Spatial Downscaling of Soil Moisture Product to Generate High-Resolution Data: A Multi-Source Approach over Heterogeneous Landscapes in Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Selected Predicted Soil Moisture Data
2.2.2. Selected Input Variables/Predictors
2.2.3. In-Situ Soil Moisture Data
2.3. Uncertainty Analysis and Distribution of Multi-Source SM Products
2.4. Proposed Downscaling Framework
2.4.1. Data Processing
2.4.2. Generating High-Resolution Soil Moisture Data
2.5. Soil Moisture Depth Harmonization
2.6. Evaluation Metrics
3. Results
3.1. Uncertainty Analysis of Multi-Source Soil Moisture Products
3.2. Optimum Prediction Model of the Proposed Downscaling Framework
3.3. Roles of Input Variables to Downscale Multi-Source SM Datasets
3.4. Spatial Distribution of Multi-Source SM Products
3.5. Visualizing the Temporal Patterns of Downscaled Products
3.6. Verification of Multi-Source Downscaled SM Data
3.6.1. Station-Based Validation
3.6.2. Overall Validation
3.6.3. Validation Across Varying Climate Zones
4. Discussion
4.1. Significance of Input Variables in Downscaling Multi-Source SM Data
4.2. Discrepancies in Depth, Spatial, and Temporal Scales of Datasets
4.3. Spatiotemporal Variability Effects of Downscaled Results
4.4. Comparison with Previous Studies
4.5. Uncertainties of Downscaling Framework
4.6. Future Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbaszadeh, P.; Moradkhani, H.; Zhan, X. Downscaling SMAP Radiometer Soil Moisture Over the CONUS Using an Ensemble Learning Method. Water Resour. Res. 2019, 55, 324–344. [Google Scholar] [CrossRef]
- Mohseni, F.; Ahrari, A.; Haunert, J.-H.; Montzka, C. The Synergies of SMAP Enhanced and MODIS Products in a Random Forest Regression for Estimating 1 km Soil Moisture over Africa Using Google Earth Engine. Big Earth Data 2024, 8, 33–57. [Google Scholar] [CrossRef]
- Peng, J.; Loew, A.; Merlin, O.; Verhoest, N.E.C. A Review of Spatial Downscaling of Satellite Remotely Sensed Soil Moisture. Rev. Geophys. 2017, 55, 341–366. [Google Scholar] [CrossRef]
- Tramblay, Y.; Quintana Seguí, P. Estimating Soil Moisture Conditions for Drought Monitoring with Random Forests and a Simple Soil Moisture Accounting Scheme. Nat. Hazards Earth Syst. Sci. 2022, 22, 1325–1334. [Google Scholar] [CrossRef]
- Wang, J.; Ling, Z.; Wang, Y.; Zeng, H. Improving Spatial Representation of Soil Moisture by Integration of Microwave Observations and the Temperature–Vegetation–Drought Index Derived from MODIS Products. ISPRS J. Photogramm. Remote Sens. 2016, 113, 144–154. [Google Scholar] [CrossRef]
- Yu, T.; Jiapaer, G.; Bao, A.; Zhang, J.; Tu, H.; Chen, B.; De Maeyer, P.; Van De Voorde, T. Evaluating Surface Soil Moisture Characteristics and the Performance of Remote Sensing and Analytical Products in Central Asia. J. Hydrol. 2023, 617, 128921. [Google Scholar] [CrossRef]
- Parker, N.; Patrignani, A. Revisiting Laboratory Methods for Measuring Soil Water Retention Curves. Soil Sci. Soc. Am. J. 2023, 87, 417–424. [Google Scholar] [CrossRef]
- Singh, A.; Gaurav, K.; Sonkar, G.K.; Lee, C.-C. Strategies to Measure Soil Moisture Using Traditional Methods, Automated Sensors, Remote Sensing, and Machine Learning Techniques: Review, Bibliometric Analysis, Applications, Research Findings, and Future Directions. IEEE Access 2023, 11, 13605–13635. [Google Scholar] [CrossRef]
- Gruber, A.; De Lannoy, G.; Albergel, C.; Al-Yaari, A.; Brocca, L.; Calvet, J.-C.; Colliander, A.; Cosh, M.; Crow, W.; Dorigo, W.; et al. Validation Practices for Satellite Soil Moisture Retrievals: What Are (the) Errors? Remote Sens. Environ. 2020, 244, 111806. [Google Scholar] [CrossRef]
- Brocca, L.; Zhao, W.; Lu, H. High-Resolution Observations from Space to Address New Applications in Hydrology. Innovation 2023, 4, 100437. [Google Scholar] [CrossRef]
