Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (349)

Search Parameters:
Keywords = wax content

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7094 KiB  
Article
Preliminary Study on the Geochemical Characterization of Viticis Fructus Cuticular Waxes: From Latitudinal Variation to Origin Authentication
by Yiqing Luo, Min Guo, Lei Hu, Jiaxin Yang, Junyu Xu, Muhammad Rafiq, Ying Wang, Chunsong Cheng and Shaohua Zeng
Int. J. Mol. Sci. 2025, 26(15), 7293; https://doi.org/10.3390/ijms26157293 - 28 Jul 2025
Viewed by 151
Abstract
Viticis Fructus (VF), a fruit known for its unique flavor profile and various health benefits, demonstrates substantial quality variations depending on its area of production. Traditional methods of production area verification based on internal compound analysis are hampered by a number of technical [...] Read more.
Viticis Fructus (VF), a fruit known for its unique flavor profile and various health benefits, demonstrates substantial quality variations depending on its area of production. Traditional methods of production area verification based on internal compound analysis are hampered by a number of technical limitations. This investigation systematically characterized the cuticular wax composition of VF sample from a diverse variety of production areas. Quantitative analyses were conducted to evaluate the spatial distribution patterns of the wax constituents. Significant regional variations were observed: Anhui sample exhibited the highest total wax content (21.39 μg/cm2), with n-alkanes dominating at 76.67%. High-latitude regions showed elevated triterpenoid acid levels, with maslinic acid (0.53 μg/cm2) and ursolic acid (0.34 μg/cm2) concentrations exceeding those of their low-latitude counterparts by four- and three-fold, respectively. Altitudinal influence manifested in long-chain alcohol accumulation, as triacontanol reached 0.87 μg/cm2 in high-altitude sample. Five key biomarkers demonstrated direct quality correlations: eicosanoic acid, n-triacontane, dotriacontanol, β-amyrin, and α-amyrin. This study established three novel origin identification protocols: single-component quantification, multi-component wax profiling, and wax ratio analysis. This work not only reveals the latitudinal dependence of VF wax composition, but also provides a scientific framework for geographical authentication. Our findings advance wax-based quality evaluation methodologies for fruit products, offering practical solutions for production area verification challenges in food raw materials. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

16 pages, 7201 KiB  
Article
Carnauba Wax Coatings Enriched with Essential Oils or Fruit By-Products Reduce Decay and Preserve Postharvest Quality in Organic Citrus
by Lorena Martínez-Zamora, Rosa Zapata, Marina Cano-Lamadrid and Francisco Artés-Hernández
Foods 2025, 14(15), 2616; https://doi.org/10.3390/foods14152616 - 25 Jul 2025
Viewed by 313
Abstract
This research analyzes the innovative development of carnauba wax coatings enriched with essential oils (EOs: lemon, orange, grapefruit, clove, oregano, and cinnamon) or fruit by-products (FBPs: avocado, tomato, carrot, orange, lemon, and grapefruit) to improve postharvest preservation of organic oranges and lemons. Six [...] Read more.
This research analyzes the innovative development of carnauba wax coatings enriched with essential oils (EOs: lemon, orange, grapefruit, clove, oregano, and cinnamon) or fruit by-products (FBPs: avocado, tomato, carrot, orange, lemon, and grapefruit) to improve postharvest preservation of organic oranges and lemons. Six EOs and six FBPs were evaluated for total phenolic content (TPC) and in vitro antifungal activity against Penicillium digitatum. Based on results, grapefruit, oregano, and clove EOs were selected for lemons, while avocado, orange, and grapefruit FBPs were selected for oranges. An in vivo test at 20 °C for 15 days with carnauba wax coatings assessed antifungal performance. Clove EO and avocado FBP showed strong in vitro inhibition and consistent hyphal suppression (~100 and ~82%, respectively). In vivo, coatings with grapefruit EO and avocado FBP significantly reduced fungal decay and sporulation (~75%) in lemons and oranges, respectively. Coated fruits also retained weight losses by ~25% compared to uncoated ones. These findings suggest that phenolic-rich natural extracts, especially from agro-industrial residues like avocado peels, offer a promising and sustainable strategy for postharvest citrus disease control. Further studies should test coating effectiveness in large-scale trials under refrigeration combined with other preservation strategies. Full article
Show Figures

