring networks over CWON, including enhanced data accessibility and greater flexibility to meet specific requirements, facilitating adaptability and scalability for future upgrades. However, specialization is crucial for effective deployment and maintenance. Conversely, CWONs face limitations in network uniformity, data shadow zones, and insufficient knowledge of real sensor situations or component characteristics. Furthermore, CWONs exhibit some data inconsistencies in probability distribution and scatter plots during extreme heat periods, as well as improbable UHI temperature values. Full article
(This article belongs to the Special Issue Smart City and Informatization, 2nd Edition)
Show Figures

Figure 1

32 pages, 8105 KiB  
Article
Spatial Downscaling of Soil Moisture Product to Generate High-Resolution Data: A Multi-Source Approach over Heterogeneous Landscapes in Kenya
by Asnake Kassahun Abebe, Xiang Zhou, Tingting Lv, Zui Tao, Abdelrazek Elnashar, Asfaw Kebede, Chunmei Wang and Hongming Zhang
Remote Sens. 2025, 17(10), 1763; https://doi.org/10.3390/rs17101763 - 19 May 2025
Cited by 1 | Viewed by 1772
Abstract
Soil moisture (SM) estimates are essential for drought monitoring, hydrological modeling, and climate resilience planning applications. While satellite and model-derived SM products effectively capture SM dynamics, their coarse spatial resolutions (~10–36 km) hinder their ability to represent SM variability in heterogeneous landscapes influenced [...] Read more.
Soil moisture (SM) estimates are essential for drought monitoring, hydrological modeling, and climate resilience planning applications. While satellite and model-derived SM products effectively capture SM dynamics, their coarse spatial resolutions (~10–36 km) hinder their ability to represent SM variability in heterogeneous landscapes influenced by local factors. This study proposes a novel downscaling framework that employs an Artificial Neural Network (ANN) on a cloud-computing platform to improve the spatial resolution and representation of multi-source SM datasets. A data analysis was conducted by integrating Google Earth Engine (GEE) with the computing capabilities of the python language through Google Colab. The framework downscaled Soil Moisture Active Passive (SMAP), European Centre for Medium-Range Weather Forecasts Reanalysis 5th Generation (ERA5-Land), and Famine Early Warning Systems Network Land Data Assimilation System (FLDAS) at 500 m for Kenya, East Africa. This was achieved by leveraging ten input variables comprising elevation, slope, surface albedo, vegetation, soil texture, land surface temperatures (day and night), evapotranspiration, and geolocations. The coarse SM datasets exhibited spatiotemporal consistency, with a standard deviation below 0.15 m3/m3, capturing over 95% of the variability in the original data. Validation against in situ SM data at the station confirmed the framework’s reliability, achieving an average UbRMSE of less than 0.04 m3/m3 and a correlation coefficient (r) over 0.52 for each downscaled dataset. Overall, the framework improved significantly in r values from 0.48 to 0.64 for SMAP, 0.47 to 0.63 for ERA5-Land, and 0.60 to 0.69 for FLDAS. Moreover, the performance of FLDAS and its downscaled version across all climate zone is consistent. Despite the uncertainties among the datasets, the framework effectively improved the representation of SM variability spatiotemporally. These results demonstrate the framework’s potential as a reliable tool for enhancing SM applications, particularly in regions with complex environmental conditions. Full article
Show Figures

Figure 1

18 pages, 3673 KiB  
Article
Effects of Smoke on Surface Observations, Turbulence, and Proposed Subcritical Aerosol-Moisture Feedback (SAMF) During the 8 April 2024 Solar Eclipse in Columbus, GA, USA
by Stephen M. Jessup and Britney Blaire Enfinger
Atmosphere 2025, 16(5), 578; https://doi.org/10.3390/atmos16050578 - 12 May 2025
Viewed by 1230
Abstract
Very rarely, the atmosphere produces a natural experiment that, if captured, has the potential to lend insight into the fundamentals of atmospheric behavior. During the North American solar eclipse on 8 April 2024, a prescribed fire on the grounds of Fort Benning produced [...] Read more.
Very rarely, the atmosphere produces a natural experiment that, if captured, has the potential to lend insight into the fundamentals of atmospheric behavior. During the North American solar eclipse on 8 April 2024, a prescribed fire on the grounds of Fort Benning produced a smoky haze in Columbus, Georgia, USA. This haze covered the Columbus State University main campus and the nearby Columbus Airport (KCSG) leading up to and during the peak of the eclipse. Automated Surface Observing Station (ASOS) and Georgia Weather Network observations were examined for the event. At the time of temperature minimum, the temperature depression at KCSG was 0.5 °C greater than at nearby ASOS stations. An “eclipse wind” was observed at KCSG but not at the nearby ASOS stations. Based on observations of steady-state air and dewpoint temperatures, together with rapid fluctuations in visibility, we propose the Subcritical Aerosol-Moisture Feedback (SAMF) mechanism, in which subtle feedbacks among particle growth, relative humidity, and scattering of radiation by aerosol-laden air may maintain steady-state thermodynamic conditions. This case study offers a unique opportunity to examine aerosol behavior under transient radiative forcing, suggesting insights into how a smoky environment enhances thermal buffering and stabilizes the boundary-layer response under rare conditions. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