- Liu, J.; Chai, L.; Dong, J.; Zheng, D.; Wigneron, J.-P.; Liu, S.; Zhou, J.; Xu, T.; Yang, S.; Song, Y.; et al. Uncertainty Analysis of Eleven Multisource Soil Moisture Products in the Third Pole Environment Based on the Three-Corned Hat Method. Remote Sens. Environ. 2021, 255, 112225. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Heyvaert, Z.; Scherrer, S.; Bechtold, M.; Gruber, A.; Dorigo, W.; Kumar, S.; De Lannoy, G. Impact of Design Factors for ESA CCI Satellite Soil Moisture Data Assimilation over Europe. J. Hydrometeorol. 2023, 24, 1193–1208. [Google Scholar] [CrossRef]
- Kim, D.; Moon, H.; Kim, H.; Im, J.; Choi, M. Intercomparison of Downscaling Techniques for Satellite Soil Moisture Products. Adv. Meteorol. 2018, 2018, 4832423. [Google Scholar] [CrossRef]
- Zheng, M.; Liu, Z.; Li, J.; Xu, Z.; Sun, J. Downscaling Soil Moisture in Regions with High Soil Heterogeneity: The Solution Based on Ensemble Learning with Sequential and Parallel Learner. Sci. Total Environ. 2024, 950, 175260. [Google Scholar] [CrossRef]
- Zhu, Z.; Bo, Y.; Sun, T.; Zhang, X.; Sun, M.; Shen, A.; Zhang, Y.; Tang, J.; Cao, M.; Wang, C. A Downscaling-and-Fusion Framework for Generating Spatio-Temporally Complete and Fine Resolution Remotely Sensed Surface Soil Moisture. Agric. For. Meteorol. 2024, 352, 110044. [Google Scholar] [CrossRef]
- Xu, M.; Yao, N.; Yang, H.; Xu, J.; Hu, A.; Gustavo Goncalves De Goncalves, L.; Liu, G. Downscaling SMAP Soil Moisture Using a Wide & Deep Learning Method over the Continental United States. J. Hydrol. 2022, 609, 127784. [Google Scholar] [CrossRef]
- Qing, Y.; Wang, S.; Ancell, B.C.; Yang, Z.-L. Accelerating Flash Droughts Induced by the Joint Influence of Soil Moisture Depletion and Atmospheric Aridity. Nat. Commun. 2022, 13, 1139. [Google Scholar] [CrossRef]
- Dong, J.; Crow, W.T.; Tobin, K.J.; Cosh, M.H.; Bosch, D.D.; Starks, P.J.; Seyfried, M.; Collins, C.H. Comparison of Microwave Remote Sensing and Land Surface Modeling for Surface Soil Moisture Climatology Estimation. Remote Sens. Environ. 2020, 242, 111756. [Google Scholar] [CrossRef]
- Senanayake, I.P.; Yeo, I.-Y.; Walker, J.P.; Willgoose, G.R. Estimating Catchment Scale Soil Moisture at a High Spatial Resolution: Integrating Remote Sensing and Machine Learning. Sci. Total Environ. 2021, 776, 145924. [Google Scholar] [CrossRef]
- Wernicke, L.J.; Chew, C.C.; Small, E.E.; Das, N.N. Downscaling SMAP Brightness Temperatures to 3 km Using CYGNSS Reflectivity Observations: Factors That Affect Spatial Heterogeneity. Remote Sens. 2022, 14, 5262. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, H.; Bo, Y.; Li, D.; Li, L.; Li, H.; Wang, S.; Li, X. Downscaling Satellite-Derived Soil Moisture in the Three North Region Using Ensemble Machine Learning and Multiple-Source Knowledge Integration. Hydrol. Earth Syst. Sci. 2024. [Google Scholar] [CrossRef]
- Poonia, R.C.; Singh, V.; Nayak, S.R. Deep Learning for Sustainable Agriculture; Cognitive Data Science in Sustainable Computing; Academic Press: London, UK, 2022; ISBN 978-0-323-85214-2. [Google Scholar]
- Liu, Y.; Yang, Y.; Jing, W.; Yue, X. Comparison of Different Machine Learning Approaches for Monthly Satellite-Based Soil Moisture Downscaling over Northeast China. Remote Sens. 2017, 10, 31. [Google Scholar] [CrossRef]
- Lv, A.; Zhang, Z.; Zhu, H. A Neural-Network Based Spatial Resolution Downscaling Method for Soil Moisture: Case Study of Qinghai Province. Remote Sens. 2021, 13, 1583. [Google Scholar] [CrossRef]
- Yao, P.; Lu, H.; Shi, J.; Zhao, T.; Yang, K.; Cosh, M.H.; Gianotti, D.J.S.; Entekhabi, D. A Long Term Global Daily Soil Moisture Dataset Derived from AMSR-E and AMSR2 (2002–2019). Sci. Data 2021, 8, 143. [Google Scholar] [CrossRef]
- Elnashar, A.; Zeng, H.; Wu, B.; Zhang, N.; Tian, F.; Zhang, M.; Zhu, W.; Yan, N.; Chen, Z.; Sun, Z.; et al. Downscaling TRMM Monthly Precipitation Using Google Earth Engine and Google Cloud Computing. Remote Sens. 2020, 12, 3860. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, B.; Elnashar, A.; Yan, N.; Zeng, H.; Zhu, W.; Pang, B. Downscaling Wind Speed Based on Coupled Environmental Factors and Machine Learning. Int. J. Climatol. 2023, 43, 4733–4755. [Google Scholar] [CrossRef]