Graphical abstract

21 pages, 1905 KiB  
Article
Wax-Based Sustained-Release Felodipine Oral Dosage Forms Manufactured Using Hot-Melt Extrusion and Their Resistance to Alcohol-Induced Dose Dumping
by Gerard Sweeney, Dijia Liu, Taher Hatahet, David S. Jones, Shu Li and Gavin P. Andrews
Pharmaceutics 2025, 17(8), 955; https://doi.org/10.3390/pharmaceutics17080955 - 24 Jul 2025
Viewed by 362
Abstract
Background/Objectives: Hot-melt extrusion (HME) has gained prominence for the manufacture of sustained-release oral dosage forms, yet the application of wax-based matrices and their resilience to alcohol-induced dose dumping (AIDD) remains underexplored. This study aimed to develop and characterise wax-based sustained-release felodipine formulations, with [...] Read more.
Background/Objectives: Hot-melt extrusion (HME) has gained prominence for the manufacture of sustained-release oral dosage forms, yet the application of wax-based matrices and their resilience to alcohol-induced dose dumping (AIDD) remains underexplored. This study aimed to develop and characterise wax-based sustained-release felodipine formulations, with a particular focus on excipient functionality and robustness against AIDD. Methods: Felodipine sustained-release formulations were prepared via HME using Syncrowax HGLC as a thermally processable wax matrix. Microcrystalline cellulose (MCC) and lactose monohydrate were incorporated as functional fillers and processing aids. The influence of wax content and filler type on mechanical properties, wettability, and drug release behaviour was systematically evaluated. Ethanol susceptibility testing was conducted under simulated co-ingestion conditions (4%, 20%, and 40% v/v ethanol) to assess AIDD risk. Results: MCC-containing tablets demonstrated superior sustained-release characteristics over 24 h, showing better wettability and disintegration. In contrast, tablets formulated with lactose monohydrate remained structurally intact during dissolution, overly restricting drug release. This limitation was effectively addressed through granulation, where reduced particle size significantly improved surface accessibility, with 0.5–1 mm granules achieving a satisfactory release profile. Ethanol susceptibility testing revealed divergent behaviours between the two filler systems. Unexpectedly, MCC-containing tablets showed suppressed drug release in ethanolic media, likely resulting from inhibitory effect of ethanol on filler swelling and disintegration. Conversely, formulations containing lactose monohydrate retained their release performance in up to 20% v/v ethanol, with only high concentrations (40% v/v) compromising matrix drug-retaining functionality and leading to remarkably increased drug release. Conclusions: This study highlights the pivotal role of excipient type and constitutional ratios in engineering wax-based sustained-release formulations. It further contributes to the understanding of AIDD risk through in vitro assessment and offers a rational design strategy for robust, alcohol-resistant oral delivery systems for felodipine. Full article
(This article belongs to the Special Issue Advances in Hot Melt Extrusion Technology)
Show Figures

Figure 1

17 pages, 1522 KiB  
Article
Investigating the Microstructural and Textural Properties of Cookies Using Plant-Based Bigel as an Alternative to Commercial Solid Fat
by Ingrid Contardo, Sonia Millao, Eduardo Morales, Mónica Rubilar and Marcela Quilaqueo
Gels 2025, 11(8), 571; https://doi.org/10.3390/gels11080571 - 23 Jul 2025
Viewed by 253
Abstract
In response to the growing demand for improving the nutritional profile of widely consumed products, such as cookies, there has been an increasing interest in fat replacers that preserve sensory attributes and have a more positive health effect. Among the novel fat replacement [...] Read more.
In response to the growing demand for improving the nutritional profile of widely consumed products, such as cookies, there has been an increasing interest in fat replacers that preserve sensory attributes and have a more positive health effect. Among the novel fat replacement strategies, the incorporation of bigels into food formulations has been studied; however, the impact of Arabic gum hydrogel-based bigels on microstructural properties and their correlation with the texture and quality of bakery products remains underexplored. In this study, cookies were formulated using a plant-based bigel (canola oil-carnauba wax oleogel mixed with Arabic gum hydrogel) as a fat substitute, and their microstructural, textural, and quality parameters were compared with those of commercial butter-based cookies. Compared to butter (firmness of 29,102 g, spreadability of 59,624 g∙s, and adhesiveness of 2282 g), bigel exhibited a softer (firmness of 576 g), more spreadable (spreadability of 457 g∙s), and less adhesive texture (adhesiveness of 136 g), while its rheological properties showed similar behavior but at a lower magnitude. Bigel exhibited high thermal stability and good elastic and thixotropic behaviors, indicating reversible structural breakdown and recovery. Cookies prepared with bigels instead of butter exhibited a similar proximate composition, with a slight increase in lipid content (11.7%). The physical dimensions and density were similar across the formulations. However, the microstructural analysis revealed differences when bigels were incorporated into cookies, reducing porosity (55%) and increasing the mean pore size (1781 µm); in contrast, mean wall thickness remained unaffected. Despite these structural modifications, the potential of bigels as viable and nutritionally enhanced substitutes for conventional fats in bakery products was demonstrated. Full article
(This article belongs to the Special Issue Food Gels: Structure and Function)
Show Figures

