Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (151)

Search Parameters:
Keywords = water-mist

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2196 KiB  
Review
A Review of IoT and Machine Learning for Environmental Optimization in Aeroponics
by Muhammad Amjad, Elanchezhian Arulmozhi, Yeong-Hyeon Shin, Moon-Kyung Kang and Woo-Jae Cho
Agronomy 2025, 15(7), 1627; https://doi.org/10.3390/agronomy15071627 - 3 Jul 2025
Viewed by 997
Abstract
Traditional farming practices are becoming increasingly inadequate to meet global food demand due to water scarcity, prolonged production cycles, climate variability, and declining arable land. In contrast, aeroponic, smart, soil-free farming technologies offer a more sustainable alternative by reducing land use and providing [...] Read more.
Traditional farming practices are becoming increasingly inadequate to meet global food demand due to water scarcity, prolonged production cycles, climate variability, and declining arable land. In contrast, aeroponic, smart, soil-free farming technologies offer a more sustainable alternative by reducing land use and providing efficient water use, given that aeroponics intermittently delivers water in mist form rather than maintaining continuous root zone moisture. However, aeroponics faces critical challenges in irrigation management due to non-standardized structures and limited real-time control. A key limitation is the inability to dynamically respond to temperature (T), relative humidity (RH), light intensity (Li), electrical conductivity (EC), pH, and photosynthesis rate (Pn), resulting in suboptimal crop yields and resource wastage. Despite growing interest, there remains a research gap in integrating internet of things (IoT) and machine learning technologies into aeroponic systems for adaptive control. IoT-enabled sensors provide real-time data on ambient conditions and plant health, while ML models can adaptively optimize misting intervals based on the fluctuations in Pn and environmental inputs. These technologies are particularly well suited to address the dynamic, data-intensive nature of aeroponic environments. This review purposes a novel, standardized IoT–ML framework to control irrigation by emphasizing IoT sensing and ML-based decision making in aeroponics. This integrated approach is essential for minimizing water loss, enhancing resource efficiency, and advancing the sustainability of controlled-environment agriculture. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

15 pages, 3688 KiB  
Article
External Barrier and Internal Attack: Synergistic Effect of Microcapsule Fire Extinguishing Agent and Fine Water Mist on Suppressing Lithium-Ion Battery Fire
by Xiangjian Wang, Zhanwen He, Jianjun Gao, Yibo Guo, Haijun Zhang and Mingchao Wang
Materials 2025, 18(13), 3082; https://doi.org/10.3390/ma18133082 - 29 Jun 2025
Viewed by 402
Abstract
When lithium-ion batteries experience thermal runaway, a large amount of heat rapidly accumulates inside, causing the internal pressure to rise sharply. Once the pressure exceeds the battery’s safety valve design capacity, the valve activates and releases flammable gas. If ignited in a high-temperature [...] Read more.
When lithium-ion batteries experience thermal runaway, a large amount of heat rapidly accumulates inside, causing the internal pressure to rise sharply. Once the pressure exceeds the battery’s safety valve design capacity, the valve activates and releases flammable gas. If ignited in a high-temperature environment, the escaping gas can cause a jet fire containing high-temperature substances. Effectively controlling the internal temperature of the jet fire, especially rapidly cooling the core area of the flame during the jet process, is important to prevent the spread of lithium-ion battery fires. Therefore, this work proposes a strategy of a synergistic effect using microcapsule fire extinguishing agents and fine water mist to achieve an external barrier and an internal attack. The microcapsule fire extinguishing agents are prepared by using melamine–urea–formaldehyde resin as the shell and 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane (C5H3F9O) and 1,1,2,2,3,3,4-heptafluorocyclopentane (C5H3F7) as the composite core. During the process of lithium-ion battery thermal runaway, the microcapsule fire extinguishing agents can enter the inner area of the jet fire under the protection of the fine water mist. The microcapsule shell ruptures at 100 °C, releasing the highly effective composite fire suppressant core inside the jet fire. The fine water mist significantly blocks the transfer of thermal radiation, inhibiting the spread of the fire. Compared to the suppression with fine water mist only, the time required to reduce the battery temperature from the peak value to a low temperature is reduced by 66 s and the peak temperature of the high-temperature substances above the battery is reduced by 228.2 °C. The propagation of the thermal runaway is suppressed, and no thermal runaway of other batteries around the faulty unit will occur. This synergistic suppression strategy of fine water mist and microcapsule fire extinguishing agent (FWM@M) effectively reduces the adverse effects of jet fires on the propagation of thermal runaway (TR) of lithium-ion batteries, providing a new solution for efficiently extinguishing lithium-ion battery fires. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