- Alemohammad, S.H.; Kolassa, J.; Prigent, C.; Aires, F.; Gentine, P. Global Downscaling of Remotely Sensed Soil Moisture Using Neural Networks. Hydrol. Earth Syst. Sci. 2018, 22, 5341–5356. [Google Scholar] [CrossRef]
- Yan, R.; Bai, J. A New Approach for Soil Moisture Downscaling in the Presence of Seasonal Difference. Remote Sens. 2020, 12, 2818. [Google Scholar] [CrossRef]
- Wang, S.; Li, R.; Wu, Y.; Wang, W. Estimation of Surface Soil Moisture by Combining a Structural Equation Model and an Artificial Neural Network (SEM-ANN). Sci. Total Environ. 2023, 876, 162558. [Google Scholar] [CrossRef]
- Nadeem, A.A.; Zha, Y.; Shi, L.; Ali, S.; Wang, X.; Zafar, Z.; Afzal, Z.; Tariq, M.A.U.R. Spatial Downscaling and Gap-Filling of SMAP Soil Moisture to High Resolution Using MODIS Surface Variables and Machine Learning Approaches over ShanDian River Basin, China. Remote Sens. 2023, 15, 812. [Google Scholar] [CrossRef]
- Atkinson, P.M. Downscaling in Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2013, 22, 106–114. [Google Scholar] [CrossRef]
- Khazaei, M.; Hamzeh, S.; Samani, N.N.; Muhuri, A.; Goïta, K.; Weng, Q. A Web-Based System for Satellite-Based High-Resolution Global Soil Moisture Maps. Comput. Geosci. 2023, 170, 105250. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Greifeneder, F.; Notarnicola, C.; Wagner, W. A Machine Learning-Based Approach for Surface Soil Moisture Estimations with Google Earth Engine. Remote Sens. 2021, 13, 2099. [Google Scholar] [CrossRef]
- Wu, Q. Using Google Earth Engine for Interactive Mapping and Analysis of Large-Scale Geospatial Datasets. 2020. [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R. Climate Change and Variability in Kenya: A Review of Impacts on Agriculture and Food Security. Environ. Dev. Sustain. 2021, 23, 23–43. [Google Scholar] [CrossRef]
- Beck, H.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Lutsko, N.J.; Dufour, A.; Zeng, Z.; Jiang, X.; Van Dijk, A.I.J.M.; Miralles, D.G. High-Resolution (1 km) Köppen-Geiger Maps for 1901–2099 Based on Constrained CMIP6 Projections. Sci. Data 2023, 10, 724. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Analysis of Climate Variability and Droughts in East Africa Using High-Resolution Climate Data Products. Glob. Planet. Change 2020, 186, 103130. [Google Scholar] [CrossRef]
- Achieng, A.O.; Arhonditsis, G.B.; Mandrak, N.; Febria, C.; Opaa, B.; Coffey, T.J.; Masese, F.O.; Irvine, K.; Ajode, Z.M.; Obiero, K.; et al. Monitoring Biodiversity Loss in Rapidly Changing Afrotropical Ecosystems: An Emerging Imperative for Governance and Research. Philos. Trans. R. Soc. B 2023, 378, 20220271. [Google Scholar] [CrossRef]
- Masayi, N.N.; Omondi, P.; Tsingalia, M. Assessment of Land Use and Land Cover Changes in Kenya’s Mt. Elgon Forest Ecosystem. Afr. J. Ecol. 2021, 59, 988–1003. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R.; O’Neill, P.; Jackson, T.; Njoku, E.; Dunbar, S.; Chaubell, J.; Piepmeier, J.; Yueh, S.; Entekhabi, D.; et al. Development and Assessment of the SMAP Enhanced Passive Soil Moisture Product. Remote Sens. Environ. 2018, 204, 931–941. [Google Scholar] [CrossRef]
- Chaubell, M.J.; Yueh, S.H.; Dunbar, R.S.; Colliander, A.; Chen, F.; Chan, S.K.; Entekhabi, D.; Bindlish, R.; O’Neill, P.E.; Asanuma, J.; et al. Improved SMAP Dual-Channel Algorithm for the Retrieval of Soil Moisture. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3894–3905. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service. ERA5-Land Hourly Data from 1950 to Present. 2019. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=overview (accessed on 11 July 2024).
- NASA GSFC Hydrological Sciences Laboratory (HSL). FLDAS Noah Land Surface Model L4 Global Monthly 0.1 × 0.1 Degree (MERRA-2 and CHIRPS) V001. 2018. Available online: https://cmr.earthdata.nasa.gov/search/concepts/C1563089663-GES_DISC.html (accessed on 16 July 2024).