Graphical abstract

25 pages, 6525 KiB  
Article
Response of Anatomical Structure and Active Component Accumulation in Apocynum venetum L. (Apocynaceae) Under Saline Stress and Alkali Stress
by Yanlei Zhang, Shaowei Hu, Xiaxia Wang, Jie Yue, Dongmei Chen, Mingzhi Han, Wanmin Qiao, Yifan Wang and Haixia Wang
Plants 2025, 14(14), 2223; https://doi.org/10.3390/plants14142223 - 18 Jul 2025
Viewed by 272
Abstract
Soil salinization, affecting approximately 954 million hectares globally, severely impairs plant growth and agricultural productivity. Apocynum venetum L., a perennial herbaceous plant with ecological and economic value, demonstrates remarkable tolerance to saline and alkali soils. This study investigated the effects of saline (NaCl) [...] Read more.
Soil salinization, affecting approximately 954 million hectares globally, severely impairs plant growth and agricultural productivity. Apocynum venetum L., a perennial herbaceous plant with ecological and economic value, demonstrates remarkable tolerance to saline and alkali soils. This study investigated the effects of saline (NaCl) and alkali (Na2CO3 and NaHCO3) stress on the growth, anatomical adaptations, and metabolite accumulation of A. venetum (Apocynum venetum L.). Results showed that alkali stress (100 mM Na2CO3 and 50 mM NaHCO3) inhibited growth more than saline stress (NaCl 240 mM), reducing plant height by 29.36%. Anatomical adaptations included a 40.32% increase in the root cortex-to-diameter ratio (100 mM Na2CO3 and 50 mM NaHCO3), a 101.52% enlargement of xylem vessel diameter (NaCl 240 mM), and a 68.69% thickening of phloem fiber walls in the stem (NaCl 240 mM), enhancing water absorption, salt exclusion, and structural support. Additionally, leaf palisade tissue densification (44.68% increase at NaCl 160 mM), along with epidermal and wax layer adjustments, balanced photosynthesis and water efficiency. Metabolic responses varied with stress conditions. Root soluble sugar content increased 49.28% at NaCl 160 mM. Flavonoid accumulation in roots increased 53.58% at Na2CO3 100 mM and NaHCO3 50 mM, enhancing antioxidant defense. However, chlorophyll content and photosynthetic efficiency declined with increasing stress intensity. This study emphasizes the coordinated adaptations of A. venetum, providing valuable insights for the development of salt-tolerant crops. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

