Research on the Influence of Dust Suppressants on the Coupling Behavior of Dust–Mist Particles
Abstract
:1. Introduction
2. Experimental Materials and Basic Parameters
2.1. Experimental Materials
2.2. Basic Parameters of Suppressant Materials
2.2.1. Surface Tension and Viscosity of Dust Suppressant Solutions
2.2.2. Wettability of Dust Suppressant Solutions
3. Experimental Apparatus and Testing Methods
3.1. PDPA Experimental System
3.2. Measuring Parameters of PDPA Experimental System
3.3. Method for Processing Experimental Data
3.4. Judgment Basis for Dust–Mist Coupling Effect
4. Results and Discussion
4.1. Influence of Suppressant Materials on Atomization Parameters of Spray
4.1.1. Size Distribution of Mist Droplet
4.1.2. Velocity Distribution of Mist Droplet
4.1.3. Influence of Suppressants on Atomization Effect of Spray
4.2. Influence of Suppressant Materials on Dust–Mist Coupling Effect
5. Research Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beck, T.; Seaman, C.; Shahan, M.; Mischler, S. Open-air sprays for capturing and controlling airborne float coal dust on longwall faces. Min. Eng. 2018, 70, 42. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Han, H.; Tian, C.; Liu, R.; Jiang, Y. Experimental study on dust reduction via spraying using surfactant solution. Atmos. Pollut. Res. 2020, 11, 32–42. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, X.; Han, F.; Song, Z.; Wang, D.; Fan, J.; Jia, Z.; Jiang, G. A research on dust suppression mechanism and application technology in mining and loading process of burnt rock open pit coal mines. J. Air Waste Manag. Assoc. 2021, 71, 1568–1584. [Google Scholar] [CrossRef] [PubMed]
- Soni, S.K.; Kolhe, P.S. Liquid jet breakup and spray formation with annular swirl air. Int. J. Multiph. Flow 2021, 134, 103474. [Google Scholar] [CrossRef]
- Wang, P.; Tan, X.; Zhang, L.; Li, Y.; Liu, R. Influence of particle diameter on the wettability of coal dust and the dust suppression efficiency via spraying. Process Saf. Environ. Prot. 2019, 132, 189–199. [Google Scholar] [CrossRef]
- Ma, Q.; Nie, W.; Yang, S.; Xu, C.; Peng, H.; Liu, Z.; Guo, C.; Cai, X. Effect of spraying on coal dust diffusion in a coal mine based on a numerical simulation. Environ. Pollut. 2020, 264, 114717. [Google Scholar] [CrossRef]
- Bernal-Alvarez, L.R.; Ramirez-Gutierrez, C.F.; Gomez-Vazquez, O.M.; Correa-Piña, B.A.; Zubieta-Otero, L.F.; Millán-Malo, B.M.; Rodriguez-Garcia, M.E. Enhancing surface chemistry and wetting behavior of laser-modified Ti–6Al–4V surgical titanium alloy surfaces through wet deposition of biogenic hydroxyapatite. Surf. Coat. Technol. 2024, 489, 131065. [Google Scholar] [CrossRef]
- Li, Z.; Wen, S.; Guan, X.; Xu, Y.; Xie, W. Investigating the efficacy of foam-based dust particle capture for dust elimination in ore pass unloading: A similar experimental study. Powder Technol. 2024, 446, 120191. [Google Scholar] [CrossRef]
- Zhao, B.; Li, S.; Lin, H.; Cheng, Y.; Kong, X.; Ding, Y. Experimental study on the influence of surfactants in compound solution on the wetting-agglomeration properties of bituminous coal dust. Powder Technol. 2022, 395, 766–775. [Google Scholar] [CrossRef]
- Sun, D.; Cai, W.; Li, C.; Lu, J. Experimental study on atomization characteristics of high-energy-density fuels using a fuel slinger. Energy 2021, 234, 121222. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Zhou, G.; Zhang, Y. Spray structure and characteristics of a pressure-swirl dust suppression nozzle using a phase doppler particle analyze. Processes 2020, 8, 1127. [Google Scholar] [CrossRef]
- Wang, C.; Lu, S.; Li, M.; Zhang, Y.; Sa, Z.; Liu, J.; Wang, H.; Wang, S. Study on the dust removal and temperature reduction coupling performances of magnetized water spray. Environ. Sci. Pollut. Res. 2022, 29, 6151–6165. [Google Scholar] [CrossRef] [PubMed]
- Chaulya, S.; Chowdhury, A.; Kumar, S.; Singh, R.; Singh, S.; Singh, R.; Prasad, G.; Mandal, S.; Banerjee, G. Fugitive dust emission control study for a developed smart dry fog system. J. Environ. Manag. 2021, 285, 112116. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yuan, S.; Zhang, N.; Li, C.; Li, H.; Yang, W. Dust-suppression and cooling effects of spray system installed between hydraulic supports in fully mechanized coal-mining face. Build. Environ. 2021, 204, 108106. [Google Scholar] [CrossRef]
