Three-Dimensionally Printed K-Band Radar Stealth Lightweight Material with Lotus Leaf Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Characterization
3. Results
3.1. Microstructure Characterization of Lotus Leaf Structure
3.2. Electromagnetic Characterization of 3D-Printed Microwave-Absorbing Material
3.3. Microwave Absorption Performance of Lotus Leaf Structure
3.4. Mechanical Properties of Lotus Leaf Structure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shirke, N.; Ghase, V.; Jamdar, V. Recent Advances in Stealth Coating. Polym. Bull. 2024, 81, 9389–9418. [Google Scholar] [CrossRef]
- Li, C.; Liang, L.; Yang, Y.; Zhang, B.; Ji, G. Interfacial Engineering of Core–Shell Structured FeCoNi@SnO2 Magnetic Composites for Tunable Radar-Infrared Compatible Stealth. J. Chem. Eng. 2024, 481, 148354. [Google Scholar] [CrossRef]
- Calvo-de la Rosa, J.; Bou-Comas, A.; Manel Hernàndez, J.; Marín, P.; Lopez-Villegas, J.M.; Tejada, J.; Chudnovsky, E.M. New Approach to Designing Functional Materials for Stealth Technology: Radar Experiment with Bilayer Absorbers and Optimization of the Reflection Loss. Adv. Funct. Mater. 2023, 34, 2308819. [Google Scholar] [CrossRef]
- Ma, J.; Shi, Y.; Meng, Q.; Yao, B.; Wang, J.; Duan, J.; Zhang, B.; Liu, Y. A Radar-Infrared Compatible Stealth Metamaterial with Bird’s Nest Morphology. J. Alloys Compd. 2024, 986, 174137. [Google Scholar] [CrossRef]
- Abd El-Hameed, A.S.; Ouf, E.G.; Elboushi, A.; Seliem, A.G.; Izumi, Y. An Improved Performance Radar Sensor for K-Band Automotive Radars. J. Sens. 2023, 23, 7070. [Google Scholar] [CrossRef]
- Cui, J.; Bachmayer, R.; DeYoung, B.; Huang, W. Ocean Wave Measurement Using Short-Range K-Band Narrow Beam Continuous Wave Radar. Remote Sens. 2018, 10, 1242. [Google Scholar] [CrossRef]
- Li, Y.-C.; Choi, B.; Chong, J.-W.; Oh, D. 3D Target Localization of Modified 3D MUSIC for a Triple-Channel K-Band Radar. J. Sens. 2018, 18, 1634. [Google Scholar] [CrossRef]
- Bakhshi, M.; Ayatollahi, S.H.; Akbari, M. Enhancing Long-Range Radar (LRR) Automotive Applications: Utilizing Metasurface Structures to Improve the Performance of K-Band Longitudinal Slot Array Antennas. AEU-Int. J. Electron. C. 2024, 176, 155134. [Google Scholar] [CrossRef]
- Dewangan, L.; Patinavalasa, M.S.; Acharjee, J.; Solunke, Y.; Ghosh, S.; Mishra, N.K. Broadband Metamaterial Absorber for Stealth Applications at K-Band. AEU-Int. J. Electron. Commun. 2023, 170, 154828. [Google Scholar] [CrossRef]
- Dewangan, L.; Patinavalasa, M.S.; Acharjee, J.; Sandiman, S.A.; Ghosh, S.; Mishra, N.K. Direction Independent Broad-Band Wide Angle Metamaterial Absorber for “K” Band Applications. Frequenz 2023, 78, 9–20. [Google Scholar] [CrossRef]
- Coelho, H.J.S.; Araújo, B.; Silva, M.W.B.; Ferreira, T.N.; Campos, A.L.P.S.; Junqueira, C.; Kemptner, E.; Osipov, A. Multiband Metasurface-Based Absorber for Applications in X, Ku, and K Bands. Radio Sci. 2023, 58, e2023RS007711. [Google Scholar] [CrossRef]
- Li, D.; Pan, W.; Wang, T.; Wang, X.; Gong, R. 3D Printed Lightweight Metastructure with Microwave Absorption and Mechanical Resistance. Mater. Des. 2023, 225, 111506. [Google Scholar] [CrossRef]
- Wu, H.; Liu, L.; Cai, Y.; Qian, P.; Zhang, C.; Li, B. A Novel Gradient Graphene Composite with Broadband Microwave Absorption Fabricated by Fused Deposition Modelling. Mater. Technol. 2020, 37, 280–287. [Google Scholar] [CrossRef]
