Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,681)

Search Parameters:
Keywords = water-energy-food

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 3521 KB  
Review
A Systemic Approach for Assessing the Design of Circular Urban Water Systems: Merging Hydrosocial Concepts with the Water–Energy–Food–Ecosystem Nexus
by Nicole Arnaud, Manuel Poch, Lucia Alexandra Popartan, Marta Verdaguer, Félix Carrasco and Bernhard Pucher
Water 2026, 18(2), 233; https://doi.org/10.3390/w18020233 - 15 Jan 2026
Abstract
Urban Water Systems (UWS) are complex infrastructures that interact with energy, food, ecosystems and socio-political systems, and are under growing pressure from climate change and resource depletion. Planning circular interventions in this context requires system-level analysis to avoid fragmented, siloed decisions. This paper [...] Read more.
Urban Water Systems (UWS) are complex infrastructures that interact with energy, food, ecosystems and socio-political systems, and are under growing pressure from climate change and resource depletion. Planning circular interventions in this context requires system-level analysis to avoid fragmented, siloed decisions. This paper develops the Hydrosocial Resource Urban Nexus (HRUN) framework that integrates hydrosocial thinking with the Water–Energy–Food–Ecosystems (WEFE) nexus to guide UWS design. We conduct a structured literature review and analyse different configurations of circular interventions, mapping their synergies and trade-offs across socioeconomic and environmental functions of hydrosocial systems. The framework is operationalised through a typology of circular interventions based on their circularity purpose (water reuse, resource recovery and reuse, or water-cycle restoration) and management scale (from on-site to centralised), while greening degree (from grey to green infrastructure) and digitalisation (integration of sensors and control systems) are treated as transversal strategies that shape their operational profile. Building on this typology, we construct cause–effect matrices for each intervention type, linking recurring operational patterns to hydrosocial functionalities and revealing associated synergies and trade-offs. Overall, the study advances understanding of how circular interventions with different configurations can strengthen or weaken system resilience and sustainability outcomes. The framework provides a basis for integrated planning and for quantitative and participatory tools that can assess trade-offs and governance effects of different circular design choices, thereby supporting the transition to more resilient and just water systems. Full article
(This article belongs to the Special Issue Advances in Water Resource Management and Planning)
Show Figures

Figure 1

23 pages, 4405 KB  
Article
Spatiotemporal Dynamics of Mesozooplankton Trophic Structure and Food Web Configuration in the Vicinity of Daya Bay Nuclear Power Plant
by Yanjiao Lai, Bingqing Liu and Mianrun Chen
Microorganisms 2026, 14(1), 203; https://doi.org/10.3390/microorganisms14010203 - 15 Jan 2026
Viewed by 24
Abstract
Mesozooplankton play a pivotal role in marine pelagic food webs, mediating energy and matter transfer between primary producers and higher trophic levels. Daya Bay, a semi-enclosed bay located in the northern South China Sea, has undergone significant environmental changes due to anthropogenic activities, [...] Read more.
Mesozooplankton play a pivotal role in marine pelagic food webs, mediating energy and matter transfer between primary producers and higher trophic levels. Daya Bay, a semi-enclosed bay located in the northern South China Sea, has undergone significant environmental changes due to anthropogenic activities, such as thermal discharge from nuclear power plants and eutrophication. This study examined the mesozooplankton community structure, feeding preferences, and food web organization through four seasonal cruises (May 2022, February 2023, August 2023, and November 2023), employing stable isotope analysis and a Bayesian Isotopic Mixing Model. Results indicate that mesozooplankton abundance and diversity were lower in regions affected by thermal discharge, suggesting a suppressive effect of elevated temperatures. Seasonal shifts in dominant species were observed: Penilia avirostris and Dolioletta gegenbauri dominated the community in spring, while Noctiluca scintillans blooms occurred in summer and winter. Isotopic analysis revealed distinct trophic strategies: copepods exhibited omnivorous habits, whereas cladocerans and tunicates showed stronger herbivorous tendencies. N. scintillans functioned as a high-trophic omnivore, preying on copepod larvae and competing for food resources. Overall, the mesozooplankton community was characterized by an omnivory-dominated trophic network, which enhanced resilience yet remains sensitive to anthropogenic disturbances. This study clarifies how human-induced environmental changes reshape trophic pathways in subtropical coastal waters, providing a valuable reference for long-term monitoring and ecosystem management in Daya Bay. Full article
(This article belongs to the Special Issue Microbial Food Webs)
Show Figures