- Kong, X.; Meng, X.; Guluzade, R.; Hu, P.; Yang, Y. A Vegetation-Temperature-Radiation-Composite Method for Downscaling Soil Moisture. IEEE Geosci. Remote Sens. Lett. 2024, 21, 7000505. [Google Scholar] [CrossRef]
- Wan, Z.; Hook, S.; Hulley, G. MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid V061. 2021. Available online: https://cmr.earthdata.nasa.gov/search/concepts/C2269056084-LPCLOUD/26 (accessed on 5 January 2025).
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled SRTM for the Globe Version 4. CGIAR-CSI SRTM 90 m Database. 2008. Available online: http://srtm.csi.cgiar.org (accessed on 22 April 2024).
- Kopecký, M.; Macek, M.; Wild, J. Topographic Wetness Index Calculation Guidelines Based on Measured Soil Moisture and Plant Species Composition. Sci. Total Environ. 2021, 757, 143785. [Google Scholar] [CrossRef]
- Hengl, T. Soil Texture Classes (USDA System) for 6 Soil Depths (0, 10, 30, 60, 100 and 200 cm) at 250 m. 2018. Available online: https://zenodo.org/records/1475452 (accessed on 5 January 2025).
- Yu, L.; Gao, W.; Shamshiri, R.; Tao, S.; Ren, Y.; Zhang, Y.; Su, G. Review of Research Progress on Soil Moisture Sensor Technology. Int. J. Agric. Biol. Eng. 2021, 14, 32–42. [Google Scholar] [CrossRef]
- Koster, R.D.; Feldman, A.F.; Holmes, T.R.H.; Anderson, M.C.; Crow, W.T.; Hain, C. Estimating Hydrological Regimes from Observational Soil Moisture, Evapotranspiration, and Air Temperature Data. J. Hydrometeorol. 2024, 25, 495–513. [Google Scholar] [CrossRef]
- Running, S.; Mu, Q.; Zhao, M.; Moreno, A. MODIS/Terra Net Evapotranspiration Gap-Filled 8-Day L4 Global 500 m SIN Grid V061. 2021. Available online: https://data.nasa.gov/dataset/modis-terra-net-evapotranspiration-gap-filled-8-day-l4-global-500m-sin-grid-v061-06143 (accessed on 16 July 2024).
- Liu, S.; Roujean, J.-L.; Kaptue Tchuente, A.T.; Ceamanos, X.; Calvet, J.-C. A Parameterization of SEVIRI and MODIS Daily Surface Albedo with Soil Moisture: Calibration and Validation over Southwestern France. Remote Sens. Environ. 2014, 144, 137–151. [Google Scholar] [CrossRef]
- Schaaf, C.; Wang, Z. MODIS/Terra + Aqua BRDF/Albedo Daily L3 Global—500 m V061. 2021. Available online: https://cmr.earthdata.nasa.gov/search/concepts/C2343116130-LPCLOUD.html (accessed on 5 January 2025).
- Friedl, M.; Sulla-Menashe, D. MODIS/Terra + Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V061. 2022. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MCD12Q1 (accessed on 5 January 2025).
- Van De Giesen, N.; Hut, R.; Selker, J. The Trans-African Hydro-Meteorological Observatory (TAHMO). WIREs Water 2014, 1, 341–348. [Google Scholar] [CrossRef]
- Simons, G.W.H.; Koster, R.; Droogers, P. HiHydroSoil v2.0—A High Resolution Soil Map of Global Hydraulic Properties; Future Water: Wageningen, The Netherlands, 2020. [Google Scholar]
- Zheng, J.; Lü, H.; Crow, W.T.; Zhao, T.; Merlin, O.; Rodriguez-Fernandez, N.; Shi, J.; Zhu, Y.; Su, J.; Kang, C.S.; et al. Soil Moisture Downscaling Using Multiple Modes of the DISPATCH Algorithm in a Semi-Humid/Humid Region. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102530. [Google Scholar] [CrossRef]
- Chen, F.; Crow, W.T.; Colliander, A.; Cosh, M.H.; Jackson, T.J.; Bindlish, R.; Reichle, R.H.; Chan, S.K.; Bosch, D.D.; Starks, P.J.; et al. Application of Triple Collocation in Ground-Based Validation of Soil Moisture Active/Passive (SMAP) Level 2 Data Products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 489–502. [Google Scholar] [CrossRef]