20 pages, 2167 KiB  
Review
To Rezūm or Not to Rezūm: A Narrative Review of Water Vapor Thermal Therapy for Benign Prostatic Hyperplasia
by Aris Kaltsas, Ilias Giannakodimos, Evangelos N. Symeonidis, Dimitrios Deligiannis, Marios Stavropoulos, Asterios Symeonidis, Konstantinos Adamos, Zisis Kratiras, Andreas Andreou and Michael Chrisofos
J. Clin. Med. 2025, 14(12), 4254; https://doi.org/10.3390/jcm14124254 - 15 Jun 2025
Viewed by 1525
Abstract
Background/Objectives: Benign prostatic hyperplasia (BPH) is a common urological condition that can significantly impair quality of life in aging men by causing lower urinary tract symptoms (LUTS), including nocturia, weak stream, and incomplete emptying. While pharmacotherapy and surgical approaches such as transurethral [...] Read more.
Background/Objectives: Benign prostatic hyperplasia (BPH) is a common urological condition that can significantly impair quality of life in aging men by causing lower urinary tract symptoms (LUTS), including nocturia, weak stream, and incomplete emptying. While pharmacotherapy and surgical approaches such as transurethral resection of the prostate (TURP) remain cornerstone treatments, minimally invasive surgical therapies (MISTs) have emerged to bridge the gap between long-term medication use and invasive surgery. This narrative review assesses Rezūm therapy (water vapor thermal therapy, WVTT) by examining its mechanism of action, clinical efficacy, safety profile, and place in the BPH treatment algorithm. Methods: This narrative review synthesizes evidence from randomized controlled trials (RCTs), prospective studies, real-world cohorts, and published systematic reviews with meta-analyses to provide a comprehensive evaluation of Rezūm therapy for BPH. Key outcomes assessed include changes in International Prostate Symptom Score (IPSS), urinary flow rates, retreatment rates, adverse events, and sexual function preservation. Results: Across multiple studies, Rezūm significantly reduces IPSS (typically by ≥50%) and increases peak urinary flow by 4–5 mL/s. These improvements are durable, with five-year follow-up data showing low retreatment rates of approximately 4–5% and sustained symptom relief. The procedure, performed under local or minimal anesthesia, has a favorable safety profile: most adverse events are mild or transient, and notable complications, such as bleeding requiring transfusion or persistent sexual dysfunction, are rare. Importantly, Rezūm preserves both erectile and ejaculatory function in most patients, setting it apart from many traditional surgical interventions associated with higher sexual side effect rates. Conclusions: Rezūm is an effective and minimally invasive alternative for men with moderate prostatic enlargement who desire durable symptom improvement while avoiding the morbidity and sexual side effects associated with more invasive surgery. Future research should aim to further refine patient selection and assess long-term outcomes in broader populations. Full article
(This article belongs to the Special Issue Urologic Surgery: From Bench to Bedside)
Show Figures

