Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,239)

Search Parameters:
Keywords = water-efficient products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3088 KB  
Article
Leveraging Limited ISMN Soil Moisture Measurements to Develop the HYDRUS-1D Model and Explore the Potential of Remotely Sensed Precipitation for Soil Moisture Estimates in the Northern Territory, Australia
by Muhammad Usman and Christopher E. Ndehedehe
Remote Sens. 2025, 17(22), 3723; https://doi.org/10.3390/rs17223723 - 14 Nov 2025
Abstract
Soil moisture plays a key role in the critical zone of the Earth and has extensive value in the understanding of hydrological, agricultural, and environmental processes (among others). Long-term (in situ) monitoring of soil moisture measurements is generally not practical; however, short-term measurements [...] Read more.
Soil moisture plays a key role in the critical zone of the Earth and has extensive value in the understanding of hydrological, agricultural, and environmental processes (among others). Long-term (in situ) monitoring of soil moisture measurements is generally not practical; however, short-term measurements are often found. Limited soil moisture measurements can be employed to develop a numerical model for long-term and accurate soil moisture estimations. A key input variable to the model is precipitation, which is also not easily accessible, particularly at a finer spatial resolution; hence, publicly available remote sensing data can be used as an alternative. This study, therefore, aims to develop a numerical model HYDRUS-1D to estimate soil moisture in the data-scarce state of the Northern Territory, Australia, with a land cover of shrubland and a Tropical-Savannah type climate. The HDYRUS-1D is based on the numerical solution of Richards’ equation of variably saturated flow that relies on information about the soil water retention characteristics. This study utilized the van Genuchten model parameters, which were optimized (against measured soil moisture) through parameter optimization with initial estimates obtained from the HYDRUS catalogue. Initial estimates from different sources can differ for the same soil texture (e.g., loamy sand) and can induce uncertainties in the calibrated model. Therefore, a comprehensive uncertainty analysis was conducted to address potential uncertainties in the calibration process. The HYDRUS-1D was calibrated for a period between March 2012 and February 2013 and was independently validated against three different periods between March 2013 and October 2016. Root Mean Square Error (RMSE), Pearson’s correlation coefficient (R), and Mean Absolute Error (MAE) were used to assess the efficiency of the model in simulating the measured soil moisture. The model exhibited good performance in replicating measured soil moisture during calibration (RMSE = 0.00 m3/m3, MAE = 0.005 m3/m3, and R = 0.70), during validation period 1 (RMSE = 0.035 m3/m3 and MAE = 0.023 m3/m3, and R = 0.72), validation period 2 (RMSE = 0.054 m3/m3 and MAE = 0.039 m3/m3, and R = 0.51), and validation period 3 (RMSE = 0.046 m3/m3 and MAE = 0.032 m3/m3, and R = 0.61), respectively. Remotely sensed precipitation data were used from the CHRS-PERSIANN, CHRS-CCS, and CHRS-PDIR-Now to assess their capabilities in estimating soil moisture. Efficiency evaluation metrics and visual assessment revealed that these products underestimated the soil moisture. The CHRS-CCS outperformed other products in terms of overall efficiency (average RMSE of 0.040 m3/m3, average MAE of 0.023 m3/m3, and an average R of 0.68, respectively). An integrated approach based on numerical modelling and remote sensing employed in this study can help understand the long-term dynamics of soil moisture and soil water balance in the Northern Territory, Australia. Full article
(This article belongs to the Special Issue Earth Observation Satellites for Soil Moisture Monitoring)
13 pages, 3165 KB  
Article
Calcined Xerogels of C/TiO2 Nanostructures for Solar-Driven Photocatalytic Hydrogen Production
by Yong Li, Hongpeng Zhang, Canni Zhuo, Xixi Sun, Jiaqi Gao and Yali Zhao
Gels 2025, 11(11), 911; https://doi.org/10.3390/gels11110911 - 14 Nov 2025
Abstract
The solar-driven water splitting for the production of renewable green hydrogen fundamentally relies on the exploration of efficient photocatalysts. Nanostructured TiO2 is widely recognized as a promising material for photocatalysis, yet it remains hindered by inadequate light harvesting and fast photogenerated carrier [...] Read more.
The solar-driven water splitting for the production of renewable green hydrogen fundamentally relies on the exploration of efficient photocatalysts. Nanostructured TiO2 is widely recognized as a promising material for photocatalysis, yet it remains hindered by inadequate light harvesting and fast photogenerated carrier recombination. Herein, calcined C/TiO2 xerogels with yolk–shell and core–shell nanostructures (denoted as YS-C/TiO2 and CS-C/TiO2) were designed and fabricated via a typical sol–gel–calcination assisted approach. Thanks to the encapsulation of carbon nanospheres into TiO2, it effectively enhances light absorption, improves carrier separation, and lessens carrier recombination, making the well-designed YS-C/TiO2 composite display a remarkable hydrogen evolution rate of 975 µmol g−1 h−1 under simulated solar light irradiation and without the use of any co-catalyst, which is approximately 21.7 times that of the commercial TiO2. The work provides an efficacious design concept in developing nanostructured TiO2-based photocatalysts and in boosting broad photocatalytic applications. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Figure 1