Figure 1

26 pages, 6540 KB  
Review
Development of Curcumin-Loaded Nanoemulsions for Fortification and Stabilization of Dairy Beverages
by Roberta Pino, Vincenzo Sicari, Mudassar Hussain, Stockwin Kwame Kyei Boakye, Faiza Kanwal, Ramsha Yaseen, Manahel Azhar, Zeeshan Ahmad, Benic Degraft-Johnson, Amanuel Abebe Kebede, Rosa Tundis and Monica Rosa Loizzo
Appl. Sci. 2026, 16(2), 885; https://doi.org/10.3390/app16020885 - 15 Jan 2026
Viewed by 44
Abstract
Curcumin is a polyphenolic compound isolated from Curcuma longa, which is widely recognized for its therapeutic properties: particularly its strong anti-inflammatory and antioxidant activities. However, its practical incorporation into functional foods, especially aqueous dairy beverages, is severely hindered by its extremely low [...] Read more.
Curcumin is a polyphenolic compound isolated from Curcuma longa, which is widely recognized for its therapeutic properties: particularly its strong anti-inflammatory and antioxidant activities. However, its practical incorporation into functional foods, especially aqueous dairy beverages, is severely hindered by its extremely low water solubility, poor chemical stability (notably at the near-neutral pH of milk), and very limited oral bioavailability. This review provides a critical synthesis of the literature published in the last two decades, with a focus on the development and application of food-grade oil-in-water (O/W) nanoemulsions to advanced colloidal delivery systems. It covers the fundamental principles of nanoemulsion formulation, including the selection of the oil phase, surfactants, and stabilizers, as well as both high-energy and low-energy fabrication techniques. It further examines the integration of these nano-delivery systems into dairy matrices (milk, yogurt, cheese), highlighting key interactions between nanoemulsion droplets and native dairy constituents such as casein micelles and whey proteins. Critically, findings indicate that nanoencapsulation not only enhances curcumin’s solubility but also protects it from chemical degradation during industrial processes, including pasteurization and sterilization. Moreover, the dairy matrix structure plays a key role in modulating curcumin bioaccessibility, with fortified products frequently exhibiting enhanced stability, shelf life, and sensory attributes. Finally, key technological challenges addressed the heterogeneous global regulatory landscape surrounding biopolymers and future trends: most notably, the growing shift toward “clean-label” biopolymer-based delivery systems. Full article
(This article belongs to the Special Issue Antioxidant Compounds in Food Processing: Second Edition)
Show Figures

Figure 1

23 pages, 1801 KB  
Article
Optimization of Agricultural Systems Under Water-Energy-Food Nexus: A Framework for the Urmia Lake Basin
by Yousef Khajavigodellou, Jiaguo Qi, Mohammad Soltani, Ziba Zarrin, Hazhir Karimi and Elham Bakhshianlamouki
Sustainability 2026, 18(2), 843; https://doi.org/10.3390/su18020843 - 14 Jan 2026
Viewed by 74
Abstract
The Urmia Lake Basin (ULB) in northwest Iran faces critical water management challenges significantly impacting agricultural sustainability and regional water–food security. This study presents a novel framework employing multi-objective linear programming to optimize crop selection and resource allocation strategies, addressing critical trade-offs inherent [...] Read more.
The Urmia Lake Basin (ULB) in northwest Iran faces critical water management challenges significantly impacting agricultural sustainability and regional water–food security. This study presents a novel framework employing multi-objective linear programming to optimize crop selection and resource allocation strategies, addressing critical trade-offs inherent within the water–energy–food (WEF) nexus. Central to this framework is the Water–Energy–Food Nexus Index (WEFNI), which integrates seven pivotal productivity indicators: water consumption indicator (WCI), energy consumption (EC), water mass productivity (WMP), energy mass productivity (EMP), economic water productivity (EWP), and economic energy productivity (EPE). The analysis leverages 22 years of agricultural data (1995–2016) for the primary crops (wheat, barley, sugar beet, alfalfa, corn, and fruits) cultivated within the basin. Three distinct optimization scenarios are assessed: maximizing combined WEF productivity and economic returns (Sc1); maximizing WEF productivity with minimized water consumption (Sc2); maximizing economic returns under stringent water use limitations (Sc3). Results consistently identify corn as the superior crop in terms of water–energy efficiency, whereas sugar beet demonstrated the lowest overall performance. This robust optimization approach elucidates critical trade-offs, providing actionable insights for policymakers managing similar water-stressed regions, although specific regional calibrations are necessary. Full article
Show Figures