Figure 1

14 pages, 2418 KiB  
Article
Durable and High-Efficiency Air Filtration by Superamphiphobic Silica Composite Aerogel
by Qiang Yu, Yuxin Mu, Pengfei Li, Wenjun Zhou, Jianwen Zhang, Jinchao Li, Yong Wei and Shanlin Wang
Colloids Interfaces 2025, 9(3), 38; https://doi.org/10.3390/colloids9030038 - 14 Jun 2025
Viewed by 502
Abstract
The escalating industrial emissions have dramatically increased airborne particulate matter (PM), particularly submicron particles (PM0.3), creating substantial health risks through respiratory system penetration. Current fiber-based filtration systems predominantly relying on electrostatic adsorption mechanisms suffer from critical limitations, including insufficient efficiency, potential secondary contamination, [...] Read more.
The escalating industrial emissions have dramatically increased airborne particulate matter (PM), particularly submicron particles (PM0.3), creating substantial health risks through respiratory system penetration. Current fiber-based filtration systems predominantly relying on electrostatic adsorption mechanisms suffer from critical limitations, including insufficient efficiency, potential secondary contamination, and performance degradation in humid environments. We develop a flexible silica composite aerogel to overcome these challenges with customizable and exceptional superamphiphobicity. This composite aerogel exhibits high porosity of ~95% and robust compression Young’s modulus that reaches ~220 kPa at 50% strain even after 1000 cycles. These features enable it to maintain a high filtration efficiency of ~98.52% for PM0.3, even after 50 cycles under traditional artificial simulation conditions. Significantly, a competitive filtration efficiency of ~97.9% is still performed in our composite aerogel at high humidity (water mist), high temperatures (50–250 °C), and corrosive solutions or atmospheres environments, revealing potential industrial applications. This work is expected to replace conventional air filtration materials and pave the way for various human protection and industrial production applications. Full article
Show Figures

Graphical abstract

17 pages, 1851 KiB  
Article
Fire Characteristics and Water Mist Cooling Measures in the Coal Transportation Process of a Heavy-Haul Railway Tunnel in Shanxi Province
by Wenjin He, Maohai Fu, Lv Xiong and Shiqi Zheng
Processes 2025, 13(6), 1789; https://doi.org/10.3390/pr13061789 - 5 Jun 2025
Viewed by 422
Abstract
This study investigates the spread patterns of tunnel fires and examines issues related to emergency response. It focuses on the temperature characteristics, spread patterns, conditions leading to multi-source fires, and the efficacy of water mist suppression methods in heavy-haul railway tunnel fires. The [...] Read more.
This study investigates the spread patterns of tunnel fires and examines issues related to emergency response. It focuses on the temperature characteristics, spread patterns, conditions leading to multi-source fires, and the efficacy of water mist suppression methods in heavy-haul railway tunnel fires. The research employs theoretical derivations and numerical simulations to achieve its objectives. It was discovered that, during a fire in a heavy-haul railway tunnel, the temperature inside the tunnel can exceed 500 °C. Furthermore, depending on the nature of the goods transported by the train and under specific wind speed conditions, the fire source has the potential to spread to other carriages, resulting in a multi-source fire. Using the numerical simulation software Pyrosim 2022, various wind speed conditions were simulated. The results revealed that at lower wind speeds, the smoke demonstrates a reverse flow phenomenon. Concurrently, when the adjacent carriage on the leeward side of the fire is ignited, the high-temperature reverse flow smoke, along with the thermal radiation from the flames, ignites combustible materials in the adjacent carriage on the windward side of the burning carriage. Through theoretical derivation and numerical simulation, the critical wind speed for the working conditions was determined to be 2.14 m/s. It was found that while a higher wind speed can lead to a decrease in temperature, it also increases the flame deflection angle. When the wind speed exceeds 2.4 m/s, although the temperature significantly drops in a short period, the proximity of combustible materials on the leeward side of the carriage becomes a concern. At this wind speed, the flame deflection angle causes heat radiation on the leeward side, specifically between 0.5 m and 3 m, to ignite the combustible materials on the carriage surface, resulting in fire spread and multiple fire incidents. The relationship between wind speed and the angle of deflection from the fire source was determined using relevant physics principles. Additionally, the relationship between wind speed and the trajectory of water mist spraying was established. It was proposed to optimize the position of the water mist based on its deviation, and the results indicated that under critical wind speed conditions, when the water mist spraying is offset approximately 5 m towards the upwind side of the fire source, it can act more directly on the surface of the fire source. Numerical simulation results show a significant reduction in the maximum temperature and effective control of fire spread. Under critical wind speed conditions, the localized average temperature of the fire decreased by approximately 140 °C when spraying was applied, compared to the conditions without spraying, and the peak temperature decreased by about 190 °C. This modification scheme can effectively suppress the threat of fire to personnel evacuation under simulated working conditions, reflecting effective control over fires. Additionally, it provides theoretical support for the study of fire patterns in tunnels and emergency response measures. Full article
(This article belongs to the Special Issue Advances in Coal Processing, Utilization, and Process Safety)
Show Figures

