Summer Thermal Comfort in Urban Squares: The Case of Human Tower Exhibitions in Catalonia
Abstract
1. Introduction
2. Materials and Methods
- (a)
- One sensor was exposed to solar radiation for the entire duration of the exhibition. The other sensor was located in the shade for the entire duration of the exhibition. This will allow us to determine the temperature differences between areas exposed to the sun and those in the shade. In some cases, the square’s characteristics (e.g., geometry, buildings, adjacent streets) made it challenging to meet the first criterion during the entire duration of the exhibition, and the sensor was exposed to solar radiation or in the shade throughout most of the exhibition. Additionally, sudden cloud cover can impact the readings of sensors exposed to solar radiation. The sensor reading can also be affected by fluctuating wind speeds;
- (b)
- One sensor was as close as possible to one of the human tower teams participating in the exhibition, and the other was close to the area occupied by the attendees. The former involves physical activity, while the latter can also be impacted by high temperatures, especially when exposed to solar radiation;
- (c)
- Sensors were placed at a height that did not interfere with the exhibition (i.e., approximately 190 cm) to reduce the risk of harm to people and damage to the sensor accidentally or otherwise.
- (a)
- Caution (26.1–32 °C): Fatigue possible with prolonged exposure and/or physical activity;
- (b)
- Extreme caution (32.1–40 °C): Heat stroke, heat cramps, and/or heat exhaustion are possible with prolonged exposure and/or physical activity;
- (c)
- Danger (40.1–52 °C): Heat cramps or heat exhaustion are likely, and heat stroke is possible with prolonged exposure and/or physical activity;
- (d)
- Extreme danger (>52 °C): Heat stroke is highly likely.
3. Results
3.1. Temperature and Relative Humidity Conditions
3.2. Thermal Discomfort Based on Heat Index Values
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernard, P.; Chevance, G.; Kingsbury, C.; Baillot, A.; Romain, A.J.; Molinier, V.; Gadais, T.; Dancause, K.N. Climate change, physical activity and sport: A systematic review. Sports Med. 2021, 51, 1041–1059. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, J.; Obradovich, N.; Zheng, S. Intraday adaptation to extreme temperatures in outdoor activity. Sci. Rep. 2023, 13, 473. [Google Scholar] [CrossRef]
- Ho, J.Y.; Googins, W.B.; Mo, P.K.H.; Chan, E.Y.Y. The effect of temperature on physical activity: An aggregated timeseries analysis of smartphone users in five major Chinese cities. Int. J. Behav. Nutr. Phys. Act. 2022, 19, 68. [Google Scholar] [CrossRef]
- Janice, Y.H.; Lam, H.Y.C.; Huang, Z.; Liu, S.; Goggins, W.B.; Mo, P.K.H.; Chan, E.Y.Y. Factors affecting outdoor physical activity in extreme temperatures in a sub-tropical Chinese urban population: An exploratory telephone survey. BMC Public Health 2023, 23, 101. [Google Scholar] [CrossRef]
- Turrisi, T.B.; Bittel, K.M.; West, A.B.; Hojjatinia, S.; Mama, S.K.; Lago, C.M.; Convoy, D.E. Seasons, weather, and device-measured movement behaviors: A scoping review from 2006 to 2020. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 24. [Google Scholar] [CrossRef]
- Andreu Giner, J. Enciclopèdia Castellera. Tècnica i Ciència; Cossetània Edicions: Valls, Spain, 2018; Volume 3, p. 249. [Google Scholar]
- Bean, R.; Pojani, D.; Corcoran, J. How does weather affect bikeshare use? A comparative analysis of forty cities across climate zones. J. Transp. Geogr. 2021, 95, 103155. [Google Scholar] [CrossRef]
- Wolff, D.; Fitzhugh, E.C. The relationships between weather-related factors and daily outdoor physical activity counts on an urban greenway. Int. J. Environ. Res. Public Health 2011, 8, 579–589. [Google Scholar] [CrossRef]
- Huang, Z.; Cheng, B.; Gou, Z.; Zhang, F. Outdoor thermal comfort and adaptive behaviors in a university campus in China’s hot summer-cold winter climate region. Build. Environ. 2019, 165, 106414. [Google Scholar] [CrossRef]
- Ji, Y.; Song, J.; Shen, P. A review of studies modelling of solar radiation on human thermal comfort in outdoor environment. Build. Environ. 2022, 214, 108891. [Google Scholar] [CrossRef]
- He, X.; Gao, W.; Wang, R.; Yan, D. Study on outdoor thermal comfort of factory areas during winter in hot summer and cold winter zone of China. Build. Environ. 2023, 228, 109883. [Google Scholar] [CrossRef]
- Aghamolaei, R.; Mehdi Azizi, M.; Aminzadeh, B.; O’Donnell, J. A comprehensive review of outdoor thermal comfort in urban areas: Effective parameters and approaches. Energy Environ. 2023, 34, 2204–2227. [Google Scholar] [CrossRef]
- Brotons Navarro, X.; Soler García de Oteyza, G. Enciclopèdia Castellera. Les Places; Cossetània Edicions: Valls, Spain, 2024; Volume 8, p. 265. [Google Scholar]
- Aljawabra, F.; Nikolopoulou, M. Thermal comfort in urban spaces: A cross-cultural study in the hot arid climate. Int. J. Bio-meteorol. 2018, 62, 1901–1909. [Google Scholar] [CrossRef]
- Santos Nouri, A.; Costa, J.P. Addressing thermophysiological thresholds and psychological aspects during hot and dry Mediterranean summers through public space design. The case of Rossio. Build. Environ. 2017, 118, 67–90. [Google Scholar] [CrossRef]
- Su, Y.; Wang, C.; Li, Z.; Meng, Q.; Gong, A.; Wu, Z.; Zhao, Q. Summer outdoor comfort assessment in city squares-A case study of cold dry winter, hot summer climate zone. Sustain. Cities Soc. 2024, 101, 105062. [Google Scholar] [CrossRef]
- Landsberg, H.E. The urban climate. In International Geophysics Series; Academic Press: New York, NY, USA, 1981; Volume 28, p. 277. [Google Scholar]
- Chatzidimitriou, A.; Yannas, S. Microclimate development in open urban spaces: The influence of form and materials. Energy Build. 2015, 108, 156–174. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Mirabi, E.; Nasrollahi, N. Urban facade geometry on outdoor comfort conditions: A Review. Eur. Online J. Nat. Soc. Sci. 2020, 9, 655–677. [Google Scholar] [CrossRef]
- Battisti, A. Bioclimatic architecture and urban morphology. Studies on intermediate urban open spaces. Energies 2020, 13, 5819. [Google Scholar] [CrossRef]
- Vasic, M.; Milosevic, D.; Savic, S.; Bielajac, D.; Arsenovic, D.; Dunjic, J. Micrometeorological measurements and biometeorologial survey in different urban settings of Novi Sad (Serbia). Bull. Serbian Geogr. Soc. 2022, 102, 45–66. [Google Scholar] [CrossRef]
- Athukorala, D.; Murayama, Y. Urban Heat Island Formation in Greater Cairo: Spatio-Temporal Analysis of Daytime and Nighttime Land Surface Temperatures along the Urban-Rural Gradient. Remote Sens. 2021, 13, 1396. [Google Scholar] [CrossRef]
- Cesic, M.; Rogulj, K.; Krtalic, A. Combined Thermal Index Development for Urban Heat Island Detection in Area of Split, Croatia. Land 2025, 14, 175. [Google Scholar] [CrossRef]
- Dewan, A.; Kiselev, G.; Botje, D.; Mahmud, G.I.; Bhuian, M.H.; Hassan, Q.K. Surface urban heat island intensity in five major cities of Bangladesh: Patterns, drivers and trends. Sustain. Cities Soc. 2021, 71, 102926. [Google Scholar] [CrossRef]
- Foissard, X.; Dubreuil, V.; Quénol, H. Defining scales of the land use effect to map the urban heat island in a mid-size European city: Rennes (France). Urban Clim. 2019, 29, 100490. [Google Scholar] [CrossRef]
- Holec, J.; Feranec, J.; Stastny, P.; Szatmári, D.; Kopecká, M.; Garaj, M. Evolution and assessment of urban heat island between the years 1998 and 2016: Case study of the cities Bratislava and Trnava in western Slovakia. Theor. Appl. Climatol. 2020, 141, 979–997. [Google Scholar] [CrossRef]
- Santamouris, M.; Haddad, S.; Fiorito, F.; Osmond, P.; Ding, L.; Prasad, D.; Zhai, X.; Wang, R. Urban Heat Island and Overheating Characteristics in Sydney, Australia. An Analysis of Multiyear Measurements. Sustainability 2017, 9, 712. [Google Scholar] [CrossRef]
- Dienst, M.; Lindén, J.; Saladié, O.; Esper, J. Detection and elimination of UHI effects in long temperature records from villages—A case study from Tivissa, Spain. Urban Clim. 2019, 27, 372–383. [Google Scholar] [CrossRef]
- Cheval, S.; Amihaesei, V.-A.; Chit, Z.; Dumitrescu, A.; Falcescu, V.; Irasoc, A.; Micu, D.M.; Mihulet, E.; Ontel, I.; Paraschiv, M.-G.; et al. A systematic review of urban heat island and heat waves research (1991–2022). Clim. Risk Manag. 2024, 44, 100603. [Google Scholar] [CrossRef]
- Mandic, L.; Djukic, A.; Maric, J.; Mitrovic, B. A systematic review of outdoor thermal comfort studies for the urban (re)desing of city squares. Sustainability 2024, 16, 4920. [Google Scholar] [CrossRef]
- Goodman, J.; Humphrys, E.; Newman, F. Working in heat: Contrasting heat management approaches among outdoor employees and contractors. Saf. Sci. 2023, 165, 106185. [Google Scholar] [CrossRef]
- Amoadu, M.; Ansah, E.W.; Sarfo, J.O.; Hormenu, T. Impact of climate change and heat stress on workers’ health and productivity: A scoping review. J. Clim. Change Health 2023, 12, 100249. [Google Scholar] [CrossRef]
- Ioannou, L.G.; Foster, J.; Morris, N.B.; Piil, J.F.; Havenith, G.; Mekjavic, I.B.; Kenny, G.P.; Nybo, L.; Flouris, A.D. Occupational heat strain in outdoor workers: A comprehensive review and meta-analysis. Temperature 2022, 9, 67–102. [Google Scholar] [CrossRef]
- Fenemor, S.P.; Gill, N.D.; Driller, M.W.; Mills, B.; Casadio, J.R.; Beaven, C.M. The relationship between physiological and performance variables during a hot/humid international rugby sevens tournament. Eur. J. Sport Sci. 2022, 22, 1499–1507. [Google Scholar] [CrossRef]
- Oyama, T.; Fuji, M.; Nakajima, K.; Takakura, J.; Hijioka, Y. Validation of upper thermal thresholds for outdoor sports using thermal physiology modelling. Temperature 2023, 11, 92–106. [Google Scholar] [CrossRef]
- Özgünen, K.T.; Kurdak, S.S.; Maughan, R.J.; Zeren, Ç.; Korkmaz, S.; Yazici, Z.; Ersöz, G.; Shirreffs, M.; Binnet, M.S.; Dvorak, J. Effects of hot environmental conditions on physical activity patterns and temperature response of football players. Scand. J. Med. Sci. Sports 2019, 22, 912–917. [Google Scholar] [CrossRef]
- Hosokawa, Y.; Adams, W.M. Heat risks in athletics. In Human Health and Physical Activity During Heat Exposure; Hosokawa, Y., Ed.; Springer Briefs in Medical Earth Sciences; Springer: Cham, Switzerland, 2018; pp. 73–83. [Google Scholar] [CrossRef]
- Matzarakis, A.; Fröhlich, D. Sport events and climate for visitors—The case of FIFA World Cup in Qatar 2022. Int. J. Biometeorol. 2015, 59, 481–486. [Google Scholar] [CrossRef]
- Orr, M.; Inoue, Y. Sport versus climate: Introducing the climate vulnerability of sport organizations framework. Sport Manag. Rev. 2019, 22, 452–463. [Google Scholar] [CrossRef]
- Schneider, S.; Niederberger, M.; Kurowski, L.; Bade, L. How can outdoor sports protect themselves against climate change-related health risks?—A prevention model based on an expert Delphi study. J. Sci. Med. Sport 2024, 27, 37–44. [Google Scholar] [CrossRef]
- Capdevila, X. Canvi Climàtic i Castells. Revista Castells. 2023. Available online: https://revistacastells.cat/2023/10/opinio-canvi-climatic-i-castells/ (accessed on 18 December 2024).
- Terraza, S. Tres Fotografies Reveladores. Revista Castells. 2023. Available online: https://revistacastells.cat/2023/07/opinio-tres-fotografies-reveladores/ (accessed on 18 December 2024).
- Ajuntament de Valls. In Proceedings of the XI Simposi Casteller de Catalunya, Fira de Santa Úrsula, Museu Casteller de Catalunya, Valls, Spain, 21 October 2023; Available online: https://www.valls.cat/simposi-casteller (accessed on 14 November 2024).
- Coordinadora de Colles Castelleres de Catalunya. In Proceedings of the XXVIII Jornada de Prevenció de Lesions en el Mon Casteller, El Vendrell, Spain, 9 March 2024; Available online: https://castellscat.cat/ca/noticia/325-la-28a-jornada-de-prevencio-de-lesions-en-el-mon-casteller-se-centrara-en-la-sostenibilitat-i-els-riscos-del-canvi-climatic (accessed on 14 November 2024).
- Vaczi, M. From subalternity to intangible heritage and national symbol: Catalonia’s castells. In Indigenous, Traditional, and Folk Sports: Contesting Modernities; Vaczi, M., Bairner, A., Eds.; Routledge: New York, NY, USA, 2023; pp. 70–85. [Google Scholar]
- Fatoric, S.; Seekamp, E. Are cultural heritage and resources threatened by climate change? A systematic literature review. Clim. Change 2017, 142, 227–254. [Google Scholar] [CrossRef]
- Nguyen, K.N.; Baker, S. Climate Change and UNESCO World Heritage-Listed Cultural Properties: A Systematic Review, 2008–2021. Heritage 2023, 6, 2394–2420. [Google Scholar] [CrossRef]
- Orr, S.A.; Richards, J.; Fatoric, S. Climate change and cultural heritage: A systematic literature review (2016–2020). Hist. Environ. Policy Cult. Herit. 2021, 12, 434–477. [Google Scholar] [CrossRef]
- Sesana, E.; Gagno, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate change impacts on cultural heritage: A literature review. WIREs Clim. Change 2021, 12, e710. [Google Scholar] [CrossRef]
- Guerra-Carrera, L.; Jiménez-Castilla, T.; Segrera-Castillak, M. Cultural heritage, the environment and climate change: Cultural /damage from environmental deterioration in San Basilio de Palenque, Colombia. Soc. Identities 2025, 31, 1–15. [Google Scholar] [CrossRef]
- Henderson, M.; Seekamp, E. Battling the tides of climate change: The power of intangible cultural resource values to bind place meanings in vulnerable historic districts. Heritage 2018, 1, 220–238. [Google Scholar] [CrossRef]
- McDermott, P.; Nic Craith, M. Intangible Cultural Heritage and Climate Change: Sustainability and Adaptability in a time of Crisis. Anthropol. J. Eur. Cult. 2024, 33, 1–10. [Google Scholar] [CrossRef]
- Fatoric, S.; Daly, C. Towards a climate-smart cultural heritage management. WIREs Clim. Change 2023, 14, e855. [Google Scholar] [CrossRef]
- ICHNGO Forum. Declaration for Safeguarding of ICH for Climate Change. 31 July 2024. Available online: https://www.ichngoforum.org/news/declaration-for-safeguarding-of-ich-for-climate-change-the-approved-text/ (accessed on 15 February 2025).
- Olano Pozo, J.X.; Saladié, Ò.; Boqué-Ciurana, A. Rising Temperatures, Wavering Human Towers? Temperature Trends and Thermal Comfort during Castells Exhibitions in Catalonia (1951–2023). Case Studies in Valls (24 June), La Bisbal del Penedès (15 August), Tarragona (19 August), and Vilafranca del Penedès (30 August). Climate 2024, 12, 112. [Google Scholar] [CrossRef]
- Hambrecht, G.; Rockman, M. International approaches to climate change and cultural heritage. Am. Antiq. 2017, 82, 627–641. [Google Scholar] [CrossRef]
- Opitz-Stapleton, S.; Sabbag, L.; Hawley, K.; Tran, P.; Hoang, L.; Hoang Nguyen, P. Heat index trends and climate change implications for occupational heat exposure in Da Nang, Vietnam. Clim. Serv. 2016, 2–3, 41–51. [Google Scholar] [CrossRef]
- AEMET. Tabla de Valores de Sensación Térmica Por Calor (Heat Index). Available online: https://www.aemet.es/documentos/es/conocermas/montana/sensacion_termica/SensacionTermicaPorFrio-Calor.pdf (accessed on 15 October 2024).
- National Weather Service. Heat Forecast Tools. National Oceanic and Atmospheric Administration. Available online: https://www.weather.gov/safety/heat-index (accessed on 10 October 2024).
- Sharifi, E.; Boland, J. Passive activity observation (PAO) method to estimate outdoor thermal adaptation in public space: Case studies in Australian cities. Int. J. Biometeorol. 2022, 64, 231–242. [Google Scholar] [CrossRef]
- Lao, J.; Hansen, A.; Nitschke, M.; Hansobn-Easey, S.; Pisaniello, D. Working smart: A exploration of council workers’ experiences and perceptions of heat in Adelaide, South Australia. Saf. Sci. 2016, 82, 228–235. [Google Scholar] [CrossRef]
- Filomena, M.; Picchio, M. Unsafe temperatures, unsafe jobs: The impact of weather conditions on work-related injuries. J. Econ. Behav. Organ. 2024, 224, 851–875. [Google Scholar] [CrossRef]
- Del Serrone, G.; Peluso, P.; Moretti, L. Evaluation of microclimate benefits due to cool pavements and green infraestructures on urban heat island. Atmosphere 2022, 13, 1586. [Google Scholar] [CrossRef]
- Acero, J.A.; Herranz-Pascual, K. A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques. Build. Environ. 2015, 93, 245–257. [Google Scholar] [CrossRef]
- García-Algar, O.; Felipe, A.; Berrueco, R.; Casano, P.; Vall, O. Human towers and multiple trauma in children. Pediatr. Catalana 2005, 65, 47–48. [Google Scholar]
- Godoy, P.; Rosset-Llobet, J.; Rossell-Urtxuletegui, R. Incidence of injuries among children members of human tower associations. Pediatr. Catalana 2010, 70, 146–150. [Google Scholar]
- Rovira–Ricart, E.; Rosset-Llobet, J. Avaluació de l’efectivitat d’un casc per a infants castellers. Pediatr. Catalana 2008, 68, 217–219. [Google Scholar]
- Witt, A.; Kumru, H.; Oisso, E.; Vidal, J. Traumatic spinal cord injury due to human tower accident in Catalonia. Spinal Cord Ser. Cases 2018, 4, 108. [Google Scholar] [CrossRef]
- Capari, L.; Wilfing, H.; Exner, A.; Höflehner, T.; Haluza, D. Cooling the City? A Scientometric Study on Urban Green and Blue Infrastructure and Climate Change-Induced Public Health Effects. Sustainability 2022, 14, 4929. [Google Scholar] [CrossRef]
- Chaston, T.B.; Broome, R.A.; Cooper, N.; Duck, G.; Geromboux, C.; Guo, Y.; Ji, F.; Perkins-Kirkpatrick, S.; Zhang, Y.; Dissanayake, G.S.; et al. Mortality Burden of Heatwaves in Sydney, Australia Is Exacerbated by the Urban Heat Island and Climate Change: Can Tree Cover Help Mitigate the Health Impacts? Atmosphere 2022, 13, 714. [Google Scholar] [CrossRef]
- Jacobs, S.J.; Gallant, A.J.E.; Tapper, N.J.; Li, D. Use of cool roofs and vegetation to mitigate urban heat and improve human thermal stress in Melbourne, Australia. Am. Meteorol. Soc. 2018, 57, 1747–1764. [Google Scholar] [CrossRef]
Date | Exhibition | Town | Square | Teams | Schedule |
---|---|---|---|---|---|
24 June | Sant Joan | Valls | Plaça del Blat | 2 | 12:00–15:30 |
26 July | Santa Anna | El Vendrell | Plaça Vella | 1 | 12:30–15:30 |
19 August | Sant Magí | Tarragona | Plaça de les Cols | 4 | 12:00–15:00 |
25 August | Festa Major | L’Arboç | Plaça de la Vila | 4 | 13:00–16:00 |
30 August | Sant Fèlix | Vilafranca P. | Plaça de la Vila | 4 | 12:00–17:45 |
1 September | Santa Rosalia | Torredembarra | Plaça de la Vila | 3 | 12:00–14:15 |
Town | Square | Distance S1–S2 | Sensor 1 | Sensor 2 |
---|---|---|---|---|
Valls | Plaça del Blat | 30 m | N (sun) | E (shade) |
El Vendrell | Plaça Vella | 16 m | E (shade) | W (sun) |
Tarragona | Plaça de les Cols | 19 m | S (shade) | W (sun) |
L’Arboç | Plaça de la Vila | 17 m | S (sun) | N (shade) |
Vilafranca P. | Plaça de la Vila | 31 m | W (shade) | N (sun) |
Torredembarra | Plaça de la Vila | 11 m | S (shade) | N (sun) |
Town | Square | Geometry | Surface | Capacity |
---|---|---|---|---|
Valls | Plaça del Blat | Regular polygonal | 728.94 m2 | 2916 people |
El Vendrell | Plaça Vella | Irregular polygonal | 677.97 m2 | 2712 people |
Tarragona | Plaça de les Cols | Regular polygonal | 645.31 m2 | 2842 people |
L’Arboç | Plaça de la Vila | Rectangular | 521.35 m2 | 2085 people |
Vilafranca P. | Plaça de la Vila | Rectangular | 1042.98 m2 | 4172 people |
Torredembarra | Plaça de la Vila | Irregular polygonal | 430.15 m2 | 1656 people |
Town | Sensor | W | p-Value (W) | T | p-Value (T) | Mean Dif. | Confidence Interval |
---|---|---|---|---|---|---|---|
Valls | S1 | 0.904 | 0.316 | 13.621 | <0.0001 | 3.151 | 2.604–3.699 |
S2 | 0.979 | 0.961 | 8.366 | <0.0001 | 0.734 | 0.526–0.941 | |
El Vendrell | S1 | 0.946 | 0.709 | −1.355 | 0.24 | −0.403 | −1.189–0.387 |
S2 | 0.872 | 0.236 | −16.585 | <0.0001 | 2.399 | −0.027–2.770 | |
Tarragona | S1 | 0.900 | 0.376 | −2.637 | <0.05 | −0.639 | −1.262–0.016 |
S2 | 0.901 | 0.383 | 0.987 | 0.3688 | 0.488 | −0.783–1.759 | |
L’Arboç | S1 | 0.980 | 0.952 | 1.722 | 0.1457 | 0.545 | −0.278–1.407 |
S2 | 0.825 | 0.097 | 0.138 | 0.8959 | 0.042 | −0.750–0.835 | |
Vilafranca P. | S1 | 0.839 | 0.026 | 78 | <0.001 | Wilcoxon test | |
S2 | 0.898 | 0.147 | 17.340 | <0.0001 | 3.524 | 3.077–3.972 | |
Torredembarra | S1 | 0.874 | 0.282 | 4.062 | <0.05 | 0.936 | 0.296–1.576 |
S2 | 0.899 | 0.402 | 6.147 | <0.01 | 3.109 | 1.702–4.510 |
HI | Valls | El Vendrell | Tarragona | |||
---|---|---|---|---|---|---|
S1 | S2 | S1 | S2 | S1 | S2 | |
Caution | 100% | 100% | 11.1% | 0.0% | 100% | 88.9% |
Extreme caution | 0.0% | 0.0% | 88.9% | 100% | 0.0% | 11.1% |
HI | L’Arboç | Vilafranca P. | Torredembarra | |||
S1 | S2 | S1 | S2 | S1 | S2 | |
Caution | 100% | 100% | 19.1% | 6.4% | 13.3% | 37.0% |
Extreme caution | 0.0% | 0.0% | 80.9% | 93.6% | 86.7% | 63.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saladié, Ò.; Boqué-Ciurana, A.; Sevil, J.; Olano Pozo, J.X. Summer Thermal Comfort in Urban Squares: The Case of Human Tower Exhibitions in Catalonia. Atmosphere 2025, 16, 666. https://doi.org/10.3390/atmos16060666
Saladié Ò, Boqué-Ciurana A, Sevil J, Olano Pozo JX. Summer Thermal Comfort in Urban Squares: The Case of Human Tower Exhibitions in Catalonia. Atmosphere. 2025; 16(6):666. https://doi.org/10.3390/atmos16060666
Chicago/Turabian StyleSaladié, Òscar, Anna Boqué-Ciurana, Júlia Sevil, and Jon Xavier Olano Pozo. 2025. "Summer Thermal Comfort in Urban Squares: The Case of Human Tower Exhibitions in Catalonia" Atmosphere 16, no. 6: 666. https://doi.org/10.3390/atmos16060666
APA StyleSaladié, Ò., Boqué-Ciurana, A., Sevil, J., & Olano Pozo, J. X. (2025). Summer Thermal Comfort in Urban Squares: The Case of Human Tower Exhibitions in Catalonia. Atmosphere, 16(6), 666. https://doi.org/10.3390/atmos16060666