- Cui, Y.; Yang, X.; Chen, X.; Fan, W.; Zeng, C.; Xiong, W.; Hong, Y. A Two-Step Fusion Framework for Quality Improvement of a Remotely Sensed Soil Moisture Product: A Case Study for the ECV Product over the Tibetan Plateau. J. Hydrol. 2020, 587, 124993. [Google Scholar] [CrossRef]
- Hung, C.P.; Schalge, B.; Baroni, G.; Vereecken, H.; Hendricks Franssen, H. Assimilation of Groundwater Level and Soil Moisture Data in an Integrated Land Surface-Subsurface Model for Southwestern Germany. Water Resour. Res. 2022, 58, e2021WR031549. [Google Scholar] [CrossRef]
- Fu, X.; Jiang, X.; Yu, Z.; Ding, Y.; Lü, H.; Zheng, D. Understanding the Key Factors That Influence Soil Moisture Estimation Using the Unscented Weighted Ensemble Kalman Filter. Agric. For. Meteorol. 2022, 313, 108745. [Google Scholar] [CrossRef]
- Hinton, G.E. Connectionist Learning Procedures. Artif. Intell. 1989, 40, 185–234. [Google Scholar] [CrossRef]
- Hecht-Nielsen, R. Kolmogorov’s Mapping Neural Network Existence Theorem. In Proceedings of the International Conference on Neural Networks, San Diego, CA, USA, 21–24 June 1987; IEEE Press: New York, NY, USA, 1987; Volume 3, pp. 11–14. [Google Scholar]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; De Rosnay, P.; Ryu, D.; Walker, J.P. Upscaling Sparse Ground-based Soil Moisture Observations for the Validation of Coarse-resolution Satellite Soil Moisture Products. Rev. Geophys. 2012, 50, 2011RG000372. [Google Scholar] [CrossRef]
- Detto, M.; Montaldo, N.; Albertson, J.D.; Mancini, M.; Katul, G. Soil Moisture and Vegetation Controls on Evapotranspiration in a Heterogeneous Mediterranean Ecosystem on Sardinia, Italy. Water Resour. Res. 2006, 42, 2005WR004693. [Google Scholar] [CrossRef]
- Albano, R.; Mazzariello, A.; Lacava, T.; Manfreda, S.; Sole, A. Satellite-Based Soil Moisture Product Performance Assessment among the EU Ecoregions. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023. [Google Scholar]
- Chan, T.F.; Golub, G.H.; Leveque, R.J. Algorithms for Computing the Sample Variance: Analysis and Recommendations. Am. Stat. 1983, 37, 242–247. [Google Scholar] [CrossRef]
- Warmerdam, F. The Geospatial Data Abstraction Library. In Open Source Approaches in Spatial Data Handling; Advances in Geographic Information Science; Hall, G.B., Leahy, M.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 2, pp. 87–104. ISBN 978-3-540-74830-4. [Google Scholar]
- Kovačević, J.; Cvijetinović, Ž.; Stančić, N.; Brodić, N.; Mihajlović, D. New Downscaling Approach Using ESA CCI SM Products for Obtaining High Resolution Surface Soil Moisture. Remote Sens. 2020, 12, 1119. [Google Scholar] [CrossRef]
- Fuentes, I.; Padarian, J.; Vervoort, R.W. Towards near Real-Time National-Scale Soil Water Content Monitoring Using Data Fusion as a Downscaling Alternative. J. Hydrol. 2022, 609, 127705. [Google Scholar] [CrossRef]
- Clapp, R.B.; Hornberger, G.M. Empirical Equations for Some Soil Hydraulic Properties. Water Resour. Res. 1978, 14, 601–604. [Google Scholar] [CrossRef]
- Ford, T.W.; Harris, E.; Quiring, S.M. Estimating Root Zone Soil Moisture Using Near-Surface Observations from SMOS. Hydrol. Earth Syst. Sci. 2014, 18, 139–154. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Joseph, A.T.; Van Der Velde, R.; O’Neill, P.E.; Choudhury, B.J.; Lang, R.H.; Kim, E.J.; Gish, T. L Band Brightness Temperature Observations over a Corn Canopy during the Entire Growth Cycle. Sensors 2010, 10, 6980–7001. [Google Scholar] [CrossRef] [PubMed]