- Yin, L.; Tian, X.; Shang, Z.; Li, D. Ultra-Broadband Metamaterial Absorber with Graphene Composites Fabricated by 3D Printing. Mater. Lett. 2019, 239, 132–135. [Google Scholar] [CrossRef]
- Zhang, T.; Li, D.; Yang, Z.; Duan, Y.; Zhang, N.; Wang, L.; Liang, Q. A Multi-Materials 3D-Printed Continuous Conductive Fibre-Based Metamaterial for Broadband Microwave Absorption. Virtual Phys. Prototyp. 2023, 19, e2285417. [Google Scholar] [CrossRef]
- Yang, D.; Yin, Y.; Zhang, Z.; Li, D.; Cao, Y. Wide-Angle Microwave Absorption Properties of Multilayer Metamaterial Fabricated by 3D Printing. Mater. Lett. 2020, 281, 128571. [Google Scholar] [CrossRef]
- Yang, Z.; Liang, Q.; Duan, Y.; Li, Z.; Li, D.; Cao, Y. A 3D-Printed Lightweight Broadband Electromagnetic Absorbing Metastructure with Preserved High-Temperature Mechanical Property. Compos. Struct. 2021, 274, 114330. [Google Scholar] [CrossRef]
- Younes, H.; Li, R.; Lee, S.-E.; Kim, Y.K.; Choi, D. Gradient 3D-Printed Honeycomb Structure Polymer Coated with a Composite Consisting of Fe3O4 Multi-Granular Nanoclusters and Multi-Walled Carbon Nanotubes for Electromagnetic Wave Absorption. Synth. Met. 2021, 275, 116731. [Google Scholar] [CrossRef]
- He, H.; Zhichao, L.; Peng, W.; Qiuyi, W.; Ru, L.; Yao, Z.; Yanjun, L. Synthesis of Ultralight and Porous Magnetic gC3N4/g-Carbon Foams with Excellent Electromagnetic Wave (EMW) Absorption Performance and Their Application as a Reinforcing Agent for 3D Printing EMW Absorbers. Ind. Eng. Chem. Res. 2020, 59, 7633–7645. [Google Scholar] [CrossRef]
- Sun, J.; Huang, Y.; Aslani, F.; Ma, G. Electromagnetic Wave Absorbing Performance of 3D Printed Wave-Shape Copper Solid Cementitious Element. Cem. Concr. Compos. 2020, 114, 103789. [Google Scholar] [CrossRef]
- Sultanov, F.; Daulbayev, C.; Bakbolat, B.; Daulbayev, O. Advances of 3D Graphene and Its Composites in the Field of Microwave Absorption. Adv. Colloid Interface Sci. 2020, 285, 102281. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Ye, X.; Luo, A.; He, E.; Yang, C.; Yang, P.; Yan, T.; Ye, Y.; Wu, H. 3D Printing of Carbon Black/Polylactic Acid/Polyurethane Composites for Efficient Microwave Absorption. J. Mater. Sci. 2023, 34, 1672. [Google Scholar] [CrossRef]
- Deng, G.; Sun, H.; Lv, K.; Yang, J.; Yin, Z.; Chi, B. An Efficient Wideband Cross-Polarization Converter Manufactured by Stacking Metal/Dielectric Multilayers via 3D Printing. J. Appl. Phys. 2020, 127, 093103. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, H.; Gu, Y.; Duan, W.; Liu, X.; Ye, F.; Fan, X.; Du, L. 3D Printed PyC/Al2O3 Ceramic Metamaterials with Different Micro-Channels for Tunable Microwave Absorption. J. Eur. Ceram. Soc. 2024, 44, 270–276. [Google Scholar] [CrossRef]
- Lei, L.; Yao, Z.; Zhou, J.; Wei, B.; Fan, H. 3D Printing of Carbon Black/Polypropylene Composites with Excellent Microwave Absorption Performance. Compos. Sci. Technol. 2020, 200, 108479. [Google Scholar] [CrossRef]