- McDermott, K.; Oakley, J.G. Droplet size and distribution of nebulized 3% sodium chloride, albuterol, and epoprostenol by phase Doppler particle analyzer. Curr. Ther. Res. 2021, 94, 100623. [Google Scholar] [CrossRef]
- Li, M.; Yang, H.; Wang, J.; Li, G.; Tang, J. An experimental investigation of the impact of surface tension and viscosity on the atomization effect of a solid cone nozzle. Appl. Sci. 2023, 13, 4522. [Google Scholar] [CrossRef]
- Husted, B.P.; Petersson, P.; Lund, I.; Holmstedt, G. Comparison of PIV and PDA droplet velocity measurement techniques on two high-pressure water mist nozzles. Fire Saf. J. 2009, 44, 1030–1045. [Google Scholar] [CrossRef]
- Gong, Z. Single Particle Studies Using Optical Trapping and Manipulation; Mississippi State University: Starkville, MS, USA, 2019. [Google Scholar]
- Nuyttens, D.; Baetens, K.; De Schampheleire, M.; Sonck, B. Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst. Eng. 2007, 97, 333–345. [Google Scholar] [CrossRef]
- Perinelli, D.R.; Cespi, M.; Lorusso, N.; Palmieri, G.F.; Bonacucina, G.; Blasi, P. Surfactant self-assembling and critical micelle concentration: One approach fits all? Langmuir 2020, 36, 5745–5753. [Google Scholar] [CrossRef]
- Wojciechowski, K. Surface tension of native and modified plant seed proteins. Adv. Colloid Interface Sci. 2022, 302, 102641. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, C.; Li, H.; Shi, W.; Cheng, X.; Tian, Y.; Zhu, J.; Ma, Q.; Zhang, K. Design and evaluation of a novel dispersant with “surface-to-surface” adsorption function for preparing low-rank coal water slurry. Colloids Surf. A Physicochem. Eng. Asp. 2023, 677, 132357. [Google Scholar] [CrossRef]
- Khodaparast, S.; Marcos, J.; Sharratt, W.N.; Tyagi, G.; Cabral, J.T. Surface-induced crystallization of sodium dodecyl sulfate (SDS) micellar solutions in confinement. Langmuir 2020, 37, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, A.A.; Phan, C.; Barifcani, A.; Iglauer, S.; Cheremisin, A.N. Effect of nanoparticles on viscosity and interfacial tension of aqueous surfactant solutions at high salinity and high temperature. J. Surfactants Deterg. 2020, 23, 327–338. [Google Scholar] [CrossRef]
- Ji, X.; Wang, X.; Zhang, Y.; Zang, D. Interfacial viscoelasticity and jamming of colloidal particles at fluid–fluid interfaces: A review. Rep. Prog. Phys. 2020, 83, 126601. [Google Scholar] [CrossRef]
- Tang, H.; Zhao, L.; Sun, W.; Hu, Y.; Han, H. Surface characteristics and wettability enhancement of respirable sintering dust by nonionic surfactant. Colloids Surf. A Physicochem. Eng. Asp. 2016, 509, 323–333. [Google Scholar] [CrossRef]
- Han, F.; Peng, Y.; Zhao, Y.; Yang, P.; Hu, F. Comparative investigation of methods for evaluating the wettability of dust suppression reagents on coal dust. J. Mol. Liq. 2024, 399, 124380. [Google Scholar] [CrossRef]
- Delahaije, R.J.; Sagis, L.M.; Yang, J. Impact of particle sedimentation in pendant drop tensiometry. Langmuir 2022, 38, 10183–10191. [Google Scholar] [CrossRef]
- Privitera, S.; Cerruto, E.; Manetto, G.; Lupica, S.; Nuyttens, D.; Dekeyser, D.; Zwertvaegher, I.; Júnior, M.R.F.; Vargas, B.C. Comparison between Liquid Immersion, Laser Diffraction, PDPA, and Shadowgraphy in Assessing Droplet Size from Agricultural Nozzles. Agriculture 2024, 14, 1191. [Google Scholar] [CrossRef]
- Sijs, R.; Kooij, S.; Holterman, H.; Van De Zande, J.; Bonn, D. Drop size measurement techniques for sprays: Comparison of image analysis, phase Doppler particle analysis, and laser diffraction. AIP Adv. 2021, 11, 015315. [Google Scholar] [CrossRef]
- Masci, F.J.; Laher, R.R.; Rusholme, B.; Shupe, D.L.; Groom, S.; Surace, J.; Jackson, E.; Monkewitz, S.; Beck, R.; Flynn, D. The zwicky transient facility: Data processing, products, and archive. Publ. Astron. Soc. Pac. 2018, 131, 018003. [Google Scholar] [CrossRef]
- Martinez, G.L.; Poursadegh, F.; Magnotti, G.M.; Matusik, K.E.; Duke, D.J.; Knox, B.W.; Kastengren, A.L.; Powell, C.F.; Genzale, C.L. Measurement of Sauter mean diameter in diesel sprays using a scattering–absorption measurement ratio technique. Int. J. Engine Res. 2019, 20, 6–17. [Google Scholar] [CrossRef]