Figure 1

28 pages, 5473 KiB  
Review
Advances in the Battery Thermal Management Systems of Electric Vehicles for Thermal Runaway Prevention and Suppression
by Le Duc Tai and Moo-Yeon Lee
Batteries 2025, 11(6), 216; https://doi.org/10.3390/batteries11060216 - 1 Jun 2025
Viewed by 2206
Abstract
In response to the global imperative to reduce greenhouse gas emissions and fossil fuel dependency, electric vehicles (EVs) have emerged as a sustainable transportation alternative, primarily utilizing lithium-ion batteries (LIBs) due to their high energy density and efficiency. However, LIBs are highly sensitive [...] Read more.
In response to the global imperative to reduce greenhouse gas emissions and fossil fuel dependency, electric vehicles (EVs) have emerged as a sustainable transportation alternative, primarily utilizing lithium-ion batteries (LIBs) due to their high energy density and efficiency. However, LIBs are highly sensitive to temperature fluctuations, significantly affecting their performance, lifespan, and safety. One of the most critical threats to the safe operation of LIBs is thermal runaway (TR), an uncontrollable exothermic process that can lead to catastrophic failure under abusive conditions. Moreover, thermal runaway propagation (TRP) can rapidly spread failures across battery cells, intensifying safety threats. To address these challenges, developing advanced battery thermal management systems (BTMS) is essential to ensure optimal temperature control and suppress TR and TRP within LIB modules. This review systematically evaluates advanced cooling strategies, including indirect liquid cooling, water mist cooling, immersion cooling, phase change material (PCM) cooling, and hybrid cooling based on the latest studies published between 2020 and 2025. The review highlights their mechanisms, effectiveness, and practical considerations for preventing TR initiation and suppressing TRP in battery modules. Finally, key findings and future directions for designing next-generation BTMS are proposed, contributing valuable insights for enhancing the safety and reliability of LIB applications. Full article
Show Figures

Figure 1

25 pages, 10258 KiB  
Article
Full-Scale Experimental Investigation of Temperature Distribution and Smoke Flow in a Road Tunnel with a Novel Water Mist Fire Fighting System
by Shouzhong Feng, Deyuan Kan and Chao Guo
Fire 2025, 8(6), 216; https://doi.org/10.3390/fire8060216 - 28 May 2025
Viewed by 641
Abstract
This study presents a novel water mist fire fighting system that integrates water mist sprays and water mist curtains, designed to achieve simultaneous fire suppression, thermal insulation, and smoke control. Three full-scale experiments were conducted under various fire scenarios, and the changes in [...] Read more.
This study presents a novel water mist fire fighting system that integrates water mist sprays and water mist curtains, designed to achieve simultaneous fire suppression, thermal insulation, and smoke control. Three full-scale experiments were conducted under various fire scenarios, and the changes in fire behavior and heat release rate were examined to evaluate the effectiveness of the water mist system in extinguishing fires. Additionally, the spatiotemporal changes in ceiling temperature were monitored to assess the cooling and protective effects of the water mist. The thermal insulation capability of the system was also investigated by detecting the temperature distribution inside the tunnel. Moreover, the smoke conditions upstream and downstream of the tunnel were analyzed to evaluate the smoke-blocking performance of the water mist system. The findings demonstrate that the water mist fire fighting system is highly efficient in attenuating the fire and restricting its progression. Within the water mist spray section, the average ceiling temperature decreased exponentially during both the initial and steady burning phases across all tested fire scenarios. Nonetheless, the smoke-carrying capacity of the water mist spray is limited. Fortunately, the dispersed smoke was diluted by water mist, markedly enhancing visibility and mitigating the impact of smoke on tunnel illumination. Full article
Show Figures