Figure 1

24 pages, 8070 KB  
Article
Research on Ecological Compensation in the Yangtze River Economic Belt Based on Water-Energy-Food Service Flows and XGBoost-SHAP Analysis
by Hao Wang, Jianshen Qu, Weidong Zhang, Peizhen Zhu, Ruoqing Zhu, Yuexia Han, Yong Cao and Bin Dong
Sustainability 2026, 18(2), 839; https://doi.org/10.3390/su18020839 - 14 Jan 2026
Viewed by 72
Abstract
Under the combined influence of global climate change and intensified human activities, quantifying ecological compensation (EC) amounts between regions and formulating scientifically sound and rational policies have become critical strategies for addressing the imbalance between economic development and ecological conservation. This study focuses [...] Read more.
Under the combined influence of global climate change and intensified human activities, quantifying ecological compensation (EC) amounts between regions and formulating scientifically sound and rational policies have become critical strategies for addressing the imbalance between economic development and ecological conservation. This study focuses on the Yangtze River Economic Belt (YREB) as the research subject, assesses ecosystem service supply and demand (ESSD) in the years 2000, 2010, and 2020 from the perspective of the water-energy-food nexus (WEF-Nexus), identifies ecosystem service flows (ESF) between supply and demand areas, develops an integrated EC model incorporating ecological, economic, and social dimensions to estimate EC amounts, and ultimately employs the XGBoost-SHAP model to analyze the underlying driving mechanisms. The results indicate the following: (1) From 2000 to 2020, the spatio-temporal variations in the three ESSDs in the YREB were substantial. Additionally, imbalances in ESSDs were observed, predominantly in economically advanced regions. (2) A total of 183 ESFs were identified among cities within the YREB, reflecting relatively active exchanges of ecosystem services (ESs). (3) Over the past two decades, the average annual total EC of the YREB amounted to 46,866.35 million yuan, with EC capital flows occurring in 117 cities. The proportion of water area in each city constitutes the primary driver of the EC amount. The EC model based on the “water-energy-food” ecosystem service flow (WEF-ESF) proposed in this study provides a valuable reference and scientific basis for formulating EC policies among YREB cities. Full article
Show Figures

Figure 1

34 pages, 802 KB  
Review
Integrated Microalgal–Aquaponic Systems for Enhanced Water Treatment and Food Security: A Critical Review of Recent Advances in Process Integration and Resource Recovery
by Charith Akalanka Dodangodage, Jagath C. Kasturiarachchi, Induwara Arsith Wijesekara, Thilini A. Perera, Dilan Rajapakshe and Rangika Halwatura
Phycology 2026, 6(1), 14; https://doi.org/10.3390/phycology6010014 - 12 Jan 2026
Viewed by 150
Abstract
The convergence of food insecurity, water scarcity, and environmental degradation has intensified the global search for sustainable agricultural models. Integrated Microalgal–Aquaponic Systems (IAMS) have emerged as a novel multi-trophic platform that unites aquaculture, hydroponics, and microalgal cultivation into a closed-loop framework for resource-efficient [...] Read more.
The convergence of food insecurity, water scarcity, and environmental degradation has intensified the global search for sustainable agricultural models. Integrated Microalgal–Aquaponic Systems (IAMS) have emerged as a novel multi-trophic platform that unites aquaculture, hydroponics, and microalgal cultivation into a closed-loop framework for resource-efficient food production and water recovery. This critical review synthesizes empirical findings and engineering advancements published between 2008 and 2024, evaluating IAMS performance relative to traditional agriculture and recirculating aquaculture systems (RAS). Reported under controlled laboratory and pilot-scale conditions, IAMS have achieved nitrogen and phosphorus recovery efficiencies exceeding 95% while potentially reducing water consumption by up to 90% compared to conventional farming. The integration of microalgal photobioreactors enhances nutrient retention, may contribute to internal carbon capture, and enables the generation of diversified co-products, including biofertilizers and protein-rich aquafeeds. Nevertheless, significant barriers to commercial scalability persist, including the biological complexity of maintaining multi-trophic synchrony, high initial capital expenditure (CAPEX), and regulatory ambiguity regarding the safety of waste-derived algal biomass. Technical challenges such as photobioreactor upscaling, biofouling control, and energy optimization are critically discussed. Finally, the review evaluates the alignment of IAMS with UN Sustainable Development Goals 2, 6, and 13, and outlines future research priorities in techno-economic modeling, automation, and policy development to facilitate the transition of IAMS from pilot-scale innovations to viable industrial solutions. Full article
Show Figures