- Ghahremanloo, M.; Mobasheri, M.R.; Amani, M. Soil Moisture Estimation Using Land Surface Temperature and Soil Temperature at 5 Cm Depth. Int. J. Remote Sens. 2019, 40, 104–117. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Hohenegger, C.; Brockhaus, P.; Bretherton, C.S.; Schär, C. The Soil Moisture–Precipitation Feedback in Simulations with Explicit and Parameterized Convection. J. Clim. 2009, 22, 5003–5020. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Fu, B.; Yang, W.; Yao, H.; He, H.; Lan, G.; Gao, E.; Qin, J.; Fan, D.; Chen, Z. Evaluation of Spatio-Temporal Variations of FVC and Its Relationship with Climate Change Using GEE and Landsat Images in Ganjiang River Basin. Geocarto Int. 2022, 37, 13658–13688. [Google Scholar] [CrossRef]
- Agutu, N.O.; Awange, J.L.; Zerihun, A.; Ndehedehe, C.E.; Kuhn, M.; Fukuda, Y. Assessing Multi-Satellite Remote Sensing, Reanalysis, and Land Surface Models’ Products in Characterizing Agricultural Drought in East Africa. Remote Sens. Environ. 2017, 194, 287–302. [Google Scholar] [CrossRef]
- Grillakis, M.G.; Koutroulis, A.G.; Alexakis, D.D.; Polykretis, C.; Daliakopoulos, I.N. Regionalizing Root-Zone Soil Moisture Estimates From ESA CCI Soil Water Index Using Machine Learning and Information on Soil, Vegetation, and Climate. Water Resour. Res. 2021, 57, e2020WR029249. [Google Scholar] [CrossRef]
- Fang, Y.; Xu, L.; Chen, Y.; Zhou, W.; Wong, A.; Clausi, D.A. A Bayesian Deep Image Prior Downscaling Approach for High-Resolution Soil Moisture Estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4571–4582. [Google Scholar] [CrossRef]
- Tagesson, T.; Horion, S.; Nieto, H.; Zaldo Fornies, V.; Mendiguren González, G.; Bulgin, C.E.; Ghent, D.; Fensholt, R. Disaggregation of SMOS Soil Moisture over West Africa Using the Temperature and Vegetation Dryness Index Based on SEVIRI Land Surface Parameters. Remote Sens. Environ. 2018, 206, 424–441. [Google Scholar] [CrossRef]
Dataset | Spatial Resolution | Variable Selected | SM Depth | Measurement Units | Temporal Resolution | Selected Period |
---|---|---|---|---|---|---|
SMAP L4 | 11,000 m | sm_surface | 0–5 cm | Volume fraction | 3 h | 2020–2022 |
ERA5-Land | 11,132 m (~11,000) | volumetric_soil_water_layer_1 | 0–7 cm | Volume fraction | Daily | |
FLDAS | 11,132 m (~11,000) | SoilMoi00_10 cm_tavg | 0–10 cm | Volume fraction | Monthly basis |
Data | Variable Selected | Spatial Resolution | Measurement Units | Temporal Resolution | Selected Period |
---|---|---|---|---|---|
Vegetation Indices (MODIS Terra) | NDVI | 250 m | - | 16 days | 2020–2022 |
MODIS Land Surface Temperature (LST) | LST_Day, LST_Night | 1 km | Kelvin | 8 days | 2020–2022 |
Topographic Data (SRTM DEM) | Elevation, Slope, Aspect | 90 m | m | - | 2000 |
Soil Texture (OpenLandMap) | Soil Texture (10 cm depth) | 250 m | cm | Annual | 2018 |
Evapotranspiration (MODIS Terra) | ET | 500 m | kg/m2/8 day | 8 days | 2020–2022 |
Surface Albedo (MODIS) | WSA SWIR | 500 m | - | Daily | 2020–2022 |
Land Cover (MODIS) | LC_Type1 | 500 m | - | Annual | 2022 |
Month | r | KGE | UbRMSE (m3/m3) | MAE (m3/m3) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SMAP | ERA5-Land | FLDAS | SMAP | ERA5-Land | FLDAS | SMAP | ERA5-Land | FLDAS | SMAP | ERA5-Land | FLDAS | |
January | 0.89 | 0.92 | 0.96 | 0.86 | 0.91 | 0.94 | 0.039 | 0.040 | 0.016 | 0.029 | 0.029 | 0.011 |