Figure 1

16 pages, 9478 KiB  
Article
Research on the Influence of Dust Suppressants on the Coupling Behavior of Dust–Mist Particles
by Ming Li, Donald Lusambo, Usman Muhammad Tukur, Moses Masiye, Wending Li and Haochen Lian
Appl. Sci. 2025, 15(9), 4931; https://doi.org/10.3390/app15094931 - 29 Apr 2025
Viewed by 475
Abstract
Spray dust removal is currently the primary method of dust control technology, while it exhibits low efficacy in dust removal capability. A Phase Doppler Particle Analyzer (PDPA) experimental system was constructed to study the influence of dust suppressants on the coupling behavior of [...] Read more.
Spray dust removal is currently the primary method of dust control technology, while it exhibits low efficacy in dust removal capability. A Phase Doppler Particle Analyzer (PDPA) experimental system was constructed to study the influence of dust suppressants on the coupling behavior of dust–mist particles using comparative methods. According to the experimental results of the atomization effect of the spray, the Sauter Mean Diameter (D32) of the mist size of the dust suppressants showed an increasing trend compared to water. This trend became less obvious with an increase in spray pressure, and a reduction in the surface tension of the dust suppressants promoted an increase in the particle size distribution of water mist. According to the test results of the dust–mist coupling behavior experiment, compared with water, the coupling efficiency of Dodecyl Alcohol (DA), Alkylphenol Polyoxyethylene (OP-10), and Sodium Dodecyl Sulfate (SDS) increased by 27.0%, 20.3%, and 15.0%, respectively. This indicates a proportional relationship between the wetting performance of the dust suppressants and the dust–mist coupling rate and an inverse relationship between the surface tension of the dust suppressant solutions and the dust removal efficiency. The research findings hold major possibilities for enhancing the dust removal efficiency. Full article
(This article belongs to the Special Issue Industrial Safety and Occupational Health Engineering)
Show Figures

Figure 1

19 pages, 4304 KiB  
Article
Design and Performance Evaluation of a Multi-Fluid Swirling Mixing Atomizer for Efficient Generation of Ozonated Droplets in Agricultural Applications
by Xinkang Hu, Bo Zhang, Xiaohong Xu, Zhongwei Chang, Xu Wang and Chundu Wu
Agronomy 2025, 15(5), 1082; https://doi.org/10.3390/agronomy15051082 - 29 Apr 2025
Cited by 1 | Viewed by 440
Abstract
With the widespread application of ozone technology in agricultural plant protection, developing an ozonated water atomizer that integrates efficient mixing and precise spraying has been recognized as a significant challenge. Swirling flow is considered a method to enhance hydrodynamics and mass transfer in [...] Read more.
With the widespread application of ozone technology in agricultural plant protection, developing an ozonated water atomizer that integrates efficient mixing and precise spraying has been recognized as a significant challenge. Swirling flow is considered a method to enhance hydrodynamics and mass transfer in gas–liquid mixing. This study innovatively combines an axial nozzle with a swirling mixing chamber, utilizing the negative pressure generated by the high-speed central airflow at the nozzle throat as the driving force for swirling mixing and initial atomization, completing mass transfer and preliminary atomization before the formation of the mist, thereby improving gas–liquid contact and mass transfer efficiency. Through numerical simulations, the impact of geometric parameters at key locations on the internal flow of the atomizer was analyzed. The optimized inlet diameter of the atomizer was found to be 9 mm, with a throat length of 3 mm and a self-priming hole diameter of 1.5 mm. Experimental results on droplet size and ozone droplet concentration verified that at the optimal spraying pressure of 0.6 MPa, a concentration of up to 3.73 mg·L−1 with an average droplet size of 102 µm, evenly distributed, could be generated at a distance of 40 cm from the target. This work provides a technological framework for advancing precision ozone-based plant protection, aligning with global efforts to reduce agrochemical footprints through innovative application systems. It offers theoretical guidance and data support for the development and design of high-efficiency ozone atomizers in agricultural applications, aiming to minimize the use of agricultural chemicals and promote the growth of green plant protection technologies. Full article
Show Figures