Graphical abstract

14 pages, 871 KB  
Article
Efavirenz Interacts with Hormones Involved in Appetite and Satiety, Affecting Body Weight in Mice
by Sandra Angélica Rojas-Osornio, Leticia Manuel-Apolinar, Minerva Crespo-Ramírez, Vladimir Paredes-Cervantes, Antonio Mata-Marín, José Molina-López, Miguel Pérez de la Mora, Dasiel Borroto-Escuela, Ricardo Martínez-Lara and Emiliano Tesoro-Cruz
Int. J. Mol. Sci. 2026, 27(2), 735; https://doi.org/10.3390/ijms27020735 - 11 Jan 2026
Viewed by 129
Abstract
Antiretroviral drugs are associated with increased body weight and metabolic disorders. Fat gain and insulin resistance are commonly associated with abdominal obesity in people with HIV (PWH). There is currently an open ongoing discussion about how antiretroviral therapy affects body weight and its [...] Read more.
Antiretroviral drugs are associated with increased body weight and metabolic disorders. Fat gain and insulin resistance are commonly associated with abdominal obesity in people with HIV (PWH). There is currently an open ongoing discussion about how antiretroviral therapy affects body weight and its significance in hunger–satiety circuit alteration. Until now, the impact of the drug on this circuit has not been explored. This study aimed to assess the hormones involved in appetite and satiety regulation in the serum and hypothalamus after efavirenz (EFV) administration in mice. EFV (10 mg/kg) and distilled water (1.5 μL/kg) (control group) were orally administered for 36 days to CD1 mice. Body weight and food intake were determined throughout treatment. At the end of the treatment, the metabolic profile (glucose, triglycerides, cholesterol) was assessed, and leptin, soluble receptor of leptin (sOB-R), and ghrelin were measured in serum; moreover, we evaluated the expression of growth hormone secretagogue receptor 1a (GHS-R1a), neuropeptide Y receptor 1 (NPYR1), and leptin in the hypothalamus, and a sucrose preference test (SPT) was conducted. Outcomes showed an increase in serum ghrelin and the expression of GHS-R1a and NPYR1 receptors in the hypothalamus, coinciding with an increase in appetite and preference for sucrose in mice in the EFV group. Furthermore, serum leptin, sOB-R, and the free leptin index (FLI) showed that hunger is not related to a lack of satiety. Despite increased food intake, a reduction in body weight was observed, and triglyceride and cholesterol levels were increased. According to our findings, mice treated with EFV showed a decrease in body weight, despite increased food intake resulting from appetite stimulation, which is caused by specific compounds, hormones, and neural signals acting on the brain’s hunger centres, primarily in the hypothalamus, promoting eating behaviours. However, further studies are necessary to investigate the mechanisms of EFV’s effects on energy expenditure. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