14 pages, 4842 KiB  
Article
A CNN-Based Downscaling Model for Macau Temperature Prediction Using ERA5 Reanalysis Data
by Ningqing Pang, Hoiio Kong, Chanseng Wong, Zijun Li, Yu Du and Jeremy Cheuk-Hin Leung
Appl. Sci. 2025, 15(10), 5321; https://doi.org/10.3390/app15105321 - 9 May 2025
Viewed by 411
Abstract
Temperature is a core element of the regional climate system and plays a key role in energy exchange and weather evolution. The current reanalysis of temperature data faces difficulties in providing more accurate geographical temperature data due to insufficient spatial resolution (0.25° × [...] Read more.
Temperature is a core element of the regional climate system and plays a key role in energy exchange and weather evolution. The current reanalysis of temperature data faces difficulties in providing more accurate geographical temperature data due to insufficient spatial resolution (0.25° × 0.25°). In this study, a lightweight downscaling method incorporating a convolutional neural network is proposed to construct a high-resolution temperature prediction model for the Macau region based on ERA5 reanalysis data. Aiming at the existing data due to insufficient resolution, a two-stage convolutional feature extraction module is introduced to optimize the model parameters by combining them with the observation data of Macau meteorological stations. The experimental results show that the accuracy of this method is 21.4% higher than that of the traditional interpolation method in the instantaneous prediction, and the prediction effect in the next 3 h is also very good. The model is expected to be extended to other regions in the future, providing an effective solution for obtaining long-term high-resolution temperature data in other regions, which can support the refinement of meteorological services and climate research. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

21 pages, 5200 KiB  
Article
GNSS Precipitable Water Vapor Prediction for Hong Kong Based on ICEEMDAN-SE-LSTM-ARIMA Hybrid Model
by Jie Zhao, Xu Lin, Zhengdao Yuan, Nage Du, Xiaolong Cai, Cong Yang, Jun Zhao, Yashi Xu and Lunwei Zhao
Remote Sens. 2025, 17(10), 1675; https://doi.org/10.3390/rs17101675 - 9 May 2025
Cited by 1 | Viewed by 511
Abstract
Accurate prediction of Global Navigation Satellite System-derived precipitable water vapor (GNSS-PWV), which is a crucial indicator for climate change monitoring, holds significant scientific value for climate disaster prevention and mitigation. In the study of GNSS-PWV prediction, the complete ensemble empirical mode decomposition with [...] Read more.
Accurate prediction of Global Navigation Satellite System-derived precipitable water vapor (GNSS-PWV), which is a crucial indicator for climate change monitoring, holds significant scientific value for climate disaster prevention and mitigation. In the study of GNSS-PWV prediction, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm within a decomposition–integration framework effectively addresses the non-stationarity and complexity of PWV sequences, enhancing prediction accuracy. However, residual noise and pseudo-modes from decomposition can distort signals, reducing the predictor system’s reliability. Additionally, independent modeling of all decomposed components decreases computational efficiency. To address these challenges, this paper proposes a hybrid model combining the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), autoregressive integrated moving average (ARIMA), and long short-term memory (LSTM) networks. Enhanced by local mean optimization and adaptive noise regulation, the ICEEMDAN algorithm effectively suppresses pseudo-modes and minimizes residual noise, enabling its decomposed intrinsic mode functions (IMFs) to more accurately capture the multi-scale features of GNSS-PWV. Sample entropy (SE) is used to quantify the complexity of IMFs, and components with similar entropy values are reconstructed into the following three sub-sequences: high-frequency, low-frequency, and trend. This process significantly reduces modeling complexity and improves computational efficiency. We propose different modeling strategies tailored to the dynamics of various subsequences. For the nonlinear and non-stationary high-frequency components, the LSTM network is used to effectively capture their complex patterns. The LSTM’s gating mechanism and memory cell design proficiently address the long-term dependency issue. For the stationary and weakly nonlinear low-frequency and trend components, linear patterns are extracted using ARIMA. Differencing eliminates trends and moving average operations capture random fluctuations, effectively addressing periodicity and trends in the time series. Finally, the prediction results of the three components are linearly combined to obtain the final prediction value. To validate the model performance, experiments were conducted using measured GNSS-PWV data from several stations in Hong Kong. The results demonstrate that the proposed model reduces the root mean square error by 56.81%, 37.91%, and 13.58% at the 1 h scale compared to the LSTM, EMD-LSTM, and ICEEMDAN-SE-LSTM benchmark models, respectively. Furthermore, it exhibits strong robustness in cross-month forecasts (accounting for seasonal influences) and multi-step predictions over the 1–6 h period. By improving the accuracy and efficiency of PWV predictions, this model provides reliable technical support for the real-time monitoring and early warning of extreme weather events in Hong Kong while offering a universal methodological reference for multi-scale modeling of geophysical parameters. Full article
Show Figures

Figure 1

Back to TopTop