Figure 1

31 pages, 6255 KiB  
Article
Influence of Water Temperature on Mist Spray Effectiveness for Thermal Comfort in Semi-Outdoor Spaces in Extremely Hot and Arid Climates
by Ashraf Mohamed Soliman, Dilshan Remaz Ossen, Abbas Alwarafi and Amir Goli
Buildings 2025, 15(9), 1410; https://doi.org/10.3390/buildings15091410 - 22 Apr 2025
Viewed by 872
Abstract
The escalating summer heat in the Middle East and Northern Africa (MENA) region, particularly in Bahrain, poses a significant threat to human health, prompting the use of water mist systems for immediate heat stress relief and heat stroke treatment. Although these systems are [...] Read more.
The escalating summer heat in the Middle East and Northern Africa (MENA) region, particularly in Bahrain, poses a significant threat to human health, prompting the use of water mist systems for immediate heat stress relief and heat stroke treatment. Although these systems are known for their rapid cooling effects, the impact of varying water temperatures on their efficiency is not well understood. This research addressed this gap by investigating the effects of different water temperatures on cooling performance and user comfort in a semi-outdoor environment in Bahrain. Field experiments, comparing mist fan system (MFS) zones with non-misted areas, were conducted alongside user surveys to assess perceived thermal comfort. The findings revealed that lower water temperatures significantly enhanced cooling, with a 7.7 °C water temperature achieving a 4 °C temperature reduction and improving perceived comfort. The MFS effectively shifted participant perceptions from “Hot” or “Slightly Warm” to “Natural” or “Slightly Cool”, confirming its rapid heat mitigation capabilities. Notably, 54.5% of participants preferred the system using the coldest water, citing immediate relief. Despite the substantial cooling benefits, achieving standard thermal comfort during peak heat remained challenging. Future research should explore nozzle optimization, wind effects, water usage, solar-powered system efficiency, and the impact of clothing on thermal comfort. Full article
(This article belongs to the Special Issue Climate-Responsive Architectural and Urban Design)
Show Figures

Figure 1

10 pages, 183 KiB  
Proceeding Paper
Design Factors of Water Mist in the Mystery of Landscapes
by Wu-Po-Cheng Lee and Sheng-Jung Ou
Eng. Proc. 2025, 91(1), 14; https://doi.org/10.3390/engproc2025091014 - 22 Apr 2025
Viewed by 254
Abstract
Water mist enhances the sense of mystery with visual and sensory effects, depending on its atmospheric creation and varying mist heights. Key factors influencing this mystery are the combination of mist with plants, increased air humidity, and sound effects. We identified important elements [...] Read more.
Water mist enhances the sense of mystery with visual and sensory effects, depending on its atmospheric creation and varying mist heights. Key factors influencing this mystery are the combination of mist with plants, increased air humidity, and sound effects. We identified important elements in the landscape at different times of day: in the morning, plant combinations and terrain; during the day, humidity and obscuring effects; in the evening, imaginative space; and at night, mist with plants. It is necessary to enhance visual effects and terrain variation in mist design to offer guidelines for future exploration. Full article
12 pages, 1347 KiB  
Article
The Impact of MISTs on Australian BPO Surgical Trends
by David Armany, Lequang Vo, Kathleen Lockhart, Tania Hossack, David Ende, Simon Bariol, Sriskanthan Baskaranathan and Henry Woo
Soc. Int. Urol. J. 2025, 6(2), 32; https://doi.org/10.3390/siuj6020032 - 17 Apr 2025
Viewed by 464
Abstract
Background/Objectives: To evaluate the impact of Minimally Invasive Surgical Therapies (MISTs) on Australian trends for surgeries treating lower urinary tract symptoms (LUTSs) caused by benign prostatic obstruction (BPO). The recent adoption of the prostatic urethral lift (PUL) and water vapour thermal therapy [...] Read more.
Background/Objectives: To evaluate the impact of Minimally Invasive Surgical Therapies (MISTs) on Australian trends for surgeries treating lower urinary tract symptoms (LUTSs) caused by benign prostatic obstruction (BPO). The recent adoption of the prostatic urethral lift (PUL) and water vapour thermal therapy (such as Rezum) into the Medicare Benefits Scheme (MBS) item schedule on the 1 March 2024 has likely had an impact on Australian surgical trends and we aim to describe their impact on the use of other commonly offered BPO-related surgeries. Methods: This study analyses population-adjusted rates of BPO-related surgeries in Australia from January 2004 to September 2024 using publicly available online Medicare Statistics and Census Data. Independent t-tests and significance levels were calculated to compare procedure rates before and after the introduction of PUL and Rezum in March 2024. Results: In total, 301,648 BPO surgical procedures were claimed under MBS in Australia from January 2004 to September 2024, with transurethral resection of the prostate (TURP) being the most common (78%). Procedure rates increased overall with significant shifts in treatment preference: TURP rates have steadily declined in Australia after peaking in 2009 (123.4 per 100,000 adult men), whilst photo-selective vaporisation of the prostate (PVP) and enucleation have risen. Following the introduction of PUL and Rezum on 1 March 2024, enucleation and simple prostatectomy rates increased, while Transurethral needle ablation (TUNA) and urethral and prostatic prosthesis (UPP) decreased. TURP rates were unaffected. Conclusions: Throughout the past two decades, BPO surgical trends in Australia have shifted, with TURP declining as PVP and enucleation have risen. The 2024 MBS listing for PUL and Rezum has boosted their uptake whilst reducing both TUNA and UPP claims. Simple prostatectomy rates remained stable. Full article
Show Figures