19 pages, 659 KB  
Article
Smart Urban Synergy: A Systems-Based Approach to Assessing Smart and Sustainable Cities
by Ocotlán Díaz-Parra, Jorge A. Ruiz-Vanoye, Juan M. Xicoténcatl-Pérez, Alejandro Fuentes-Penna, Ricardo A. Barrera-Cámara, Francisco R. Trejo-Macotela, Jaime Aguilar-Ortiz and Marco A. Vera-Jiménez
Systems 2026, 14(1), 74; https://doi.org/10.3390/systems14010074 - 9 Jan 2026
Viewed by 213
Abstract
Smart cities aim to integrate technological, infrastructural, and socio-environmental systems in order to improve urban sustainability and quality of life. To qualify as both smart and sustainable, a city is generally expected to pursue self-sufficiency through the adoption of sustainable practices in energy [...] Read more.
Smart cities aim to integrate technological, infrastructural, and socio-environmental systems in order to improve urban sustainability and quality of life. To qualify as both smart and sustainable, a city is generally expected to pursue self-sufficiency through the adoption of sustainable practices in energy production, water supply, and food systems. Such cities also seek to reduce operational costs for both private operators and municipalities, while aiming to enhance the quality of life of their residents. Within this context, the relevance of a web-based application becomes particularly apparent. An application equipped with predefined indicators can provide a structured and measurable framework for assessing the current status of a city or town in relation to smart and sustainable development. This framework allows for the evaluation of the extent to which a city aligns with established criteria associated with smart and sustainable urban models. This paper introduces a Python-based web application, developed using Python version 3.10, designed to assess or support the self-assessment of a city’s alignment with identified smart and sustainable development indicators. This study does not claim empirical validation or benchmarking performance; the proposed system is presented as a proof-of-concept framework. The work does not propose new smart city indicators. Rather, it presents an integrative system that seeks to operationalise existing smart and sustainable city indicators within a unified and modular web-based assessment framework, designed to support cross-domain evaluation and citizen-accessible self-assessment. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

17 pages, 1121 KB  
Article
Design and Environmental Analysis of an Aquaponics System Coupled with Photovoltaic Unit for Food Production and Reuse of Nutrients from Wastewater: A Life Cycle Assessment Study
by Juan J. Espada Sanjurjo, Mª Prado Díaz de Mera-Sánchez and Rosalía Rodríguez Escudero
Appl. Sci. 2026, 16(2), 635; https://doi.org/10.3390/app16020635 - 8 Jan 2026
Viewed by 224
Abstract
Aquaponics consists of the combination of hydroponics and aquaculture within a closed loop, being a promising technology for food production and wastewater treatment in the context of the circular economy. This technology is less energy-intensive, environmentally friendly, and consumes less water. In addition, [...] Read more.
Aquaponics consists of the combination of hydroponics and aquaculture within a closed loop, being a promising technology for food production and wastewater treatment in the context of the circular economy. This technology is less energy-intensive, environmentally friendly, and consumes less water. In addition, the wastewater produced by fish, rich in nutrients, can be used to grow a wide variety of plants, which avoids further treatments for nutrient removal. Although aquaponics presents advantages from an environmental point of view with regard to other technologies, its sustainability must be analyzed using systematic tools, such as the Life Cycle Assessment (LCA). In this work, a small-scale aquaponics system (tilapia–lettuce) coupled with a photovoltaic unit was designed and assessed from an environmental perspective using the LCA to quantify its environmental burdens. The photovoltaic unit was sized to supply renewable energy to the system, achieving a reduction of 52% in grid electricity consumption. The environmental impacts of the system were quantified by the LCA, showing that electricity and fish feed were the most important contributors to all the impacts (by 90%), obtaining significant reductions (by 40% on average for all of them) when coupling a photovoltaic unit to the system. Full article
Show Figures