13 pages, 20460 KiB  
Article
The Effects of AtNCED3 on the Cuticle of Rice Leaves During the Nutritional Growth Period
by Yang Zhang, Yuwei Jia, Hui Chen, Min Wang, Xiaoli Li, Lanfang Jiang, Jianyu Hao, Xiaofei Ma and Hutai Ji
Int. J. Mol. Sci. 2025, 26(14), 6690; https://doi.org/10.3390/ijms26146690 - 12 Jul 2025
Viewed by 290
Abstract
The plant cuticle, a protective barrier against external stresses, and abscisic acid (ABA), a key phytohormone, are crucial for plant growth and stress responses. Heterologous expression of AtNCED3 in plants has been widely studied. In this research, by comparing the japonica rice cultivar [...] Read more.
The plant cuticle, a protective barrier against external stresses, and abscisic acid (ABA), a key phytohormone, are crucial for plant growth and stress responses. Heterologous expression of AtNCED3 in plants has been widely studied. In this research, by comparing the japonica rice cultivar Zhonghua 10 and its AtNCED3 over-expressing lines during the vegetative growth stage through multiple methods, we found that AtNCED3 over-expression increased leaf ABA content, enhanced epidermal wax and cutin accumulation, modified wax crystal density, and thickened the cuticle. These changes reduced leaf epidermal permeability and the transpiration rate, thus enhancing drought tolerance. This study helps understand the role of endogenous ABA in rice cuticle synthesis and its mechanism in plant drought tolerance, offering potential for genetic improvement of drought resistance in crops. Full article
(This article belongs to the Special Issue Advance in Plant Abiotic Stress: 3rd Edition)
Show Figures

Figure 1

16 pages, 1367 KiB  
Article
Enhancing Hydrophobicity of Nanocellulose-Based Films by Coating with Natural Wax from Halimium viscosum
by Ana Ramos, Jesus M. Rodilla, Rodrigo Ferreira and Ângelo Luís
Appl. Sci. 2025, 15(13), 7576; https://doi.org/10.3390/app15137576 - 6 Jul 2025
Viewed by 331
Abstract
This study aimed to improve the hydrophobicity of cellulose nanofibril (CNF) films using a natural wax coating. For this purpose, firstly, the selection, extraction and characterization of a natural wax and fatty acids were carried out. These compounds were extracted from the aerial [...] Read more.
This study aimed to improve the hydrophobicity of cellulose nanofibril (CNF) films using a natural wax coating. For this purpose, firstly, the selection, extraction and characterization of a natural wax and fatty acids were carried out. These compounds were extracted from the aerial part of the Halimium viscosum plant. The chromatogram resulting from the chemical analysis of the extract revealed the presence of 15 compounds, with nonacosane being the major compound present. For film production, two different chemical pulps gels (sulfite and sulfate) were first characterized in terms of solids content, rheology and Fourier transform infrared spectroscopy (FTIR). The CNF films were produced by the solvent casting method, coated on one side with the extracted wax and subsequently characterized by wettability, surface energy, differential scanning calorimetry (DSC), FTIR, structural properties and water vapor permeability. The results showed that the wax-coated films exhibited a significant increase in water resistance, with a water contact angle exceeding 100°, demonstrating improved hydrophobicity. Also, the water vapor transmission rate (WVTR) of the films was drastically reduced after wax coating. Furthermore, the coated films maintained good transparency, making them a viable alternative to synthetic plastic. This study highlights the potential of natural wax coatings to improve the moisture barrier properties of biodegradable CNF films, promoting their application in sustainable packaging solutions. Full article
Show Figures