February | 0.91 | 0.94 | 0.98 | 0.89 | 0.92 | 0.97 | 0.039 | 0.041 | 0.013 | 0.028 | 0.029 | 0.009 |
March | 0.89 | 0.91 | 0.97 | 0.87 | 0.88 | 0.95 | 0.037 | 0.040 | 0.014 | 0.026 | 0.028 | 0.010 |
April | 0.87 | 0.91 | 0.92 | 0.84 | 0.89 | 0.90 | 0.038 | 0.041 | 0.017 | 0.028 | 0.030 | 0.012 |
May | 0.88 | 0.92 | 0.94 | 0.85 | 0.90 | 0.92 | 0.043 | 0.041 | 0.020 | 0.032 | 0.030 | 0.014 |
June | 0.85 | 0.91 | 0.96 | 0.82 | 0.87 | 0.95 | 0.043 | 0.040 | 0.018 | 0.032 | 0.029 | 0.012 |
July | 0.85 | 0.91 | 0.96 | 0.82 | 0.89 | 0.95 | 0.040 | 0.039 | 0.017 | 0.030 | 0.028 | 0.011 |
August | 0.89 | 0.93 | 0.97 | 0.86 | 0.91 | 0.96 | 0.037 | 0.039 | 0.015 | 0.028 | 0.027 | 0.010 |
September | 0.90 | 0.93 | 0.98 | 0.87 | 0.91 | 0.98 | 0.036 | 0.038 | 0.014 | 0.027 | 0.027 | 0.009 |
October | 0.89 | 0.91 | 0.97 | 0.86 | 0.89 | 0.96 | 0.035 | 0.040 | 0.015 | 0.026 | 0.028 | 0.011 |
November | 0.87 | 0.90 | 0.94 | 0.84 | 0.87 | 0.92 | 0.035 | 0.041 | 0.017 | 0.026 | 0.030 | 0.013 |
December | 0.88 | 0.92 | 0.95 | 0.85 | 0.89 | 0.94 | 0.038 | 0.043 | 0.017 | 0.027 | 0.031 | 0.012 |
Station | SMAP | ERA5-Land | FLDAS | Downscaled SMAP | Downscaled ERA5-Land | Downscaled FLDAS |
---|---|---|---|---|---|---|
TA00025 | 0.80 | 0.73 | 0.78 | 0.77 | 0.75 | 0.81 |
TA00030 | 0.83 | 0.85 | 0.83 | 0.82 | 0.85 | 0.84 |
TA00108 | 0.84 | 0.87 | 0.82 | 0.83 | 0.87 | 0.83 |
TA00183 | 0.91 | 0.77 | 0.84 | 0.91 | 0.79 | 0.84 |
TA00184 | 0.74 | 0.84 | 0.71 | 0.73 | 0.83 | 0.73 |
TA00185 | 0.58 | 0.76 | 0.58 | 0.52 | 0.79 | 0.58 |
TA00190 | 0.66 | 0.75 | 0.66 | 0.65 | 0.77 | 0.64 |
TA00283 | 0.70 | 0.77 | 0.74 | 0.66 | 0.76 | 0.75 |
TA00379 | 0.88 | 0.84 | 0.78 | 0.88 | 0.84 | 0.79 |
TA00413 | 0.67 | 0.72 | 0.77 | 0.69 | 0.71 | 0.78 |
TA00453 | 0.81 | 0.79 | 0.77 | 0.84 | 0.81 | 0.78 |
Average | 0.77 | 0.79 | 0.75 | 0.75 | 0.80 | 0.76 |
Station | SMAP | ERA5-Land | FLDAS | Downscaled SMAP | Downscaled ERA5-Land | Downscaled FLDAS |
---|---|---|---|---|---|---|
TA00025 | 0.046 | 0.056 | 0.038 | 0.039 | 0.042 | 0.023 |
TA00030 | 0.045 | 0.042 | 0.030 | 0.044 | 0.042 | 0.029 |
TA00108 | 0.036 | 0.047 | 0.048 | 0.036 | 0.043 | 0.041 |
TA00183 | 0.024 | 0.043 | 0.032 | 0.024 | 0.051 | 0.032 |
TA00184 | 0.035 | 0.049 | 0.038 | 0.036 | 0.046 | 0.037 |
TA00185 | 0.059 | 0.048 | 0.058 | 0.063 | 0.044 | 0.059 |
TA00190 | 0.048 | 0.029 | 0.042 | 0.047 | 0.028 | 0.043 |
TA00283 | 0.042 | 0.034 | 0.033 | 0.042 | 0.035 | 0.033 |
TA00379 | 0.031 | 0.045 | 0.041 | 0.031 | 0.046 | 0.040 |
TA00413 | 0.034 | 0.029 | 0.033 | 0.031 | 0.030 | 0.033 |
TA00453 | 0.032 | 0.032 | 0.034 | 0.030 | 0.032 | 0.034 |
Average | 0.039 | 0.041 | 0.039 | 0.038 | 0.040 | 0.037 |
Station | SMAP | ERA5-Land | FLDAS | Downscaled SMAP | Downscaled ERA5-Land | Downscaled FLDAS |
---|---|---|---|---|---|---|
TA00025 | 0.034 | 0.049 | 0.032 | 0.029 | 0.031 | 0.101 |
TA00030 | 0.038 | 0.036 | 0.052 | 0.037 | 0.036 | 0.059 |
TA00108 | 0.067 | 0.163 | 0.079 | 0.061 | 0.150 | 0.071 |
TA00183 | 0.027 | 0.091 | 0.095 | 0.025 | 0.060 | 0.094 |
TA00184 | 0.055 | 0.040 | 0.056 | 0.053 | 0.037 | 0.059 |
TA00185 | 0.106 | 0.070 | 0.050 | 0.062 | 0.037 | 0.051 |
TA00190 | 0.039 | 0.123 | 0.034 | 0.039 | 0.116 | 0.043 |
TA00283 | 0.098 | 0.177 | 0.123 | 0.090 | 0.159 | 0.096 |
TA00379 | 0.028 | 0.079 | 0.035 | 0.028 | 0.029 | 0.033 |
TA00413 | 0.095 | 0.124 | 0.131 | 0.025 | 0.126 | 0.128 |
TA00453 | 0.058 | 0.046 | 0.067 | 0.046 | 0.024 | 0.068 |