Figure 1

19 pages, 922 KB  
Review
Poultry Farming in the Republic of Moldova: Current Trends, Best Practices, Product Quality Assurance, and Sustainable Development Strategies
by Larisa Caisin and Elena Scripnic
Sustainability 2026, 18(2), 626; https://doi.org/10.3390/su18020626 - 7 Jan 2026
Viewed by 189
Abstract
Poultry farming ranks among the most rapidly expanding sectors of global agriculture, significantly contributing to food availability, improved dietary quality, and economic stability in rural areas. The sector’s efficiency stems from short production cycles and the ability to convert agricultural by-products into high-quality [...] Read more.
Poultry farming ranks among the most rapidly expanding sectors of global agriculture, significantly contributing to food availability, improved dietary quality, and economic stability in rural areas. The sector’s efficiency stems from short production cycles and the ability to convert agricultural by-products into high-quality protein, energy, and essential nutrients. Despite these benefits, the growing scale of poultry production raises serious environmental concerns, including intensive use of land and water, high feed demand, and impacts on greenhouse gas emissions, soil nutrient balance, and water quality. This study examines the poultry industry in the Republic of Moldova, where it forms a crucial component of the agricultural economy. Drawing on recent statistical data and scientific literature, the article reviews production dynamics, farm structures, and technological adoption, offering a comprehensive overview of the sector’s current state. The findings highlight both the sector’s essential role in strengthening food security and rural livelihoods and its susceptibility to resource limitations and environmental pressures. The analysis emphasizes the importance of implementing precision livestock farming technologies, improving biosecurity, and promoting environmentally sustainable practices as key strategies for long-term sector resilience. These insights aim to support policymakers and stakeholders in developing effective strategies to ensure a competitive and sustainable poultry industry in Moldova. Full article
(This article belongs to the Special Issue Agriculture, Food, and Resources for Sustainable Economic Development)
Show Figures

Figure 1

32 pages, 8817 KB  
Article
Geospatial Assessment and Modeling of Water–Energy–Food Nexus Optimization for Sustainable Paddy Cultivation in the Dry Zone of Sri Lanka: A Case Study in the North Central Province
by Awanthi Udeshika Iddawela, Jeong-Woo Son, Yeon-Kyu Sonn and Seung-Oh Hur
Water 2026, 18(2), 152; https://doi.org/10.3390/w18020152 - 6 Jan 2026
Viewed by 392
Abstract
This study presents a geospatial assessment and modeling of the water–energy–food (WEF) nexus to enrich the sustainable paddy cultivation of the North Central Province (NCP) of Sri Lanka in the Dry Zone. Increasing climatic variability and limited resources have raised concerns about the [...] Read more.
This study presents a geospatial assessment and modeling of the water–energy–food (WEF) nexus to enrich the sustainable paddy cultivation of the North Central Province (NCP) of Sri Lanka in the Dry Zone. Increasing climatic variability and limited resources have raised concerns about the need for efficient resource management to restore food security globally. The study analyzed the three components of the WEF nexus for their synergies and trade-offs using GIS and remote sensing applications. The food productivity potential was derived using the Normalized Difference Vegetation Index (NDVI), Soil Organic Carbon (SOC), soil type, and land use, whereas water availability was assessed using the Normalized Difference Water Index (NDWI), Soil Moisture Index (SMI), and rainfall data. Energy potential was mapped using WorldClim 2.1 datasets on solar radiation and wind speed and the proximity to the national grid. Scenario modeling was conducted through raster overlay analysis to identify zones of WEF constraints and synergies such as low food–low water areas and high energy–low productivity areas. To ensure the accuracy of the created model, Pearson correlation analysis was used to internally validate between hotspot layers (representing extracted data) and scenario layers (representing modeled outputs). The results revealed a strong positive correlation (r = 0.737), a moderate positive correlation for energy (r = 0.582), and a positive correlation for food (r = 0.273). Those values were statistically significant at p > 0.001. These results confirm the internal validity and accuracy of the model. This study further calculated the total greenhouse gas (GHG) emissions from paddy cultivation in NCP as 1,070,800 tCO2eq yr−1, which results in an emission intensity of 5.35 tCO2eq ha−1 yr−1, with CH4 contributing around 89% and N2O 11%. This highlights the importance of sustainable cultivation in mitigating agricultural emissions that contribute to climate change. Overall, this study demonstrates a robust framework for identifying areas of resource stress or potential synergy under the WEF nexus for policy implementation, to promote climate resilience and sustainable paddy cultivation, to enhance the food security of the country. This model can be adapted to implement similar research work in the future as well. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