Figure 1

21 pages, 3693 KiB  
Article
Non-Targeted Lipidomics Analysis of Characteristic Milk Using High-Resolution Mass Spectrometry (UHPLC-HRMS)
by Tingting Wei, Tianxiao Zhou, Shenping Zhang, Zhexue Quan and Yang Liu
Foods 2025, 14(12), 2068; https://doi.org/10.3390/foods14122068 - 12 Jun 2025
Viewed by 870
Abstract
Milk lipids are fundamental to the nutritional quality, functional properties, and processing behavior of dairy products. In this study, we employed an untargeted lipidomics approach based on ultra-high-performance liquid chromatography coupled with ultra-high-performance liquid chromatography–high-resolution mass spectrometry (UHPLC-HRMS) to systematically characterize the lipid [...] Read more.
Milk lipids are fundamental to the nutritional quality, functional properties, and processing behavior of dairy products. In this study, we employed an untargeted lipidomics approach based on ultra-high-performance liquid chromatography coupled with ultra-high-performance liquid chromatography–high-resolution mass spectrometry (UHPLC-HRMS) to systematically characterize the lipid profiles of ten milk types from eight animal species, including camel, mare, donkey, goat, buffalo, yak, Jersey, and Holstein. A total of 640 lipid species were identified, spanning triglycerides (TGs), phospholipids (PLs), sphingolipids (SPs), ceramides (Cer), wax esters (WEs), and other subclasses. A statistical analysis revealed significant differences in lipid types and abundances among the milk samples. Camel milk exhibited the highest lipid diversity, with notable enrichment in phospholipids and sphingolipids, conferring superior emulsifying properties and stability. Mare milk was rich in polyunsaturated fatty acids (PUFAs), such as linoleic acid and alpha-linolenic acid, making it ideal for developing health-focused dairy products. Despite having the lowest total lipid content, donkey milk was enriched in cholesterol esters and PUFA, suitable for low-fat functional dairy products. Goat milk featured a balanced lipid composition with higher levels of medium-chain fatty acids (MCFAs), promoting digestibility. Buffalo milk was characterized by high TG and wax ester (WE) levels, offering high energy density and suitability for rich dairy products. Yak milk contained higher levels of ceramides (Cer) and saturated fatty acids, reflecting adaptations to high-altitude environments. Jersey milk and Holstein milk displayed similar lipid profiles, with stable compositions suitable for versatile dairy product development. Principal component analysis (PCA), hierarchical clustering, and volcano plot analyses further confirmed species-specific lipidomic signatures and revealed several potential lipid biomarkers, such as LPC (O-16:0) in Hongyuan yak milk, suggesting applications in geographical indication (GI) traceability. This study offers a comprehensive lipidomic landscape across diverse milk sources, providing molecular insights to guide the development of tailored, functional, and regionally branded dairy products. Full article
Show Figures

Figure 1

22 pages, 4603 KiB  
Article
Root Transcriptome Analysis Identifies Salt-Tolerance Genes in Sweet Corn Chromosome Segment Substitution Lines (CSSLs)
by Zili Zhang, Xuxuan Duan, Pengfei Liu, Qingchun Chen, Wei Sun, Xiaorong Wan, Yixiong Zheng, Jianting Lin, Feng Jiang and Faqiang Feng
Plants 2025, 14(11), 1687; https://doi.org/10.3390/plants14111687 - 31 May 2025
Viewed by 695
Abstract
Salt stress severely constrains global crop productivity. However, most sweet corn cultivars exhibit weak tolerance to salt stress. In this study, two sweet corn CSSLs, salt-tolerant line D55 and salt-sensitive line D96, were selected as materials. We conducted comparative phenotyping and physiological profiling [...] Read more.
Salt stress severely constrains global crop productivity. However, most sweet corn cultivars exhibit weak tolerance to salt stress. In this study, two sweet corn CSSLs, salt-tolerant line D55 and salt-sensitive line D96, were selected as materials. We conducted comparative phenotyping and physiological profiling of seedlings under salinity treatment, and transcriptome analysis was carried out by sampling root tissues at 0 h, 4 h, 12 h, and 72 h post-treatment. The results indicated that D55 exhibited enhanced seedling height, root length, fresh weight, relative chlorophyll content, and antioxidant enzyme activities, while showing reduced malondialdehyde accumulation in comparison to D96. Pairwise comparisons across time points (0 h, 4 h, 12 h, 72 h) identified 6317 and 6828 differentially expressed genes (DEGs) in D55 and D96. A total of 49 shared DEGs across four time points were identified in D55 and D96, which were enriched in 12 significant Gene Ontology (GO) terms. Only eight DEGs were shared between genotypes across all comparisons. Transcriptomic analysis revealed 1281, 1946, and 1717 DEGs in genotypes D55 and D96 at 4 h, 12 h, and 72 h post-salt treatment, respectively. Genes associated with reactive oxygen species (ROS) homeostasis, phenylpropanoid metabolism, cutin, suberin and wax biosynthesis, and benzoxazinoid synthesis exhibit enhanced sensitivity in the salt-tolerant genotype D55. This leads to an enhanced ROS scavenging capacity and the establishment of a multi-layered defense mechanism. Additionally, brassinosteroid (BR), gibberellin (GA), and abscisic acid (ABA) and auxin-related genes exhibited different responses to salt stress in sweet corn. A hypothetical model, which established a multi-layered salt adaptation strategy, by integrating ROS detoxification, osmotic balance, and phytohormone signaling, was put forward. By integrating transcriptome and differential chromosomal fragment data, our findings identify 14 candidate genes for salt tolerance, providing potential ideal target genes in breeding to improve salt tolerance in sweet corn. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