Figure 1

44 pages, 4223 KiB  
Review
Classification and Prevention of Electrical Fires: A Comprehensive Review
by Guohui Li, Jiapu Guo, Yanhao Kang, Que Huang, Junchao Zhao and Changcheng Liu
Fire 2025, 8(4), 154; https://doi.org/10.3390/fire8040154 - 10 Apr 2025
Cited by 2 | Viewed by 1601
Abstract
With the development of society and the advancement of technology, the application of electricity in modern life has become increasingly widespread. However, the risk of electrical fires has also significantly increased. This paper thoroughly investigates the causes, classifications, and challenges of electrical fires [...] Read more.
With the development of society and the advancement of technology, the application of electricity in modern life has become increasingly widespread. However, the risk of electrical fires has also significantly increased. This paper thoroughly investigates the causes, classifications, and challenges of electrical fires in special environments, and summarizes advanced detection and extinguishing technologies. The study reveals that the causes of electrical fires are complex and diverse, including equipment aging, improper installation, short circuits, and overloading. In special environments such as submarines, surface vessels, and aircraft, the risk of electrical fires is higher due to limited space, dense equipment, and difficult rescue operations. This paper also provides a detailed analysis of various types of electrical fires, including cable fires, electrical cabinet fires, transformer fires, battery fires, data center fires, and residential fires, and discusses their characteristics and prevention and control technologies. In terms of detection technology, this paper summarizes the progress of technologies such as arc detection, video detection, and infrared thermography, and emphasizes the importance of selecting appropriate technologies based on specific environments. Regarding extinguishing technologies, this paper discusses various means of extinguishing, such as foam extinguishing agents, dry powder extinguishing agents, and fine water mist technology, and highlights their advantages, disadvantages, and applicable scenarios. Finally, this paper identifies the limitations in the current field of electrical fire prevention and control, emphasizes the importance of interdisciplinary research and the development of advanced risk assessment models, and outlines future research directions. Full article
(This article belongs to the Special Issue Building Fires, Evacuations and Rescue)
Show Figures