Average | 0.059 | 0.091 | 0.069 | 0.045 | 0.073 | 0.073 |
Prediction Model | Input Variables | Soil Moisture | Downscaled Resolution | Study Area | Performance (r, UbRMSE (m3/m3)) | Source |
---|---|---|---|---|---|---|
RF | MODIS (LST, Albedo, NDVI, NDWI, LAI), Elevation | SMAP (36 km) | 1 km | CONUS | UbRMSE USCRN: 0.040, SCAN: 0.047 | [1] |
RT, ANN, GPR | MODIS (LST, NDVI), and soil clay | SMAP (~9 km) | 1 km | Australia | UbRMSE RT: 0.07, ANN: 0.08, GPR: 0.05 | [20] |
Data Fusion, BME | MODIS (EVI, Albedo, LST) | ESA CCI (~25 km) | 1 km | Tibetan Plateau | r = 0.592 UbRMSE = 0.083 | [16] |
CART, KNN, BAYE, RF | MODIS (LST_Day, LST_Night, ΔLST, NDVI, Spectral bands, DEM | ESA CCI (~25 km) | 1 km | China | r2 CART: 0.135, KNN: 0.130, BAYE: 0.119, RF: 0.191 RMSE CART: 0.076, KNN: 0.074, BAYE: 0.075, RF: 0.073 | [24] |
RF | MODIS (LST, ΔLST, NDVI, Reflectance bands) | SMAP L4 (~9 km) | 1 km | Ghana & Kenya | Ghana (r = 0.64, UbRMSE = 0.058) Kenya (r = 0.65, UbRMSE = 0.110) | [2] |
SVR | MODIS (LST, NDVI) | ASCAT (~12.5 km) | 1 km | Korea | r = 0.68 RMSE = 0.07 | [14] |
Wide and Deep Learning (WDL) | Brightness temperature/s, LST, surface reflectance, soil properties, DEM, land use, precipitation | SMAP SM (SPL3SMP, 36 km) | 1 km | CONUS | r = 0.325–0.997, average of 0.715 UbRMSE = 0.010–0.141, average of 0.04 | [17] |
Bayesian | MODIS (NDVI, LST), Interpolated SMAP | SMAP (~9 km) | 1 km | CONUS | r = 0.88, UbRMSE = 0.053 | [85] |
ANN RF | NDVI, EVI, NDWI, LSWI, NSDSI, LST, elevation, slope, and aspect | SMAP (SPL3SMP, 36 km) | 1 km | China | ANN + Terra (r = 0.44, UbRMSE = 0.048) RFR + Terra (r = 0.52, UbRMSE = 0.037) ANN + Aqua (r = 0.51, UbRMSE = 0.051) RFR + Aqua (r = 0.50, UbRMSE = 0.039) | [32] |
DISPATCH TRAPEZOID | SEVIRI LST, FVC (43 km) | SMOS (~12.5 km) | 5 km | West Africa | RMSE = 0.034–0.11 | [86] |
ANN | MODIS (NDVI, ET, Albedo, LST_Day, LST_Night), Elevation, Slope, Soil Texture, Latitude, and Longitude | SMAP, ERA5-Land, FLDAS (~9 km) | 500 m (0.5 km) | Kenya | r SMAP: 0.52–0.91 ERA5-Land: 0.71–0.87 FLDAS: 0.58–0.84 UbRMSE SMAP: 0.024–0.063 ERA5-Land: 0.028–0.051 FLDAS: 0.023–0.059 | This Study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abebe, A.K.; Zhou, X.; Lv, T.; Tao, Z.; Elnashar, A.; Kebede, A.; Wang, C.; Zhang, H. Spatial Downscaling of Soil Moisture Product to Generate High-Resolution Data: A Multi-Source Approach over Heterogeneous Landscapes in Kenya. Remote Sens. 2025, 17, 1763. https://doi.org/10.3390/rs17101763
Abebe AK, Zhou X, Lv T, Tao Z, Elnashar A, Kebede A, Wang C, Zhang H. Spatial Downscaling of Soil Moisture Product to Generate High-Resolution Data: A Multi-Source Approach over Heterogeneous Landscapes in Kenya. Remote Sensing. 2025; 17(10):1763. https://doi.org/10.3390/rs17101763
Chicago/Turabian StyleAbebe, Asnake Kassahun, Xiang Zhou, Tingting Lv, Zui Tao, Abdelrazek Elnashar, Asfaw Kebede, Chunmei Wang, and Hongming Zhang. 2025. "Spatial Downscaling of Soil Moisture Product to Generate High-Resolution Data: A Multi-Source Approach over Heterogeneous Landscapes in Kenya" Remote Sensing 17, no. 10: 1763. https://doi.org/10.3390/rs17101763
APA StyleAbebe, A. K., Zhou, X., Lv, T., Tao, Z., Elnashar, A., Kebede, A., Wang, C., & Zhang, H. (2025). Spatial Downscaling of Soil Moisture Product to Generate High-Resolution Data: A Multi-Source Approach over Heterogeneous Landscapes in Kenya. Remote Sensing, 17(10), 1763. https://doi.org/10.3390/rs17101763