21 pages, 8458 KB  
Article
Chemo-Ultrasonication Rehabilitation of Thin-Film Composite Ultrapure Water Membrane for Spent Dialysate Recovery
by Nuhu Dalhat Mu’azu, Mukarram Zubair, Mohammad Saood Manzar, Aesha H. Alamri, Ishraq H. Alhamed, Asaad Al Alawi and Muhammad Nawaz
Membranes 2025, 15(11), 340; https://doi.org/10.3390/membranes15110340 - 14 Nov 2025
Abstract
The ever-increasing number of discarded end-of-life dialysate polyamide thin-film composite membranes (DEoLMs) from presents both environmental and economic challenges for health centers. Traditional thermo-chemical cleaning techniques have been deployed for the rehabilitation of DEoLMs. This study further investigated the application of chemo-ultrasonication rehabilitation [...] Read more.
The ever-increasing number of discarded end-of-life dialysate polyamide thin-film composite membranes (DEoLMs) from presents both environmental and economic challenges for health centers. Traditional thermo-chemical cleaning techniques have been deployed for the rehabilitation of DEoLMs. This study further investigated the application of chemo-ultrasonication rehabilitation of dialysate-production-related DEoLM for potential reuse in spent dialysate recovery considering salt and creatinine—a typical uremic toxin-removal from water. The DEoLM was rehabilitated using low-concentration citric acid (CA) and sodium lauryl sulfate (SLS) under ultrasonic waves (45 kHz, 30 min agitation). Considering different rehabilitation protocols, the synergistic effects of heating (HT) and the chemical agents, with and without and ultrasonic waves (SC) were evaluated through FTIR, SEM, and EDX analyses, and the performance of the rehabilitated DEoLM was assessed via water flux and permeance, and efficiencies for conductivity and creatinine rejection. The fully integrated protocol chemo-ultrasonication (HT + SC + chemical agents) yielded the highest performance, achieving 93.56% conductivity and 96.83% creatinine removal, with water flux of 113.48 L m−2 h−1 and permeances of 6.31 L m−2 h−1 bar−1, at markedly reduced pressures. The chemo-sonic-rehabilitated-DEoLM removed the organic–inorganic foulants beyond thermo-chemical cleaning. This suggests that the sonication waves had a great impact regarding rejuvenating the fouled DEoL dialysate membrane, offering a sustainable, cost-effective pathway for extending membrane life, and supporting sustainable water management to achieve circular economy goals within healthcare centers. Full article
(This article belongs to the Topic Separation Techniques and Circular Economy)
Show Figures