23 pages, 3422 KB  
Article
Evolution of Urban–Agricultural–Ecological Spatial Structure Driven by Irrigation and Drainage Projects and Water–Heat–Vegetation Response
by Tianqi Su and Yongmei
Agriculture 2026, 16(2), 142; https://doi.org/10.3390/agriculture16020142 - 6 Jan 2026
Viewed by 163
Abstract
In the context of global climate change and intensified water resource constraints, studying the evolution of the urban–agricultural–ecological spatial structure and the water–heat–vegetation responses driven by large-scale irrigation and drainage projects in arid and semi-arid regions is of great significance. Based on multitemporal [...] Read more.
In the context of global climate change and intensified water resource constraints, studying the evolution of the urban–agricultural–ecological spatial structure and the water–heat–vegetation responses driven by large-scale irrigation and drainage projects in arid and semi-arid regions is of great significance. Based on multitemporal remote sensing data from 1985 to 2015, this study takes the Inner Mongolia Hetao Plain as the research area, constructs a “multifunctionality–dynamic evolution” dual-principle classification system for urban–agricultural–ecological space, and adopts the technical process of “separate interpretation of each single land type using the maximum likelihood algorithm followed by merging with conflict pixel resolution” to improve the classification accuracy to 90.82%. Through a land use transfer matrix, a standard deviation ellipse model, surface temperature (LST) inversion, and vegetation fractional coverage (VFC) analysis, this study systematically reveals the spatiotemporal differentiation patterns of spatial structure evolution and surface parameter responses throughout the project’s life cycle. The results show the following: (1) The spatial structure follows the path of “short-term intense disturbance–long-term stable optimization”, with agricultural space stability increasing by 4.8%, the ecological core area retention rate exceeding 90%, and urban space expanding with a shift from external encroachment to internal filling, realizing “stable grain yield with unchanged cultivated land area and improved ecological quality with controlled green space loss”. (2) The overall VFC shows a trend of “central area stable increase (annual growth rate 0.8%), eastern area fluctuating recovery (cyclic amplitude ±12%), and western area local improvement (key patches increased by 18%)”. (3) The LST-VFC relationship presents spatiotemporal misalignment, with a 0.8–1.2 °C anomalous cooling in the central region during the construction period (despite a 15% VFC decrease), driven by irrigation water thermal inertia, and a disrupted linear correlation after completion due to crop phenology changes and plastic film mulching. (4) Irrigation and drainage projects optimize water resource allocation, constructing a hub regulation model integrated with the Water–Energy–Food (WEF) Nexus, providing a replicable paradigm for ecological effect assessment of major water conservancy projects in arid regions. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

24 pages, 666 KB  
Review
Green Extraction at Scale: Hydrodynamic Cavitation for Bioactive Recovery and Protein Functionalization—A Narrative Review
by Francesco Meneguzzo, Federica Zabini and Lorenzo Albanese
Molecules 2026, 31(1), 192; https://doi.org/10.3390/molecules31010192 - 5 Jan 2026
Viewed by 374
Abstract
Hydrodynamic cavitation (HC) is a green and readily scalable platform for the recovery and upgrading of bioactives from agri-food and forestry byproducts. This expert-led narrative review examines HC processing of citrus and pomegranate peels, softwoods, and plant protein systems, emphasizing process performance, ingredient [...] Read more.
Hydrodynamic cavitation (HC) is a green and readily scalable platform for the recovery and upgrading of bioactives from agri-food and forestry byproducts. This expert-led narrative review examines HC processing of citrus and pomegranate peels, softwoods, and plant protein systems, emphasizing process performance, ingredient functionality, and realistic routes to market, and contrasts HC with other green extraction technologies. Pilot-scale evidence repeatedly supports water-only operation with high solids and short residence times; in most practical deployments, energy demand is dominated by downstream water removal rather than the extraction step itself, which favors low water-to-biomass ratios. A distinctive outcome of HC is the spontaneous formation of stable pectin–flavonoid–terpene phytocomplexes with improved apparent solubility and bioaccessibility, and early studies indicate that HC may also facilitate protein–polyphenol complexation while lowering anti-nutritional factors. Two translational pathways appear near term: (i) blending HC-derived dry extracts with commercial dry protein isolates to deliver measurable functional benefits at low inclusion levels and (ii) HC-based extraction of plant proteins to obtain digestion-friendly isolates and conjugate-ready ingredients. Priority gaps include harmonized reporting of specific energy consumption and operating metrics, explicit solvent/byproduct mass balances, matched-scale benchmarking against subcritical water extraction and pulsed electric field, and evidence from continuous multi-ton operation. Overall, HC is a strong candidate unit operation for circular biorefineries, provided that energy accounting, quality retention, and regulatory documentation are handled rigorously. Full article
(This article belongs to the Special Issue Bioproducts for Health, 4th Edition)
Show Figures