15 pages, 1625 KiB  
Article
Adhesion Characteristics of Crude Oil on Non-Metallic Pipelines During Low-Temperature Gathering and Transportation
by Ran Yin, Yijie Wang, Hanpeng Zheng, Wenchen Liu, Qiyu Huang, Fuyong Huo, Qinliang Cao and Ganggui Lin
Energies 2025, 18(11), 2828; https://doi.org/10.3390/en18112828 - 29 May 2025
Viewed by 405
Abstract
To address the lack of theoretical understanding regarding crude oil wall adhesion in non-metallic pipelines and to compare it with the behavior in metallic pipelines, this study investigates the wall adhesion behavior of crude oil in non-metallic pipelines using a self-developed, simulated stirred [...] Read more.
To address the lack of theoretical understanding regarding crude oil wall adhesion in non-metallic pipelines and to compare it with the behavior in metallic pipelines, this study investigates the wall adhesion behavior of crude oil in non-metallic pipelines using a self-developed, simulated stirred tank setup. The main factors influencing crude oil adhesion in non-metallic pipelines were identified, and the differences in adhesion behaviors across different pipeline materials were clarified. Additionally, the reasons behind these behavioral differences were explored through contact angle measurements and the interfacial energy theory. The results indicate that the factors affecting the transportation temperature of crude oil in non-metallic pipelines include the overall water content, shear strength, and wax content of crude oil. On average, the amount of adhered crude oil in the three types of non-metallic pipeline was lower than that in the metallic pipelines. Among them, the flexible, composite non-metallic pipeline showed the greatest reduction in average adhered oil mass by 22.86%. This significant reduction is attributed to the reduced adhesion of crude oil on the non-metallic surfaces. Therefore, using non-metallic pipelines in crude oil transportation networks is advantageous for implementing low-temperature gathering and transportation processes. Full article
Show Figures

Figure 1

14 pages, 2776 KiB  
Article
The Mechanism of Seed Priming with Abscisic Acid for Enhancing Cuticle Deposition Under Drought Stress: Phenotypic and Transcriptomic Insights
by Luhua Yao, Sennan Li, Nana Zhou and Yanjun Guo
Agriculture 2025, 15(11), 1124; https://doi.org/10.3390/agriculture15111124 - 23 May 2025
Viewed by 474
Abstract
Plant cuticles are crucial for protecting plants from various environmental stresses. Seed priming with abscisic acid (ABA) enhances crop stress tolerance, but its molecular mechanisms in cuticular wax and cutin biosynthesis remain unclear. This study investigated ABA-priming’s role in boosting cuticular wax and [...] Read more.
Plant cuticles are crucial for protecting plants from various environmental stresses. Seed priming with abscisic acid (ABA) enhances crop stress tolerance, but its molecular mechanisms in cuticular wax and cutin biosynthesis remain unclear. This study investigated ABA-priming’s role in boosting cuticular wax and cutin accumulation in sweet sorghum (Sorghum bicolor L.) using physiological and transcriptomic analyses. Abscisic acid priming increased leaf wax (37.7%) and cutin (25.6%) under drought, reducing water loss (9.8–36.6%) and improving leaf water content (28.4–120%). Transcriptomics identified 921 differentially expressed genes, including key fatty acid biosynthesis genes (ADH2, DES2, KAS2). Co-expression analysis revealed the synergistic regulation of wax and cutin biosynthesis by the abscisic acid and jasmonic acid (JA) pathways. Exogenous ABA and JA application confirmed their roles, with combined treatment increasing wax content by 71.7% under drought stress. These findings were validated in other sweet sorghum cultivars (DLS and ML8000), highlighting the potential of ABA priming as a universal strategy to enhance wax deposition in crops. Our study provides new insights into the molecular mechanisms underlying ABA-induced drought resistance and offers a practical approach for improving crop resilience in water-limited environments. Full article
(This article belongs to the Section Seed Science and Technology)
Show Figures