Figure 1

13 pages, 5864 KiB  
Article
Deep Sea Minerals Ameliorate Dermatophagoides Farinae- or 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis-like Skin Lesions in NC/Nga Mice
by Hyo Sang Kim, Myeong Hwan Kim, Byeong Yeob Jeon, You Kyung Jang, Jeong Ki Kim, Hyun Keun Song and Kilsoo Kim
Biomedicines 2025, 13(4), 861; https://doi.org/10.3390/biomedicines13040861 - 2 Apr 2025
Viewed by 647
Abstract
Background: Chronic pruritus and inflammatory skin lesions, characterized by high recurrence, are hallmarks of atopic dermatitis (AD). Despite its increasing prevalence, the development of therapeutic agents for AD remains limited. This study aimed to evaluate the therapeutic effects of deep sea minerals [...] Read more.
Background: Chronic pruritus and inflammatory skin lesions, characterized by high recurrence, are hallmarks of atopic dermatitis (AD). Despite its increasing prevalence, the development of therapeutic agents for AD remains limited. This study aimed to evaluate the therapeutic effects of deep sea minerals (DSMs) in mist and cream formulations on the development of AD-like skin lesions in NC/Nga mice exposed to either Dermatophagoides farinae body extract (Dfb) or 2,4-dinitrochlorobenzene (DNCB). Methods: To induce AD, 100 mg of Biostir AD cream containing crude Dfb or 200 µL of DNCB (1%) was topically applied to the dorsal skin of NC/Nga mice. Additionally, 200 µL of deep sea mineral mist (DSMM) and 10 mg of deep sea mineral cream (DSMC) were applied daily to the dorsal skin for 4 weeks. AD was assessed through visual observations, clinical scoring of skin severity, serological tests, and histological analysis. Results: Visual and clinical evaluations revealed that DSMs inhibited the formation of AD-like skin lesions. DSMs also significantly affected trans-epidermal water loss and erythema. Treatment with DSMs resulted in reduced serum levels of IgE, IFN-γ, and IL-4. Histological analysis indicated that DSMs decreased skin thickness. Immunostaining for the CD4 antigen demonstrated a reduced infiltration of CD4+ T cells, which drive the Th2 response in AD, following DSM treatment. Conclusions: In conclusion, the cream formulation of DSMs showed better results than the mist formulation. These results suggest that DSMs may be an effective treatment for AD-like skin lesions, especially in cream formulation. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

17 pages, 6670 KiB  
Article
Fire Reconstruction and Flame Retardant with Water Mist for Double-Roofed Ancient Buddhist Buildings
by Chen Zhong, Ting Li, Hui Liu, Lei Zhang and Xiaoyan Wen
Buildings 2025, 15(7), 1109; https://doi.org/10.3390/buildings15071109 - 28 Mar 2025
Viewed by 311
Abstract
Fire is one of the most serious threatening conditions that endanger the safety of human life and building property. Religious buildings, where activities such as ritual incense burning and parishioner worship are conducted year-round, suffer from high fire risks and incomplete coverage of [...] Read more.
Fire is one of the most serious threatening conditions that endanger the safety of human life and building property. Religious buildings, where activities such as ritual incense burning and parishioner worship are conducted year-round, suffer from high fire risks and incomplete coverage of fire protection facilities, which have led to the frequent occurrence of fire accidents in ancient religious buildings around the globe. This study focuses on fire reconstruction and flame-retardant research for double-roofed ancient Buddhist buildings, addressing a gap in fire protection research for ancient religious buildings, particularly those with unique double-roofed structures. A systematic fire simulation method integrating building information modeling (BIM) and computational fluid dynamics (CFD) is proposed. This approach not only accurately models the complex structures of ancient buildings but also simulates fire and smoke spread paths, providing a scientific basis for fire warnings and firefighting strategies. Firstly, the double-roofed ancient Buddhist building is modeled according to its size through building information modeling (BIM). Secondly, the building modeling is revised, and the fire hazard is modeled based on computational fluid dynamics (CFD). Thirdly, the smoke and temperature sensors for fire warning and sprinkler systems for flame retardant are set. Finally, the fire and smoke spread paths are simulated for determining the location for installing the warning sensor and providing valuable fire rescues strategy. Based on simulations, a fire warning system using smoke and temperature sensors, along with a sprinkler-based flame retardant system, is designed. This integrated design significantly enhances the fire prevention and control capabilities of ancient buildings, reducing the occurrence of fire accidents. By simulating fire and smoke spread paths, the optimal locations for sensor installation are determined, and valuable fire rescue strategies are provided. This simulation-based analytical method greatly improves the precision and effectiveness of fire prevention and control. Experiments validate the flame-retardant and fire warning capabilities of the proposed method, demonstrating its practical application value in protecting ancient buildings from fire. The method offers new insights and technical support for fire protection in religious ancient buildings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop