Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = water-absorbing resin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2018 KiB  
Article
Study on Preparation and Properties of Super Absorbent Gels of Homogenous Cotton Straw-Acrylic Acid-Acrylamide by Graft Copolymerization
by Jun Guo, Jing Shi, Lisheng Xu, Xingtao Zhang, Fangkai Han and Minwei Xu
Gels 2025, 11(8), 583; https://doi.org/10.3390/gels11080583 - 28 Jul 2025
Viewed by 229
Abstract
To rationally utilize and develop agricultural waste products, this research involved the synthesis of degradable high water-absorbing resin through the graft copolymerization of cotton straw (CS) with monomers. Among them, acrylic acid (AA) and acrylamide (Am) are used as grafting copolymer monomers, cellulose [...] Read more.
To rationally utilize and develop agricultural waste products, this research involved the synthesis of degradable high water-absorbing resin through the graft copolymerization of cotton straw (CS) with monomers. Among them, acrylic acid (AA) and acrylamide (Am) are used as grafting copolymer monomers, cellulose in the straw serves as the network framework, and MBA acts as the crosslinking agent. 60Co gamma rays as initiators. Different concentrations of alkaline solution were used to dissolve the cellulose in the straw. Single-factor and orthogonal experiments were conducted to optimize the experimental conditions. various analytical methods such as thermogravimetric analysis (TG), X-ray crystallography (XRD), infrared spectroscopy (IR), and scanning electron microscopy (SEM) were employed to characterize the structure and properties of the product. 60Co gamma rays as initiators, can reduce the pollution caused by chemical initiators and lower energy consumption. Through this research, agricultural waste can be effectively utilized, reducing environmental pollution, lowering industrial energy consumption, and synthesizing degradable and environmentally friendly high-absorbent resins. The product can be applied to agricultural water retention agent, fertilizer controlled release agent and other aspects. Full article
(This article belongs to the Special Issue Cellulose-Based Hydrogels for Advanced Applications)
Show Figures

Graphical abstract

20 pages, 1655 KiB  
Article
Effect of Ageing on the Mechanical Properties of Dental Resin with and Without Bisphenol A
by Lígia Lopes-Rocha, Orlanda Torres, Joana Garcez, Ricardo J. C. Carbas, Catarina Borges, Vírginia M. F. Gonçalves, Maria Elizabeth Tiritan, Igor Studart Medeiros, Teresa Pinho and Lucas F. M. da Silva
Materials 2025, 18(12), 2704; https://doi.org/10.3390/ma18122704 - 9 Jun 2025
Viewed by 506
Abstract
(1) Background: The work aims to determine different chemical and mechanical properties with and without BPA dental resin–matrix composites under the same curing and testing conditions. (2) Methods: Disc-shaped specimens were prepared from six resin–matrix composites used in dentistry, three with BPA (BE-Brilliant [...] Read more.
(1) Background: The work aims to determine different chemical and mechanical properties with and without BPA dental resin–matrix composites under the same curing and testing conditions. (2) Methods: Disc-shaped specimens were prepared from six resin–matrix composites used in dentistry, three with BPA (BE-Brilliant EverGlowTM, ED-IPS Empress Direct, FS-FiltekTM Supreme XTE) and three without (AF-Admira Fusion, BF-Enamel Plus HRi Bio Function Enamel, N/C). Specimens were photoactivated using an LED light-curing unit. The chemical and mechanical properties were analysed. (3) Results: The FS group exhibited the most significant water sorption (31.17 µg/mm3), while the BF showed the lowest (12.23 µg/mm3). Regarding the diffusion coefficient, the result recorded for the group AF is faster-absorbing water, and the group NC is slower. In both test methods (biaxial flexural strength and compressive strength), the resistance to flexural loading of the AF group was significantly lower than all other resin composites evaluated. (4) Conclusions: According to all the parameters studied, we verified that the BF presents the best chemical–mechanical behaviour. Resins free of BPA may not influence chemical–mechanical performance. However, the inorganic matrix has more influence on mechanical properties than the organic matrix. Full article
Show Figures

Figure 1

19 pages, 9538 KiB  
Article
Research on the Impact Resistance of Sandwich-Structured Battery Pack Protective Plates
by Jun Zhou, Changjie Luo, Ruilin Shen, Fengqiang Zhang, Wenze Yu, Mingming Zhang and Weiliang Liao
Processes 2025, 13(6), 1639; https://doi.org/10.3390/pr13061639 - 23 May 2025
Viewed by 577
Abstract
With the continuous development of the new energy vehicle industry, in order to further improve the safety and range of electric vehicles, vehicle lightweighting has been a key focus of major car companies. However, research on lightweighting and the impact protection effect of [...] Read more.
With the continuous development of the new energy vehicle industry, in order to further improve the safety and range of electric vehicles, vehicle lightweighting has been a key focus of major car companies. However, research on lightweighting and the impact protection effect of battery pack protective plates is lacking. The bottom protective plate of the battery pack in this study has a sandwich-type multi-layer structure, which is mainly composed of upper and lower glass-fiber-reinforced resin protective layers, steel plate impact resistant layers, and honeycomb buffer layers. In order to study the relationship between the impact damage response and material characteristics of the multi-material battery pack protective plate, a matrix experimental design was adopted in this study to obtain the energy absorption ratio of different material properties when the protective plate is subjected to impact damage. This work innovatively used a low-cost equivalent model method. During the drop hammer impact test, a 6061-T6 aluminum plate in direct contact with the lower part of the bottom guard plate test piece was used to simulate the deformation of the water-cooled plate in practical applications. High-strength aluminum honeycomb was arranged below the aluminum plate to simulate the deformation of the battery cell. This method provides a scientific quantitative standard for evaluating the impact resistance performance of the protective plate. The most preferred specimen in this work had a surface depression deformation of only 8.44 mm after being subjected to a 400 J high-energy impact, while the simulated water-cooled plate had a depression deformation of 4.07 mm. Among them, the high-strength steel plate played the main role in absorbing energy during the impact process, absorbing energy. It can account for about 34.3%, providing reference for further characterizing the impact resistance performance of the protective plate under different working conditions. At the same time, an equivalence analysis of the damage mode between the quasi-static indentation test and the dynamic drop hammer impact test was also conducted. Under the same conditions, the protective effect of the protective plate on impact damage was better than that of static pressure marks. From the perspective of energy absorption, the ratio coefficient of the two was about 1.2~1.3. Full article
Show Figures

Figure 1

15 pages, 2949 KiB  
Article
Evaluation of Temperature Regulation Efficiency of a Bilayer Coating on Glass with Evaporative and Radiative Cooling for Energy Management
by Huanying Zhang, Yonghang Yu, Dedong Ji, Chen Zhou and Shengyang Yang
Molecules 2025, 30(9), 2042; https://doi.org/10.3390/molecules30092042 - 3 May 2025
Viewed by 526
Abstract
With the increasing demand for energy-efficient and sustainable building materials, innovative cooling technologies have become a key focus in the construction industry. This study developed a double-layer cooling coating integrating evaporation and radiation mechanisms. The first layer consists of a TiO2/PUA [...] Read more.
With the increasing demand for energy-efficient and sustainable building materials, innovative cooling technologies have become a key focus in the construction industry. This study developed a double-layer cooling coating integrating evaporation and radiation mechanisms. The first layer consists of a TiO2/PUA radiation layer, where rutile TiO2 is incorporated into polyurethane acrylate (PUA) resin to enhance solar reflectivity. The second layer is a P(NVP-co-NMA) hydrogel, which evaporates water at high temperatures and absorbs moisture from the air at low temperatures, eliminating the need for additional water supply systems. The TiO2/PUA@P(NVP-co-NMA) coating demonstrates high solar reflectivity and infrared emissivity, effectively reducing indoor temperatures by dissipating heat through water evaporation and radiative cooling. Testing showed a temperature reduction of approximately 7.6 °C in a small house with this coating under simulated conditions. This material demonstrates favorable properties that may make it suitable for applications on building roofs and exterior walls, potentially addressing some limitations of conventional evaporative or radiative cooling systems. Its observed multi-effect cooling performance indicates promise for contributing to energy savings in sustainable building designs. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

12 pages, 5184 KiB  
Article
Dual Flame-Retardant and Curing-Agent Effects of Phytic Acid–Guanazole as an Additive in Fire-Protective Coatings for Wood
by Xue Zheng, Yongjin Zou, Cuili Xiang, An Wei, Yuhong Wei and Lixian Sun
Polymers 2025, 17(9), 1169; https://doi.org/10.3390/polym17091169 - 25 Apr 2025
Viewed by 411
Abstract
Recent research has focused on developing environmentally friendly flame-retardant coatings to improve the fire resistance of wood. In this study, phytic acid–guanazole (PG), a dual-functional compound synthesized through an ionic reaction between phytic acid and guanazole, was added to KH550-modified urea–formaldehyde resin (KUF) [...] Read more.
Recent research has focused on developing environmentally friendly flame-retardant coatings to improve the fire resistance of wood. In this study, phytic acid–guanazole (PG), a dual-functional compound synthesized through an ionic reaction between phytic acid and guanazole, was added to KH550-modified urea–formaldehyde resin (KUF) as both a curing agent and flame retardant. The PO43 groups from phytic acid act as an acid source to accelerate char formation during combustion, while the −NH2 groups introduced by guanazole release non-combustible gases to dilute oxygen in the air, synergistically enhancing flame retardancy. Additionally, the hygroscopic PO43 groups absorb free water in the resin, reducing the curing temperature and accelerating coating solidification. The KH550 coupling agent improves compatibility between KUF and PG while introducing silicon, which forms SiO2 during combustion to strengthen the char layer and further enhance flame resistance. Evaluations showed that PG outperforms conventional tannic acid (TA) in curing efficiency and fire resistance. Comprehensive analyses, including Differential Scanning Calorimetry (DSC), Limiting Oxygen Index (LOI), vertical flame tests, and cone calorimetry, confirmed PG’s dual functionality. Scanning Electron Microscope (SEM) and Raman spectroscopy revealed that PG-modified coatings form denser post-combustion char layers, directly linked to improved fire resistance. As a multifunctional additive, PG eliminates the need for separate curing agents and utilizes bio-based phytic acid, offering cost-effective and sustainable advantages for industrial applications. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

14 pages, 3326 KiB  
Article
Research on the Recovery Technology and Application of Copper Resources from Mine Wastewater at High Altitudes
by Jianhui Wu, Xu Yan, Chengyun Zhou and Yun Meng
Water 2025, 17(6), 856; https://doi.org/10.3390/w17060856 - 17 Mar 2025
Viewed by 561
Abstract
In this study, we studied the process of recovering copper from mine-leached water at an altitude of 4500 m. The process was ion exchange–esolution–nanofiltration–separation–cyclone electrodeposition. As a result, high-purity copper cathodes were produced. The study demonstrated that the maximum adsorption capacity of ion [...] Read more.
In this study, we studied the process of recovering copper from mine-leached water at an altitude of 4500 m. The process was ion exchange–esolution–nanofiltration–separation–cyclone electrodeposition. As a result, high-purity copper cathodes were produced. The study demonstrated that the maximum adsorption capacity of ion exchange resin D402 for Cu2+ reached 174.6 g/L and the efficiency of Cu2+ adsorption and eluent was found to be 97.2% and 94.2%, respectively. The results of Fourier Transform infrared spectroscopy (FTIR) analysis indicated that the resin contains -OH and -NH2. The lone pair electrons on O and N atoms can form coordination bonds with copper ions to form stable complexes. The results of X-ray photoelectron spectroscopy (XPS) analysis indicated that copper ions were absorbed into the resin. The recovery efficiency of Cu2+ throughout the entire process reaches 95.1%, and the purity of the resulting copper cathode reaches 99.997%. This method is distinguished by a straightforward process, minimal environmental impact, optimal operating conditions, high copper recovery efficiency, and a high copper grade. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

14 pages, 8019 KiB  
Article
Study on the Influence of Hygrothermal Aging on the Mechanical Properties of Carbon Fabric/Polyetheretherketone Composites
by Xiangyu Xu, Baoyan Zhang, Fenghui Shi, Kai Liu, Gongqiu Peng, Liang Gao, Junpeng Gao and Yu Du
Polymers 2025, 17(6), 724; https://doi.org/10.3390/polym17060724 - 10 Mar 2025
Cited by 1 | Viewed by 929
Abstract
Owing to its superior mechanical properties and recyclability, the carbon fabric/polyetheretherketone (CFF/PEEK) composite has seen increasing application in engineering domains. However, studies examining the impact of hygrothermal aging on its performance remain relatively limited in the existing literature. To investigate its durability in [...] Read more.
Owing to its superior mechanical properties and recyclability, the carbon fabric/polyetheretherketone (CFF/PEEK) composite has seen increasing application in engineering domains. However, studies examining the impact of hygrothermal aging on its performance remain relatively limited in the existing literature. To investigate its durability in hygrothermal environments, this study fabricated CFF/PEEK composites with a fiber volume fraction of 55 vol% and subjected them to equilibrium hygroscopic treatment at 70 °C. The hygroscopic behavior of polyetheretherketone (PEEK) resin and CFF/PEEK composites, along with their tensile and compressive properties under dry conditions at room temperature (RTD) and wet conditions at 70 °C (ETW), were systematically evaluated. The results indicated that both PEEK resin and CFF/PEEK composites exhibited Fickian diffusion behavior during the initial stages of aging but diverged in later stages. The equilibrium moisture absorption rates were approximately 0.32% for PEEK resin and 0.19% for CFF/PEEK composites. After aging at 70 °C, the strength of both materials decreased significantly, while the modulus showed only minor changes. Under ETW conditions, the tensile strength retention rate of PEEK resin was 74.92%, and the compressive strength retention rate was 81.85%. For the CFF/PEEK composites, the tensile strength retention rate was approximately 85%, and the compressive strength retention rate was about 95%. The typical failure modes of CFF/PEEK composites did not exhibit notable differences between tensile and compressive specimens after hygrothermal aging. Resin debonding was observed in the moisture-absorbed composite specimens, while no microcracks or delamination were detected. The degradation of mechanical properties is predominantly attributed to the deterioration of the resin matrix and interface characteristics, which are caused by water molecule intrusion and the adverse effects of wet strain mismatch between the resin and fibers. Full article
Show Figures

Figure 1

27 pages, 5690 KiB  
Review
Superabsorbent Polymers: Innovations in Ecology, Environmental, and Diverse Applications
by Qingya Niu, Jiayin Xie, Jiayan Li, Zaixu An, Huijie Xiao, Xiaoyuan Zhang, Zhiqiang Su and Zhichao Wang
Materials 2025, 18(4), 823; https://doi.org/10.3390/ma18040823 - 13 Feb 2025
Cited by 1 | Viewed by 2253
Abstract
Significant progress has been achieved in the development of superabsorbent polymers (SAPs), focusing on enhancing their performance and expanding their applications. Efforts are particularly directed at increasing water absorbency while promoting environmental sustainability. Biodegradable materials such as starch and potassium humate have been [...] Read more.
Significant progress has been achieved in the development of superabsorbent polymers (SAPs), focusing on enhancing their performance and expanding their applications. Efforts are particularly directed at increasing water absorbency while promoting environmental sustainability. Biodegradable materials such as starch and potassium humate have been successfully integrated with SAPs for desert greening, improving water retention, salt resistance, and seedling survival. The inclusion of nutrient-rich organic-inorganic composites further enhances the durability, efficiency, and recyclability of SAPs. In drought mitigation, polymeric absorbent resins such as polyacrylamide and starch-grafted acrylates have shown efficacy in ameliorating soil conditions and fostering plant growth. In arid environments, agents enriched with humic acid and bentonite contribute to improved soil aeration and water retention, creating optimal conditions for plant establishment. Additionally, the adoption of innovative waste management solutions has led to the production of amphiphilic SAPs from residual sludge, effectively addressing soil nutrient deficiencies and environmental pollution. In the food industry, SAPs containing protease, tea polyphenols, and chitosan exhibit potential for enhancing the stability and quality of seafood products. These advancements highlight the growing relevance of structural optimization approaches in SAP development across diverse applications and underline the importance of continued innovation in these fields. As novel materials emerge and environmental challenges intensify, the potential applications of SAPs are anticipated to expand significantly. Full article
(This article belongs to the Special Issue Construction and Applications in Functional Polymers)
Show Figures

Figure 1

29 pages, 13888 KiB  
Article
The Examination of the Effect of Water-Soluble Hydrophobic Agents on Physical–Mechanical Parameters and Resistance to Aggressive Environment of Concrete
by Jakub Hodul, Tatiana Beníková, Rostislav Drochytka and Ruben Paul Borg
Coatings 2025, 15(2), 175; https://doi.org/10.3390/coatings15020175 - 4 Feb 2025
Viewed by 1467
Abstract
The aim of this research was to examine the effect of water-based hydrophobic impregnations on concrete in order to improve its durability, chemical resistance, and physical–mechanical parameters. The purpose of this research was to prevent as much water evaporation as possible during concrete [...] Read more.
The aim of this research was to examine the effect of water-based hydrophobic impregnations on concrete in order to improve its durability, chemical resistance, and physical–mechanical parameters. The purpose of this research was to prevent as much water evaporation as possible during concrete hydration, which resulted in the improvement in concrete properties including strength, durability, resistance of concrete in high-pressure water, water tightness, etc. Water-based hydrophobic impregnations based on silane and siloxane, epoxy resin, and oil were chosen to achieve improvements in concrete parameters. The comparison of water-based hydrophobic impregnations with solvent-based hydrophobic impregnations was also performed using the determination of absorbency, water pressure penetration depth, watertightness, concrete penetration depth, and resistance to aggressive environment. The concrete microstructure was observed using a digital microscope and a scanning electron microscope (SEM). Samples with hydrophobic agents exhibited a higher contact angle, lower absorbency, and higher resistance to aggressive environment, when compared to the untreated surfaces, confirming the water repellency of the water-soluble hydrophobic impregnations. The positive effect of hydrophobic agents in the compressive strength was also recorded. Furthermore, the benefit of the addition of 0.1 wt.% of nanocellulose into the hydrophobic impregnations was observed. Based on the obtained results, it was found that the addition of nanocellulose to water-soluble hydrophobic impregnations reduced the depth of pressurized water seepage and increased the compressive strength of the concrete after 28 days by 2 MPa. Full article
Show Figures

Figure 1

13 pages, 4659 KiB  
Article
Modification of Polyamide Resins by Addition of Polyvinylpyrrolidone
by Yui Ikemoto and Masayuki Yamaguchi
Polymers 2025, 17(3), 360; https://doi.org/10.3390/polym17030360 - 28 Jan 2025
Viewed by 882
Abstract
The effect of the addition of polyvinylpyrrolidone (PVP) to polyamide resins was studied using polyamide 6 (PA6) and an amide copolymer with a low melting point (PA-L). For the PA6/PVP blends, the crosslinking reaction occurred during rheology measurements in the molten state. The [...] Read more.
The effect of the addition of polyvinylpyrrolidone (PVP) to polyamide resins was studied using polyamide 6 (PA6) and an amide copolymer with a low melting point (PA-L). For the PA6/PVP blends, the crosslinking reaction occurred during rheology measurements in the molten state. The blends did not show a phase-separated structure. Furthermore, the crystallization of PA6 was greatly inhibited by PVP addition. These results suggest that the PVP chains were dissolved in PA6 in the molten state, although the effect of the crosslinking reaction on the structure development is unknown. In the case of the PA-L/PVP blends, melt-mixing and the rheology measurements were performed at low temperature to avoid the crosslinking reaction. It was found that PVP was miscible with PA-L in the molten state when the PVP content was 10 and 15 wt%. The intermolecular interaction between the polyamide resins and PVP was detected from the peak shift of the infrared absorbance. PVP addition enhanced the moisture content in both polyamide resins and decreased the contact angle with water droplets. These results suggested that the surface properties and mechanical properties of polyamide resins, which are affected by the moisture content, are modified by PVP addition. Full article
(This article belongs to the Special Issue Advances in Rheology and Polymer Processing)
Show Figures

Figure 1

16 pages, 10339 KiB  
Article
Exploring the Application Method of Bamboo Powder in Promoting the Development of Sustainable Outdoor Furniture
by Yafei Fan, Ziqian Zhu, Jiacheng Luan and Yi Liu
Sustainability 2024, 16(24), 11282; https://doi.org/10.3390/su162411282 - 23 Dec 2024
Cited by 2 | Viewed by 1436
Abstract
With the depletion of fossil fuels, more and more green products are appearing in daily necessities. Bamboo is a common sustainable biomaterial with the characteristics of fast growth, easy bending, low cost, and easy processing, and it is widely used in furniture design. [...] Read more.
With the depletion of fossil fuels, more and more green products are appearing in daily necessities. Bamboo is a common sustainable biomaterial with the characteristics of fast growth, easy bending, low cost, and easy processing, and it is widely used in furniture design. However, the poor aging resistance and UV resistance of natural bamboo materials limit their application in outdoor furniture. In order to improve the service life of outdoor bamboo furniture, this study prepared bamboo boards from bamboo powder and utilized them in the design of outdoor furniture. The research was conducted in two stages. In the first stage, functional modification was carried out on the surface of bamboo fibers (BF). Epoxy resin and UV absorber ZnO were introduced into the bamboo powder matrix, and a three-dimensional network structure of bamboo powder-based polymer material was formed by adjusting the material ratio and reaction conditions. With the increase of ZnO content, the absorption of moisture by the bamboo powder-based polymer materials decreased. The compressive strength of 1.5%ZnO-Board reached 36.8 MPa, exceeding the compressive strength of C30 concrete. In the second stage, 1.5% ZnO-Board was selected for solidification and demolding, and used as the seat surface for outdoor chairs. Through the car crushing experiment, the chair panel did not undergo significant deformation during the car crushing process. The anti-aging experiment showed that the structure and morphology of the panel would not be damaged by long-term UV irradiation. The panel did not show any weight changes in the anti-water-absorption experiment. By using low-contrast color combinations, the seats can be organically integrated into the environmental background, effectively enhancing the coordination and unity of the overall aesthetic harmony of the space. Compared with the commonly used plastic outdoor seats, the outdoor seats prepared in this study showed a 144% increase in carbon reduction effect. This study highlights the potential of modified bamboo powder for the design of outdoor furniture, which is of great significance to reducing outdoor plastic products and promoting sustainable life. Full article
Show Figures

Figure 1

23 pages, 6353 KiB  
Article
Effects of Hygrothermal Condition on Water Diffusion and Flexural Properties of Carbon–Glass Hybrid Fiber-Reinforced Epoxy Polymer Winding Pipes
by Ying Zhao, Qiang Li, Guoqiang Zhou, Kehai Zhu, Bo Jing, Kangnan Zhu, Jiajun Shi and Chenggao Li
Polymers 2024, 16(23), 3433; https://doi.org/10.3390/polym16233433 - 6 Dec 2024
Cited by 4 | Viewed by 958
Abstract
Carbon–glass hybrid fiber-reinforced epoxy polymer (C-GFRP) winding pipes integrated with the advantages of light weight, high strength, corrosion resistance, and cost-effectiveness offer immense potential to mitigate corrosion issues in oil, gas, and water transportation pipelines. In this study, C-GFRP winding pipes underwent accelerated [...] Read more.
Carbon–glass hybrid fiber-reinforced epoxy polymer (C-GFRP) winding pipes integrated with the advantages of light weight, high strength, corrosion resistance, and cost-effectiveness offer immense potential to mitigate corrosion issues in oil, gas, and water transportation pipelines. In this study, C-GFRP winding pipes underwent accelerated aging tests through immersion in distilled water at temperatures of 25 °C, 40 °C, and 60 °C for 146 days. Water absorption tests were conducted to investigate the water absorption behavior of only CFRP- or GFRP-side absorbed water. Bending tests were performed to assess the evolution of the pipes’ flexural properties in two directions (GFRP or CFRP in tension). The results showed that the single-sided water absorption behavior adhered to the two-stage diffusion model. The diffusion coefficient, activation energy, and 146-day water absorption were all higher for the CFRP-side absorbed water compared to the GFRP-side absorbed water. The flexural strength and modulus of C-GFRP pipes were influenced by post-curing and resin hydrolysis/debonding. Initially, the flexural strength of CFRP in tension was higher than that of CFRP in tension. After 146 days of aging, the flexural strength of CFRP in tension was lower than that of CFRP in tension. Utilizing Arrhenius theory, the long-term lives were predicted for the flexural strength at temperatures of 5.4 °C, 12.8 °C, and 17.8 °C. The predicted lives of GFRP in tension were higher than those of CFRP in tension. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 10180 KiB  
Article
Material Design and Performance Study of a Porous Sound-Absorbing Sound Barrier
by Lili Cai, Yiran Mo, Suofan Yang, Yaxin Lu, Xiaobin Qian, Chenglin Lv, Dong Zhang and Chuanhui You
Buildings 2024, 14(10), 3118; https://doi.org/10.3390/buildings14103118 - 28 Sep 2024
Cited by 3 | Viewed by 1401
Abstract
A new type of porous sound-absorbing sound barrier was developed with quartz sand and self-developed polysiloxane resin. The forming process of the material was studied. The test specimens of the porous sound-absorbing sound barrier were prepared with different mesh numbers of quartz sand [...] Read more.
A new type of porous sound-absorbing sound barrier was developed with quartz sand and self-developed polysiloxane resin. The forming process of the material was studied. The test specimens of the porous sound-absorbing sound barrier were prepared with different mesh numbers of quartz sand and different proportions of resin, and the void properties, compressive strength, durability, and acoustic performance were investigated. Based on the mix design results, it is suggested that 20-mesh quartz sand and a 10:1 mass ratio of quartz sand are used to prepare the porous sound-absorbing sound barrier. The durability study showed that the porous sound-absorbing sound-barrier material had good salt and alkali resistance, poor acid resistance, good water stability, and freeze–thaw stability. The laboratory acoustic test and practical engineering application results showed that the porous sound-absorbing sound barrier had excellent acoustic performance and good noise-reduction effects. Full article
(This article belongs to the Special Issue Application of Environment-Friendly Materials in Civil Engineering)
Show Figures

Figure 1

13 pages, 5236 KiB  
Article
Three-Dimensionally Printed K-Band Radar Stealth Lightweight Material with Lotus Leaf Structure
by Chuangji Liu, Yingjie Xu, Beiqing Huang, Wan Zhang and Yuxin Wang
Polymers 2024, 16(18), 2677; https://doi.org/10.3390/polym16182677 - 23 Sep 2024
Cited by 1 | Viewed by 1528
Abstract
K-band radar waves have high penetration and low attenuation coefficients. However, the wavelength of this radar wave is relatively short; thus, designing and preparing both broadband and wide-angle radar wave absorbers in this band presents considerable challenges. In this study, a resin-based K-band [...] Read more.
K-band radar waves have high penetration and low attenuation coefficients. However, the wavelength of this radar wave is relatively short; thus, designing and preparing both broadband and wide-angle radar wave absorbers in this band presents considerable challenges. In this study, a resin-based K-band radar wave absorber with a biomimetic lotus leaf structure was designed and formed by UV curing. Here, microscale lotus leaf papillae and antireflection structures were prepared using a DLP 3D printer, and the contact angle between the material and water droplets was increased from 56° to 130°. In addition, the influence of the geometric parameters of the lotus leaf antireflection structure on the electromagnetic absorption performance and mechanical strength was investigated. After simulation optimization, the maximum electromagnetic loss of the lotus leaf structure 3D-printed sample was −32.3 dB, and the electromagnetic loss was below −10 dB in the 20.8–26.5 GHz frequency range. When the radar incidence angle was 60°, the maximum electromagnetic loss was still less than −10 dB. The designed lotus leaf structure has a higher mechanical energy absorption per unit volume (337.22 KJ/m3) and per unit mass (0.55 KJ/Kg) than commonly used honeycomb lightweight structures during the elastic deformation stage, and we expect that the designed structure can be used as an effective lightweight material for K-band radar stealth. Full article
(This article belongs to the Special Issue 3D Printing of Polymer Composite Materials)
Show Figures

Figure 1

10 pages, 1577 KiB  
Article
Storage Stability and Sensory Properties of Raha Sweet Colored with Crude and Purified Red Grape Anthocyanins and Synthetic Food Colorant
by Ayed Amr, Sarah Jaradat, Ashraf Al-Khamaiseh, Salameh Alqaraleh, Haneen Tarawneh, Samah AlBataineh, Imad Hamadneh, Hatim AlKhatib and Mohammad Shahein
Foods 2024, 13(17), 2747; https://doi.org/10.3390/foods13172747 - 29 Aug 2024
Cited by 1 | Viewed by 1180
Abstract
Anthocyanins (ANCs) are water-soluble pigments that are useful as nutraceuticals due to their health benefits. This study was performed to evaluate the storage stability of purified and crude red grape ANCs in Raha Sweet (RS) during storage and to evaluate its sensory properties. [...] Read more.
Anthocyanins (ANCs) are water-soluble pigments that are useful as nutraceuticals due to their health benefits. This study was performed to evaluate the storage stability of purified and crude red grape ANCs in Raha Sweet (RS) during storage and to evaluate its sensory properties. ANCs were extracted from red grape pomace and purified with a macroporous resin. RS was prepared and colored with a synthetic food dye, Carmoisine (control), and ANCs (crude and purified). Pigments were extracted from RS weekly for a period of seven weeks and the absorbance was read spectrophotometrically. RS colored with ANCs was evaluated for its color and other sensory properties against another RS colored with the control. Results showed that the degradation of ANCs in RS followed the first-order reaction model, unlike the control, which showed no degradation during storage. The half-life of crude ANCs was three times higher than that of the purified ones, and RS colored with ANCs received a significantly (p < 0.05) lower score for color than that of RS colored with the control. ANCs could provide the food industry with a natural alternative to synthetic dyes to color foods with high sugar content that are stored for a short period of time. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

Back to TopTop