Figure 1

29 pages, 3310 KB  
Article
Impact of Mass Integration on the Technoeconomic Performance of the Gas Oil Hydrocracking Process in Latin America
by Sofía García-Maza, Segundo Rojas-Flores and Ángel Darío González-Delgado
Processes 2025, 13(11), 3681; https://doi.org/10.3390/pr13113681 - 14 Nov 2025
Abstract
The gas oil hydrocracking process is a cornerstone of modern refining, enabling the conversion of heavy fractions into high-value fuels such as diesel, kerosene, LPG, and naphtha. However, despite its economic significance, its considerable water requirements for cooling, washing, and steam generation lead [...] Read more.
The gas oil hydrocracking process is a cornerstone of modern refining, enabling the conversion of heavy fractions into high-value fuels such as diesel, kerosene, LPG, and naphtha. However, despite its economic significance, its considerable water requirements for cooling, washing, and steam generation lead to high utility costs, which may undermine profitability, representing the problem of the study. This study addresses the issue through a techno-economic assessment and resilience analysis of an industrial-scale, mass and energy-integrated gas oil hydrocracking process, utilizing the novel FP2O methodology. The process was modeled in Aspen HYSYS® V14.0 with a capacity of 1.94 Mt/year, assuming a feedstock cost of USD 350/t and a primary product (diesel) price of USD 1539/t. The total capital investment (TCI) was estimated at USD 175.68 million, while utility expenses reached USD 1312.18 million/year, representing nearly half of the total product cost (TPC) of USD 2692.20 million/year. A set of twelve techno-economic and three financial indicators was determined, yielding a gross profit (GP) of USD 97.69 million, profitability after tax (PAT) of USD 64.96 million, and a net present value (NPV) of USD 229.62 million. The payback period (PBP) was 1.41 years, with a depreciable payback period (DPBP) of 2.99 years. The return on investment (ROI) was 36.97%, and the internal rate of return (IRR) reached 44.81%, evidencing strong profitability relative to comparable petrochemical operations. Resilience analysis highlighted sensitivities to fluctuations in product prices, feedstock costs, and normalized variable operating costs (NVOC), identifying a critical NVOC of USD 1435/t against the current operation at USD 1384.74/t, which suggests a narrow buffer before profitability deteriorates. Overall, the findings confirm that mass and energy integration enhances resource efficiency but does not fully mitigate exposure to feedstock and utility price volatility. This work constitutes the first application of FP2O to a mass and energy-integrated gas oil hydrocracking facility, establishing a benchmark for holistic techno-economic and resilience assessments in complex petrochemical systems. Full article
Show Figures

Figure 1

17 pages, 2700 KB  
Review
Research Progress on the Regulation of Plant Rhizosphere Oxygen Environment by Micro-Nano Bubbles and Their Application Prospects in Alleviating Hypoxic Stress
by Kexin Zheng, Honghao Zeng, Renyuan Liu, Lang Wu, Yu Pan, Jinhua Li and Chunyu Shang
Agronomy 2025, 15(11), 2620; https://doi.org/10.3390/agronomy15112620 - 14 Nov 2025
Abstract
Rhizosphere hypoxia, caused by soil compaction and waterlogging, is a major constraint on agricultural productivity. It severely impairs crop growth and yield by inhibiting root aerobic respiration, disrupting energy metabolism, and altering the rhizosphere microecology. Micro-nano bubbles (MNBs) show significant potential for alleviating [...] Read more.
Rhizosphere hypoxia, caused by soil compaction and waterlogging, is a major constraint on agricultural productivity. It severely impairs crop growth and yield by inhibiting root aerobic respiration, disrupting energy metabolism, and altering the rhizosphere microecology. Micro-nano bubbles (MNBs) show significant potential for alleviating rhizosphere hypoxia due to their unique physicochemical properties, including large specific surface area, high oxygen dissolution efficiency, prolonged retention time, and negative surface charge. This paper systematically reviews the key characteristics of MNBs, particularly their enhanced mass transfer capacity and system stability, and outlines mainstream preparation methods such as cavitation, electrolysis, and membrane dispersion. And the multiple alleviation mechanisms of MNBs—including continuous oxygen release, improvement of soil pore structure, and regulation of rhizosphere microbial communities—are clarified. The combination of MNBs aeration and subsurface drip irrigation can increase soil aeration by 5%. When applied in soilless cultivation and conventional irrigation systems, MNBs enhance crop yield and nutrient use efficiency. For example, tomato yield can be increased by 12–44%. Furthermore, the integration of MNBs with water–fertilizer integration technology enables the synchronized supply of oxygen and nutrients, thereby optimizing the rhizosphere environment efficiently. This paper sorts out the empirical effects of MNBs in soilless cultivation and conventional irrigation, and provides directions for solving problems such as “insufficient oxygen supply to deep roots” and “reactive oxygen species (ROS) stress in sensitive crops”. Despite these significant advantages, the industrialization of MNBs still needs to overcome challenges including high equipment costs and insufficient precision in parameter control, so as to promote large-scale agricultural application and provide an innovative strategy for the management of rhizosphere hypoxia. Full article
Show Figures

Figure 1

21 pages, 1485 KB  
Article
Potential of Single-Cell Protein as Novel Biosorbents for the Removal of Heavy Metals from Seawater
by Chiara Maraviglia, Silvio Matassa, Alessandra Cesaro and Francesco Pirozzi
Water 2025, 17(22), 3253; https://doi.org/10.3390/w17223253 - 14 Nov 2025
Abstract
This study aimed to explore innovative sorbent materials for the remediation of contaminated marine environments, with a focus on metal removal from seawater. Adsorption tests were carried out to evaluate the performance of single-cell proteins (SCPs), a protein-rich biomass derived from industrial by-products, [...] Read more.
This study aimed to explore innovative sorbent materials for the remediation of contaminated marine environments, with a focus on metal removal from seawater. Adsorption tests were carried out to evaluate the performance of single-cell proteins (SCPs), a protein-rich biomass derived from industrial by-products, in comparison with commercial activated carbon (AC). Given the increasing need for sustainable and effective approaches in sediment remediation and water treatment, identifying alternatives to conventional sorbents is of particular relevance. Results showed that SCPs exhibited higher affinity for Cr than for Zn, while multi-metal solutions improved adsorption, suggesting synergistic interactions possibly linked to surface charge effects and ternary complex formation. Importantly, SCPs demonstrated competitive and, in some cases, superior performance compared to AC, highlighting their potential as an innovative and sustainable material. Moreover, when the absorbent materials were combined, SCP and AC mixes outperformed both the individual adsorbents and the expected additive efficiencies, achieving significantly higher removal yields for both metals, particularly at low concentrations. Overall, these findings suggest that SCPs, alone or in combination with AC, represent a promising strategy for the removal of heavy metals from marine systems, offering new opportunities for the treatment of contaminated sediments and seawater. Full article
(This article belongs to the Topic Soil/Sediment Remediation and Wastewater Treatment)
Show Figures

Graphical abstract

19 pages, 4328 KB  
Article
Research on Soil Water Leakage and Water Use Efficiency Based on Coupling Biochar and Management Measures
by He Wang, Wei Dong, Dongguo Shao, Luguang Liu, Jie Huang, Jianan Qin, Xiaowei Yang, Rui Zhang, Mei Zhu and Linhua Ma
Agronomy 2025, 15(11), 2614; https://doi.org/10.3390/agronomy15112614 - 14 Nov 2025
Abstract
Biochar has recently been widely used as a soil amendment. However, the interaction effects of biochar with irrigation management on soil water leakage and water use efficiency of paddy black soil remain unclear, which seriously restricts the production potential of black soil. Therefore, [...] Read more.
Biochar has recently been widely used as a soil amendment. However, the interaction effects of biochar with irrigation management on soil water leakage and water use efficiency of paddy black soil remain unclear, which seriously restricts the production potential of black soil. Therefore, the purpose of this paper was to explore the response rule of water loss and water use efficiency of black soil under the coupling effects of biochar, irrigation amounts, and irrigation methods through column experiment, field experiment, and HYDRUS-AquaCrop coupling simulation. Biochar application rates, irrigation amounts, and irrigation methods were set at five levels (B = 0, 1.5, 3, 4.5, 6 kg·m−2), seven levels (I = 0, 60, 120, 180, 240, 300, 360 mm), and two levels (M, conventional irrigation and drip irrigation), respectively. The results showed that B and M had a significant coupling effect on water leakage loss (p < 0.05). Single factor B promoted water loss, but B and M inhibited water loss, which helps reduce water waste and environmental pollution. Compared with a single effect, the synergistic effect of B, I, and M on water consumption (ET), yield (Y), and water use efficiency (WUE) was better, increasing Y by 18.2%–57.9% and WUE by 17.1%–34.9%. Additionally, ET, Y, and WUE were also correlated with hydrological years, and this correlation works best in dry years. The maximum of Y and WUE in wet and normal years occurred in the ‘BDI6, 0 mm’ treatment (saving water and high yield), while that in dry years occurred in the ‘BDI6, 360 mm’ treatment (a stable yield). Therefore, the interaction effects of biochar and irrigation management should be comprehensively considered in black soil agricultural production to improve the agricultural potential of black soil and ensure food security. Full article
Show Figures

Figure 1

17 pages, 515 KB  
Article
A Complete Mobile Treatment Chain to Produce Drinking Water from Sources Heavily Contaminated by Inorganic and Organic Compounds
by Jean-François Blais, Vincent Taillard, Geneviève Rioux, Justine Dionne, Richard Lévesque, Pejman Abolhosseini, Lan Huong Tran and Richard Martel
Water 2025, 17(22), 3246; https://doi.org/10.3390/w17223246 - 14 Nov 2025
Abstract
The provision of potable water for armed forces at their operational sites necessitates a robust treatment chain to ensure the production of safe drinking water from potentially contaminated local water sources. Relying on single-use water bottles is not considered an eco-friendly option and [...] Read more.
The provision of potable water for armed forces at their operational sites necessitates a robust treatment chain to ensure the production of safe drinking water from potentially contaminated local water sources. Relying on single-use water bottles is not considered an eco-friendly option and on-site production may exhibit limited efficiency depending on the water contamination. This study therefore aimed to define a mobile processing chain that could efficiently produce drinking water on-site while offering a multi-barrier level of protection. To evaluate the system, contaminated water was prepared from different water sources and then spiked with various inorganic contaminants (metals, anions: Cl, F, I, NO2, NO3, SO42−, CN), organic contaminants (e.g., pesticides, petroleum hydrocarbons, polycyclic aromatic hydrocarbons, chlorinated solvents), and energetic compound (perchlorate) at levels ranging from 5 to 50 times the standard water quality criteria. A specific treatment process was defined optimized and evaluated at flow rates reaching 500 L/h. This treatment chain includes the following: a sediment filter, a greensand filter, a cation exchange resin, an anion exchange resin, an activated carbon adsorption filter, ultrafiltration, a UV lamp, and a reverse osmosis (RO) unit. This treatment system successfully met all water quality criteria, providing a reliable and effective alternative to an RO-only treatment regime. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

20 pages, 1685 KB  
Article
Impact of Ultrasonic Time and Marinating Temperature on the Physicochemical Properties of Guinea Pig Meat (Cavia porcellus)
by Esteban Arteaga-Cabrera, Lina Escobar-Escobar, Oswaldo Osorio-Mora and Julián Andrés Gómez-Salazar
Foods 2025, 14(22), 3887; https://doi.org/10.3390/foods14223887 - 13 Nov 2025
Abstract
Guinea pig (Cavia porcellus) meat is valued for its nutritional quality and ease of production. Marination is a key value-adding process, but it is limited by its long duration. Therefore, technologies that accelerate marination and improve tenderness are needed. The objective [...] Read more.
Guinea pig (Cavia porcellus) meat is valued for its nutritional quality and ease of production. Marination is a key value-adding process, but it is limited by its long duration. Therefore, technologies that accelerate marination and improve tenderness are needed. The objective of this study was to evaluate the effect of ultrasound application time and temperature on the physicochemical parameters and yield of guinea pig meat during marination. The marination solution contained 1.9% NaCl, 1.9% acetic acid, and 0.51% oregano essential oil. Ultrasound treatment (200 W) was applied for 15–120 min, while static treatments were conducted at 20, 30, and 40 °C. Ultrasound-assisted marination of guinea pig meat improved NaCl uptake, reduced acetic acid content, and improved water-holding capacity. Moderate temperatures (40 °C) minimized weight loss, and short ultrasound times preserved color and texture. However, prolonged ultrasound exposure led to myofibrillar disruption and increased weight loss. Correlation analysis revealed that pH, influenced by NaCl and acetic acid, had a significant impact on moisture, texture, and water-holding capacity. Overall, the controlled application of ultrasound and temperature effectively optimized marination efficiency, enhanced functional properties, and preserved the quality of guinea pig meat. Full article
Show Figures

Figure 1

13 pages, 285 KB  
Article
Prediction of Body and Carcass Weight of Sheep Fed with Increasing Levels of Spineless Cactus (Nopalea cochenillifera Salm Dyck): Carcass Characteristics, Tissue Composition, Non-Carcass Constituents
by Roberto Germano Costa, Talma Jordana Lima, Ariosvaldo Nunes Medeiros, José Teodorico de Araújo Filho, Neila Lidiany Ribeiro, Geovergue Rodrigues Medeiros, Tairon Pannunzio Dias-Silva and Francisco Fernando Ramos de Carvalho
Ruminants 2025, 5(4), 54; https://doi.org/10.3390/ruminants5040054 - 13 Nov 2025
Abstract
Spineless cactus, known for its high heat tolerance and low water requirements, offers a sustainable alternative for animal feed in regions where conventional crops struggle to thrive. This study aimed to evaluate the carcass characteristics, leg tissue composition, and non-carcass constituents of lambs [...] Read more.
Spineless cactus, known for its high heat tolerance and low water requirements, offers a sustainable alternative for animal feed in regions where conventional crops struggle to thrive. This study aimed to evaluate the carcass characteristics, leg tissue composition, and non-carcass constituents of lambs fed increasing levels (0, 15, 30, and 45% based on dry matter) of spineless cactus as a replacement for Tifton hay. Additionally, we estimated body weight and carcass traits using biometric measurements (BM). Forty male lambs, with an average initial body weight of 23.6 ± 2.58 kg, were subjected to a feedlot regime. Empty body weight was the only variable that showed a significant orthogonal contrast between the control group (0%) and those fed spineless cactus (p < 0.05). A quadratic regression effect (p < 0.05) was observed for the weights of the cold half carcass, neck, shoulder, and leg cuts. No significant effects were found on non-carcass components or biometric measurements. Biometric measurements showed strong positive correlations with slaughter weight and carcass characteristics. Based on these findings, replacing 30% of Tifton hay with spineless cactus is recommended as the optimal level, as it maintains carcass quality, tissue composition, and non-carcass traits. Moreover, biometric measurements prove to be effective tools for predicting slaughter weight and carcass characteristics, offering practical value for farmers seeking efficient and sustainable production strategies. The inclusion levels of 24.25% to 27.50% of spineless cactus in the diet of confined sheep appear to be the most efficient, promoting high-value commercial cuts without compromising carcass quality parameters. These levels balance productive performance and sustainability, especially in semi-arid regions. Full article
26 pages, 10465 KB  
Article
Water–Nitrogen Coupling Under Film Mulching Synergistically Enhances Soil Quality and Winter Wheat Yield by Restructuring Soil Microbial Co-Occurrence Networks
by Fangyuan Shen, Liangjun Fei, Youliang Peng and Yalin Gao
Plants 2025, 14(22), 3461; https://doi.org/10.3390/plants14223461 - 13 Nov 2025
Abstract
Improper irrigation and fertilization can easily lead to soil nutrient imbalance, inhibit microbial reproduction, and thereby reduce soil quality and crop yield. This study conducted winter wheat planting experiments in 2023–2025, setting three muddy water (sediment-laden irrigation water) treatments of different sediment concentrations [...] Read more.
Improper irrigation and fertilization can easily lead to soil nutrient imbalance, inhibit microbial reproduction, and thereby reduce soil quality and crop yield. This study conducted winter wheat planting experiments in 2023–2025, setting three muddy water (sediment-laden irrigation water) treatments of different sediment concentrations (3, 6 and 9 kg·m−3), irrigation levels (0.50–0.65, 0.65–0.80 and 0.80–0.95 FC), and nitrogen application rates (100, 160 and 220 kg·ha−1). An L9(33) orthogonal experimental design was applied to evaluate the influence of water and nitrogen regulation on soil properties, microbial community structure, and wheat productivity. The results showed the following: Among these treatments, the T5 treatment (6 kg·m−3, 0.65–0.80 FC, 160 kg·ha−1) significantly improved the root zone environment, and the total nitrogen (TN), ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3-N), and soil organic carbon (SOC) content also increased significantly. T5 also enhanced the diversity and network complexity of bacterial and fungal communities. Notably, genera such as Lysobacter, Lasiobolidium, and Ascobolus became central to nitrogen transformation and nutrient cycling. Structural equation modeling revealed the interdependent mechanism between soil quality, microorganisms, and wheat yield: NO3-N and SOC drive improvements in soil quality, while microbial community structure and network complexity are key to yield increases, with fungal communities making the largest direct contribution to yield (R2 = 0.93). The T5 treatment increased two-year yields by 21.34–24.96% compared to conventional irrigation and fertilization (CK2), improved irrigation water use efficiency by 56.40–57.51% and peak nitrogen agronomic efficiency. The synergistic effect of “soil quality optimization–enhanced microbial activity–efficient utilization of water and nitrogen–high wheat yield” has been achieved, providing a theoretical basis and practical reference for scientific water and nitrogen management and sustainable yield increase in winter wheat in the Yellow River Basin and similar areas. Full article
(This article belongs to the Special Issue Water and Nutrient Management for Sustainable Crop Production)
Show Figures

Figure 1

18 pages, 2686 KB  
Article
Sustainable Biopolymer Films from Amazonian Tambatinga Fish Waste: Gelatin Extraction and Performance for Food Packaging Applications
by Fernanda Ramalho Procopio, Rodrigo Vinícius Lourenço, Ana Mônica Q. B. Bitante, Paulo José do Amaral Sobral and Manuel Antônio Chagas Jacintho
Foods 2025, 14(22), 3866; https://doi.org/10.3390/foods14223866 - 12 Nov 2025
Abstract
Tambatinga (Colossoma macropomum × Piaractus brachypomus), a hybrid Amazonian fish recognized for its superior growth performance, represents a valuable and sustainable source of collagen-rich raw material. Due to its tropical origin, the species’ skin may contain higher levels of amino acids, [...] Read more.
Tambatinga (Colossoma macropomum × Piaractus brachypomus), a hybrid Amazonian fish recognized for its superior growth performance, represents a valuable and sustainable source of collagen-rich raw material. Due to its tropical origin, the species’ skin may contain higher levels of amino acids, which can enhance the functional and structural properties of gelatin derived from it. The valorization of fish processing residues for biopolymer production not only mitigates environmental impacts but also reinforces the principles of the circular economy within aquaculture systems. This study explores the development of biopolymer films from Tambatinga skin, an abundant by-product of Brazilian aquaculture. The skins were cleaned and subjected to a hot water–acid extraction process to obtain gelatin. The extracted gelatin exhibited high proline and hydroxyproline contents (12.47 and 9.84 g/100 g of amino acids, respectively) and a Bloom strength of 263.9 g, confirming its suitability for film formation. Films were prepared using 2 g of gelatin per 100 g of film-forming solution, with glycerol added at 10 and 20 g/100 g of gelatin. The resulting films were transparent, flexible, and showed uniform surfaces. Increasing the glycerol concentration reduced tensile strength (from 59.4 to 37.9 MPa) but improved elongation at break (from 116% to 159.1%) and modified the films’ thermal behavior. Moreover, Tambatinga gelatin films demonstrated excellent UV-blocking performance (below 300 nm) and lower water vapor permeability compared to other gelatin-based films reported in the literature. These findings highlight the potential of fish skin—typically regarded as industrial waste—as a renewable and high-value raw material for the production of sustainable biopolymers. This approach supports resource efficiency, waste reduction, and the broader goals of sustainable development and circular bioeconomy. Full article
Show Figures

Figure 1

30 pages, 3983 KB  
Article
Post-Fire Streamflow Prediction: Remote Sensing Insights from Landsat and an Unmanned Aerial Vehicle
by Bibek Acharya and Michael E. Barber
Remote Sens. 2025, 17(22), 3690; https://doi.org/10.3390/rs17223690 - 12 Nov 2025
Viewed by 42
Abstract
Wildfire-induced disturbances to soil and vegetation can significantly impact streamflows for years, depending upon the degree of burn severity. Accurately predicting the effects of wildfire on streamflow at the watershed scale is essential for effective water budget management. This study presents a novel [...] Read more.
Wildfire-induced disturbances to soil and vegetation can significantly impact streamflows for years, depending upon the degree of burn severity. Accurately predicting the effects of wildfire on streamflow at the watershed scale is essential for effective water budget management. This study presents a novel approach to generating a burn severity map on a small scale by integrating unmanned aerial vehicle (UAV)-based thermal imagery with Landsat-derived Differenced Normalized Burn Ratio (dNBR) and upscaling burned severity to the entire burned area. The approach was applied to the Thompson Ridge Fire perimeter, and the upscaled UAV-Landsat-based burn severity map achieved an overall accuracy of ~73% and a kappa coefficient of ~0.62 when compared with the Burned Area Emergency Response’s (BAER) fire product as a reference map, indicating moderate accuracy. We then tested the transferability of burn severity information to a Beaver River watershed by applying Random Forest models. Predictors included topography, spectral bands, vegetation indices, fuel, land cover, fire information, and soil properties. We calibrated and validated the Distributed Hydrology Soil Vegetation Model (DHSVM) against observed streamflow and Snow Water Equivalent (SWE) data within the Beaver River watershed and measured model performance using Nash–Sutcliffe Efficiency (NSE), Kling–Gupta Efficiency (KGE), and Percent Bias (PBIAS) metrics. We adjusted soil (maximum infiltration rate) and vegetation (fractional vegetation cover, snow interception efficiency, and leaf area index) parameters for the post-fire model setup and simulated streamflow for the post-fire years without vegetation regrowth. Streamflow simulations using the upscaled and transferred UAV-Landsat burn severity map and the Burned Area Emergency Response’s (BAER) fire product produced similar post-fire hydrologic responses, with annual average flows increasing under both approaches and the UAV-Landsat-based simulation yielding slightly lower values, by less than 6% compared to the BAER-based simulation. Our results demonstrate that the UAV-satellite integration method offers a cost- and time-effective method for generating a burn severity map, and when combined with the transferability method and hydrologic modeling, it provides a practical framework for predicting post-fire streamflow in both burned and unburned watersheds. Full article
Show Figures

Figure 1

18 pages, 2585 KB  
Article
Optimizing the Cement Rheology and Hydrophobicity Using Polycarboxylate Ether (PCE)-Based Grinding Aids
by Kenan Çinku, Ebru Dengiz Özcan, Şenel Özdamar and Hasan Ergin
Polymers 2025, 17(22), 3002; https://doi.org/10.3390/polym17223002 - 12 Nov 2025
Viewed by 88
Abstract
Newly developed polymer-based grinding chemicals demonstrate superior dispersion, grinding, and strength outcomes compared to traditional amine-based additives. This study provides a comprehensive analysis of the mechanisms underlying the improved performance of polymers in the grinding process. It examines the influence of polymer-based grinding [...] Read more.
Newly developed polymer-based grinding chemicals demonstrate superior dispersion, grinding, and strength outcomes compared to traditional amine-based additives. This study provides a comprehensive analysis of the mechanisms underlying the improved performance of polymers in the grinding process. It examines the influence of polymer-based grinding aids (A1-A2-A3) on the hydrophobicity and rheological behavior of CEM I 42.5 R Portland cement. A systematic analysis was conducted using six different grinding aids, comprising three synthesized polycarboxylate ether (PCE)-based polymers and three commercial amine group products. Key properties, including surface tension, hydrophobicity (water contact angle, WCA), slump flow, FT-IR, and rheological parameters, were evaluated. Among the compounds tested, the A2 polymer exhibited the most favorable performance, achieving a high contact angle (131.7°), low surface tension (56.7 dyn/cm), and enhanced mortar fluidity (25 cm slump flow). FT-IR spectroscopy confirmed strong interactions between A2 and cement particles, particularly in the CH3 bonding regions. Rheological analyses further revealed that A2—2.5 g significantly decreased viscosity and improved shear stress response, indicating superior dispersion and water reduction capability. The findings highlight A2 as a promising eco-efficient additive for enhancing the efficiency, performance, and workability of cementitious systems through polymer-based grinding technology. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

17 pages, 3812 KB  
Article
MnO2-Supported Pd Nanocatalyst for Efficient Electrochemical Reduction of 2,4-Dichlorobenzoic Acid
by Yaxuan Peng and Meiyan Wang
Clean Technol. 2025, 7(4), 102; https://doi.org/10.3390/cleantechnol7040102 - 11 Nov 2025
Viewed by 164
Abstract
Chlorobenzoic acids (CBAs) are a group of chlorinated persistent environmental pollutants with hard biodegradability, high water solubility, and well-documented carcinogenic and endocrine-disrupting properties. Electrocatalytic hydrodechlorination (ECH) is a highly efficient method under mild conditions without harmful by-products, but the ECH process commonly requires [...] Read more.
Chlorobenzoic acids (CBAs) are a group of chlorinated persistent environmental pollutants with hard biodegradability, high water solubility, and well-documented carcinogenic and endocrine-disrupting properties. Electrocatalytic hydrodechlorination (ECH) is a highly efficient method under mild conditions without harmful by-products, but the ECH process commonly requires adding precious metal catalysts such as palladium (Pd). To address the economic constraints and more effective utilization of Pd, a palladium/manganese dioxide (Pd/MnO2) composite catalyst was developed in this study by chemical deposition. This method utilized the excellent electrochemical activity of MnO2 as a carrier as well as the hydrogen storage and activation capacity of Pd. The test showed the optimal Pd loading was 7.5%, and the removal percent of 2,4-dichlorobenzoic acid (2,4-DCBA), a typical CBA, reached 97.3% using 0.5 g/L of Pd/MnO2 after 120 min of electrochemical reaction. Under these conditions, the dechlorination percent can also be as high as 89.6%. A higher current density enhanced the dechlorination efficiency but showed the lower current utilization efficiency. In practical applications, current density should be minimized on the premise of compliance with the water treatment requirement. Mechanistic studies showed that MnO2 synergistically promoted hydrolysis dissociation and hydrogen spillover and facilitated Pd-mediated adsorption of atomic hydrogen (H*) for dehydrogenation of 2,4-DCBA. The presence of MnO2 can effectively disperse the loaded Pd and reduce the amount of Pd via the above process. The catalyst exhibited excellent stability over multiple cycles, and the 2,4-DCBA removal could still reach more than 80% after the five cycles. This work establishes electrocatalytic strategies for effectively reducing Pd usage and maintaining high removal of typical CBAs to support CBA-related water treatment. Full article
(This article belongs to the Collection Water and Wastewater Treatment Technologies)
Show Figures

Figure 1

Back to TopTop