Graphical abstract

20 pages, 1448 KB  
Review
Valorization and Environmental Impacts of Pecan Waste: A Critical Review
by Jean Louis Yannick Omotonoko, Michael Polozola, Andrej Svyantek and Zhuoyu Wang
Foods 2026, 15(1), 168; https://doi.org/10.3390/foods15010168 - 4 Jan 2026
Viewed by 366
Abstract
Pecan (Carya illinoinensis) cultivation generates a substantial number of byproducts, particularly nutshells, which are often discarded despite being rich in bioactive and structural compounds. These agro-industrial residues, comprising nearly 50% of the total nut mass, contain high levels of phenolics, flavonoids, [...] Read more.
Pecan (Carya illinoinensis) cultivation generates a substantial number of byproducts, particularly nutshells, which are often discarded despite being rich in bioactive and structural compounds. These agro-industrial residues, comprising nearly 50% of the total nut mass, contain high levels of phenolics, flavonoids, dietary fiber, and lignocellulosic matter, making them suitable for circular economy applications. This review critically evaluates the potential of pecan shell waste for value-added applications in environmental remediation, food and pharmaceutical formulations, and green materials production. It explores innovative green extraction techniques, such as ultrasound-assisted, microwave-assisted, and subcritical water extraction, to recover valuable compounds like ellagic acid and tannins with high efficiency and minimal environmental impact. Moreover, the review highlights the conversion of pecan shells into activated carbon for wastewater treatment and soil remediation. Pecan byproducts have been used as sustainable feedstocks for catalyst support, contributing to energy conversion and biomass catalysis. The bioactive compounds also offer therapeutic properties, including antioxidant, anti-inflammatory, and antimicrobial effects, supporting their inclusion in nutraceutical and cosmetic applications. Through a comprehensive synthesis of recent studies, this work highlights the role of pecan shell valorization in reducing waste, improving public health, and increasing economic resilience within agro-industrial systems. By aligning with sustainable development and circular economies, the utilization of pecan byproducts provides a low-cost, eco-innovative pathway to mitigate environmental pollution and promote sustainable development. Full article
Show Figures

Figure 1

20 pages, 1883 KB  
Article
Agrivoltaics in the Tropics: Soybean Yield Stability and Microclimate Buffering Across Wet and Dry Seasons
by Sung Yoon, MinKyoung Kim, SeungYeun Han and Jai-Young Lee
Agronomy 2026, 16(1), 116; https://doi.org/10.3390/agronomy16010116 - 1 Jan 2026
Viewed by 489
Abstract
Agrivoltaics (APV) offers a promising dual land-use solution for food and energy production, yet empirical data regarding its impact on leguminous crops in tropical monsoon climates remain limited. This study evaluated the microclimate, growth, and yield of soybean (Glycine max) under an APV [...] Read more.
Agrivoltaics (APV) offers a promising dual land-use solution for food and energy production, yet empirical data regarding its impact on leguminous crops in tropical monsoon climates remain limited. This study evaluated the microclimate, growth, and yield of soybean (Glycine max) under an APV system compared to an open-field control during the wet and dry seasons in Bogor, Indonesia. The APV structure reduced incident solar radiation by approximately 35%, significantly lowering soil temperatures and maintaining higher soil moisture across both seasons. In the wet season, the APV treatment significantly increased grain yield (3528.8 vs. 1708.3 kg ha−1, +106%) relative to the open field by mitigating excessive heat and radiative loads, which enhanced pod retention. In the dry season, APV maintained a yield advantage (2025.6 vs. 1724.4 kg ha−1, +17%), driven by improved water conservation and a higher harvest index. Notably, shading did not delay phenological development or hinder vegetative growth in either season. These findings demonstrate that APV systems can contribute to sustainably higher yields and stability in tropical environments by buffering against season-specific environmental stresses, suggesting a viable pathway for sustainable agricultural intensification in equatorial regions. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

Back to TopTop