- Zhang, W.; Xue, S.; Tu, Q.; Shi, G.; Zhu, Y. Study on the distribution characteristics of dust with different particle sizes under forced ventilation in a heading face. Powder Technol. 2022, 406, 117504. [Google Scholar] [CrossRef]
- Szalay, J.; Poppe, A.; Agarwal, J.; Britt, D.; Belskaya, I.; Horányi, M.; Nakamura, T.; Sachse, M.; Spahn, F. Dust phenomena relating to airless bodies. Space Sci. Rev. 2018, 214, 98. [Google Scholar] [CrossRef]
- Leitner, P. Influences on the Efficiency of Water-Based Dust Binding and the Effects of Dust. Master’s Thesis, Montanuniversitaet Leoben, Leoben, Austria, 2022. [Google Scholar]
- Picotti, G.; Borghesani, P.; Cholette, M.; Manzolini, G. Soiling of solar collectors–Modelling approaches for airborne dust and its interactions with surfaces. Renew. Sustain. Energy Rev. 2018, 81, 2343–2357. [Google Scholar] [CrossRef]
- Wang, H.; Wei, X.; Du, Y.; Wang, D. Effect of water-soluble polymers on the performance of dust-suppression foams: Wettability, surface viscosity and stability. Colloids Surf. A Physicochem. Eng. Asp. 2019, 568, 92–98. [Google Scholar] [CrossRef]
- Naidu, H.; Kahraman, O.; Feng, H. Novel applications of ultrasonic atomization in the manufacturing of fine chemicals, pharmaceuticals, and medical devices. Ultrason. Sonochemistry 2022, 86, 105984. [Google Scholar] [CrossRef]
- Pascuzzi, S.; Manetto, G.; Santoro, F.; Cerruto, E. A brief review of nozzle spray drop size measurement techniques. In Proceedings of the 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Munich, Germany, 3–5 November 2021; pp. 351–355. [Google Scholar]
- Sharma, N.; Bachalo, W.D.; Agarwal, A.K. Spray droplet size distribution and droplet velocity measurements in a firing optical engine. Phys. Fluids 2020, 32, 023304. [Google Scholar] [CrossRef]
- Camacho-Lie, M.; Antonio-Gutiérrez, O.; López-Díaz, A.S.; López-Malo, A.; Ramírez-Corona, N. Factors influencing droplet size in pneumatic and ultrasonic atomization and its application in food processing. Discov. Food 2023, 3, 23. [Google Scholar] [CrossRef]
- Milanowski, M.; Subr, A.; Combrzyński, M.; Różańska-Boczula, M.; Parafiniuk, S. Effect of adjuvant, concentration and water type on the droplet size characteristics in agricultural nozzles. Appl. Sci. 2022, 12, 5821. [Google Scholar] [CrossRef]
- Kakarlapudi, V.V.S.S.N. Loads Identification, Design Optimization and Metal Additive Manufacturing of a Sailboat Propeller’s Blade. 2019. Available online: https://www.politesi.polimi.it/handle/10589/164602 (accessed on 1 April 2025).
- Raiola, L. Mesh Analysis and Topological Optimization of a Drone Propeller Using CFD Software. Ph.D. Thesis, Politecnico di Torino, Turin, Italy, 2020. [Google Scholar]
Dust Suppressants | Chemical Formula | Class | Functions |
---|---|---|---|
Dodecyl Alcohol | C12H26O | Anion | Lubricant and emulsifier |
Sodium Dodecyl Sulfate | NaC12H25SO4 | Anion | Wetting agent, foaming agent, and emulsifier |
Alkylphenol Polyoxyethylene | CnH2n−1(OCH2CH2)mOH | Non-ionic | Emulsifier, stabilizer, and wetting agent |
Measuring Points | Spray Pressures | Test Materials |
---|---|---|
5.0 cm, 7.0 cm, 9.0 cm, 10.0 cm, 15.0 cm | 2.0 MPa, 4.0 MPa, 6.0 MPa | Water, SDS, OP-10 and DA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Lusambo, D.; Tukur, U.M.; Masiye, M.; Li, W.; Lian, H. Research on the Influence of Dust Suppressants on the Coupling Behavior of Dust–Mist Particles. Appl. Sci. 2025, 15, 4931. https://doi.org/10.3390/app15094931
Li M, Lusambo D, Tukur UM, Masiye M, Li W, Lian H. Research on the Influence of Dust Suppressants on the Coupling Behavior of Dust–Mist Particles. Applied Sciences. 2025; 15(9):4931. https://doi.org/10.3390/app15094931
Chicago/Turabian StyleLi, Ming, Donald Lusambo, Usman Muhammad Tukur, Moses Masiye, Wending Li, and Haochen Lian. 2025. "Research on the Influence of Dust Suppressants on the Coupling Behavior of Dust–Mist Particles" Applied Sciences 15, no. 9: 4931. https://doi.org/10.3390/app15094931
APA StyleLi, M., Lusambo, D., Tukur, U. M., Masiye, M., Li, W., & Lian, H. (2025). Research on the Influence of Dust Suppressants on the Coupling Behavior of Dust–Mist Particles. Applied Sciences, 15(9), 4931. https://doi.org/10.3390/app15094931