Figure 1

14 pages, 1328 KiB  
Article
Fruit and Fruit-Derived Products of Selected Sambucus Plants as a Source of Phytosterols and Triterpenoids
by Otgonbileg Onolbaatar, Soyol Dashbaldan, Cezary Pączkowski and Anna Szakiel
Plants 2025, 14(10), 1490; https://doi.org/10.3390/plants14101490 - 16 May 2025
Viewed by 513
Abstract
Plant-derived foods have gained recognition for their health-promoting values, which are largely attributed to bioactive compounds such as phytosterols and triterpenoids. This study aimed to analyze the content of these compounds in the fruit of black elder (elderberry) Sambucus nigra L. and in [...] Read more.
Plant-derived foods have gained recognition for their health-promoting values, which are largely attributed to bioactive compounds such as phytosterols and triterpenoids. This study aimed to analyze the content of these compounds in the fruit of black elder (elderberry) Sambucus nigra L. and in commercially available food products, including jam, juice, syrup and wine. An additional objective was to compare the phytosterol and triterpenoid profiles of fruits and fruit cuticular waxes from wild and cultivated elderberry (cultivar Haschberg), ornamental elderberry (S. nigra f. porphyrophylla cultivar Black lace “Eva”), and red elderberry (S. racemosa). Qualitative and quantitative determinations were performed using gas chromatography coupled with mass spectrometry (GC-MS). This study provides a detailed characterization of triterpenoids in black and red elderberries, revealing a complex composition of oleanane-, 18-oleanane-, ursane-, lupane- and taraxastane-type compounds. Elderberry fruits were found to be rich sources of phytosterols (ranging from 0.54 mg/g d.w. in cultivated elderberry cv. Haschberg to 0.96 mg/g in ornamental elderberry) and triterpenoids (from 1.41 mg/g d.w. in S. racemosa to 13.81 mg/g in ornamental elderberry). Among the processed products, jam contained the highest concentration of these compounds (a total of 340 µg/g) and wine contained the lowest (0.87 µg/mL). Furthermore, the results suggest that certain features of the triterpenoid profile in S. nigra and S. racemosa may hold chemotaxonomic significance for the Sambucus genus. Full article
Show Figures

Figure 1

19 pages, 5493 KiB  
Article
Characteristics of Controlling Factors of Shale Oil Enrichment in Lucaogou Formation, Jimusar Sag
by Sijun Cheng, Xianli Zou, Chenggang Jiang and Weitao Liu
Minerals 2025, 15(5), 469; https://doi.org/10.3390/min15050469 - 30 Apr 2025
Viewed by 386
Abstract
Taking the Lucaogou Formation in the Junggar Basin as the research object, this study draws on core mineral data, thin-section observations, and geochemical test results to systematically investigate the enrichment mechanism and migration characteristics of shale oil. The findings show that the Lucaogou [...] Read more.
Taking the Lucaogou Formation in the Junggar Basin as the research object, this study draws on core mineral data, thin-section observations, and geochemical test results to systematically investigate the enrichment mechanism and migration characteristics of shale oil. The findings show that the Lucaogou Formation is primarily composed of Type I and Type II kerogen, with high hydrocarbon-generation potential; its organic matter mainly originates from lacustrine algae, rich in low-carbon alkanes and tricyclic terpanes, and is well-preserved under reducing conditions. The upper and lower “sweet spots” of the Lucaogou Formation each form an independent source–reservoir–seal system. Shale oil in the upper sweet spot is characterized by low density, low viscosity, high wax content, and a relatively high pour point. Reservoir space is dominated by intergranular pores, dissolution pores, and intercrystalline pores, which are well-developed and exhibit relatively high permeability. By contrast, shale oil in the lower sweet spot is marked by high density, high viscosity, low wax content, and a relatively low pour point. Its reservoir space is dominated by dissolution pores and intercrystalline pores, which are unevenly developed and result in poorer permeability. Overall, shale oil enrichment in the Lucaogou Formation is jointly controlled by organic matter source, diagenesis, and sedimentary environment. This study further clarifies the controlling factors for shale oil enrichment in the Lucaogou Formation and provides a scientific basis for the exploration and development of unconventional oil and gas resources. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

18 pages, 3012 KiB  
Article
Investigating Morphological and Physiological Responses to Stress in Begonia semperflorens
by Julian Ginori, Chi D. Nguyen, Sandra Wilson, Zhanao Deng and Heqiang Huo
Int. J. Mol. Sci. 2025, 26(8), 3514; https://doi.org/10.3390/ijms26083514 - 9 Apr 2025
Viewed by 503
Abstract
Begonia semperflorens, or wax begonias, are popular ornamental plants often challenged by heat and high light stress in subtropical and tropical regions. This study examined the responses of two stress-tolerant genotypes (FB08-059 and OPGC 5104) and two stress-susceptible genotypes (Cocktail Vodka and [...] Read more.
Begonia semperflorens, or wax begonias, are popular ornamental plants often challenged by heat and high light stress in subtropical and tropical regions. This study examined the responses of two stress-tolerant genotypes (FB08-059 and OPGC 5104) and two stress-susceptible genotypes (Cocktail Vodka and Sprint White) under elevated temperature and light conditions. The results revealed significant genotype-dependent differences in stress responses. Stress-tolerant genotypes demonstrated distinct adaptive traits, including thicker cuticles, acute leaf folding, and elevated anthocyanin accumulation, which collectively contributed to enhanced photoprotection and mitigation of cellular damage. Notably, FB08-059 exhibited the most robust stress-adaptive responses, characterized by a 25.83% increase in cuticle thickness and a threefold increase in anthocyanin content under stress conditions. These adaptations effectively limited ROS accumulation and maintained higher Fv/Fm values, thereby sustaining photosynthetic efficiency relative to the other genotypes. In contrast, stress-susceptible genotypes exhibited increased ion leakage, reduced chlorophyll content, and impaired gas exchange rates, reflecting greater oxidative stress and cellular damage. These findings highlight cuticle thickness, anthocyanin accumulation, and leaf folding as key indicators of heat and light stress resilience. This research provides critical insights for breeding programs focused on improving the resilience of wax begonias, supporting the development of heat- and light-tolerant cultivars for sustainable production in stress-prone environments. Full article
(This article belongs to the Special Issue Plant Responses to Abiotic and Biotic Stresses)
Show Figures

Figure 1

19 pages, 4774 KiB  
Article
Cytological, Physiological and Genotyping-by-Sequencing Analysis Revealing Dynamic Variation of Leaf Color in Ginkgo biloba L.
by Fangdi Li, Yaping Hu, Wenxuan Jing, Yirui Wang, Xiaoge Gao and Qirong Guo
Horticulturae 2025, 11(4), 395; https://doi.org/10.3390/horticulturae11040395 - 8 Apr 2025
Viewed by 2293
Abstract
Ginkgo biloba has unique leaf color and high ornamental value. Here, we conducted seasonal dynamic analyses of leaf color, morphology, physiology, and biochemistry in the new variety Huangjinwanliang (HJWL), using the golden-leaf ginkgo Xiajin (XJ) as a control, and performed genotyping-by-sequencing (GBS) to [...] Read more.
Ginkgo biloba has unique leaf color and high ornamental value. Here, we conducted seasonal dynamic analyses of leaf color, morphology, physiology, and biochemistry in the new variety Huangjinwanliang (HJWL), using the golden-leaf ginkgo Xiajin (XJ) as a control, and performed genotyping-by-sequencing (GBS) to explore genetic differences. The results showed that both varieties were golden-yellow leaves in spring and autumn, transitioning to green in summer. The total chlorophyll and carotenoid contents in HJWL (1.45~4.84 mg/g and 0.09~0.39 mg/g) were significantly higher than those in XJ (1.42~3.93 mg/g and 0.08~0.34 mg/g). HJWL exhibited a higher number of chloroplasts, with visible single lamellar thylakoids, whereas XJ had fewer chloroplasts. Chloroplast fluorescence and photosynthetic parameters indicated that HJWL possesses a greater capacity for light acclimatization. The total flavonoids and wax content of HJWL (16.67 ± 0.33 mg/g and 18.22 ± 0.15 mg/g) were significantly higher than those of XJ (14.15 ± 0.31 mg/g and 30.19 ± 0.18 mg/g). GBS analysis revealed distinct genome-wide molecular bases between HJWL and XJ. These findings demonstrate that HJWL’s leaf color and extended ornamental period make it a valuable landscape tree species for spring and autumn, suitable for promotion as an ornamental tree. Full article
Show Figures

Figure 1

Back to TopTop