- Schmitz, D.P.; Soares, B.G.; Barra, G.M.O.; Santana, L. Sandwich Structures Based on Fused Filament Fabrication 3D-printed Polylactic Acid Honeycomb and Poly(Vinylidene Fluoride) Nanocomposites for Microwave Absorbing Applications. Polym. Compos. 2023, 44, 2250–2261. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Z.; Wang, X.; Wang, Y.; Yang, J. The 3D Printing of Novel Honeycomb–Hollow Pyramid Sandwich Structures for Microwave and Mechanical Energy Absorption. Polymers 2023, 15, 4719. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Z.; Zhang, Z.; Zou, Y. Ultra-Broadband and Wide-Angle Absorption Based on 3D-Printed Pyramid. Opt. Laser Technol. 2020, 124, 105972. [Google Scholar] [CrossRef]
- Phan, H.L.; Le, D.T.; Bui, X.K.; Vu, D.L.; Nguyen, H.Q.; Duong, N.H.; Nguyen, T.M.; Nguyen, T.Q.H.; Kim, J.-M. High Efficiency and Ultra-Wideband Water-Based Microwave Absorber Using 3D Printing. Opt. Commun. 2024, 556, 130297. [Google Scholar] [CrossRef]
- Duan, Y.; Liang, Q.; Yang, Z.; Li, Z.; Yin, H.; Cao, Y.; Li, D. A Wide-Angle Broadband Electromagnetic Absorbing Metastructure Using 3D Printing Technology. Mater. Des. 2021, 208, 109900. [Google Scholar] [CrossRef]
- Warski, T.; Kubacki, J.; Łukowiec, D.; Babilas, R.; Włodarczyk, P.; Hawełek, Ł.; Polak, M.; Jóźwik, B.; Kowalczyk, M.; Kola-no-Burian, A.; et al. Magnetodielectric and Low-Frequency Microwave Absorption Properties of Entropy Stabilised Ferrites and 3D Printed Composites. Compos. B Eng. 2022, 243, 110126. [Google Scholar] [CrossRef]
- Pan, F.; Liu, Z.; Deng, B.; Dong, Y.; Zhu, X.; Huang, C.; Lu, W. Lotus Leaf-Derived Gradient Hierarchical Porous C/MoS2 Morphology Genetic Composites with Wideband and Tunable Electromagnetic Absorption Performance. Nanomicro Lett. 2021, 13, 43. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Rodak, D.E.; Wong, C.A.; Hayden, C.A. Effects of Micro- and Nano-Structures on the Self-Cleaning Behaviour of Lotus Leaves. Nanotechnology 2006, 17, 1359–1362. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, C.; Cui, B.; Xu, X.; Li, M.; Xu, Z.; Tan, H.; Wang, C.; Wang, Y. Lotus Leaf Derived NiS/Carbon Nanofibers/Porous Carbon Heterogeneous Structures for Strong and Broadband Microwave Absorption. Small 2023, 19, 2304918. [Google Scholar] [CrossRef]
- Liu, B.; He, Y.; Fan, Y.; Wang, X. Fabricating Super-Hydrophobic Lotus-Leaf-Like Surfaces through Soft-Lithographic Imprinting. Macromol. Rapid Commun. 2006, 27, 1859–1864. [Google Scholar] [CrossRef]
- Zuo, Y.; Yao, Z.; Lin, H.; Zhou, J.; Lu, J.; Ding, J. Digital Light Processing 3D Printing of Graphene/Carbonyl Iron/Polymethyl Methacrylate Nanocomposites for Efficient Microwave Absorption. Compos. B Eng. 2019, 179, 107533. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, Y.; Liu, Z.; Pang, Y.; Chen, J.; Kong, J. Digital Light Processing 3D-Printed Ceramic Metamaterials for Electromagnetic Wave Absorption. Nanomicro Lett. 2022, 14, 122. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Y.; Huang, B.; Zhang, W.; Zhao, X.; Wang, Y. UV-Curable 3D-Printable Microwave-Absorbing Material with a Sword-Sheath Structure Based on Multiwalled Carbon Nanotube/Polypyrrole Nanotube/Fe3O4 Composites. Adv. Eng. Mater. 2024, 26, 2400059. [Google Scholar] [CrossRef]
- Cheng, H.; Zhu, X.; Cheng, X.; Cai, P.; Liu, J.; Yao, H.; Zhang, L.; Duan, J. Mechanical Metamaterials Made of Freestanding Quasi-BCC Nanolattices of Gold and Copper with Ultra-High Energy Absorption Capacity. Nat. Commun. 2023, 14, 1243. [Google Scholar] [CrossRef]
- Yan, L.; Zhu, K.; Zhang, Y.; Zhang, C.; Zheng, X. Effect of Absorbent Foam Filling on Mechanical Behaviors of 3D-Printed Honeycombs. Polymers 2020, 12, 2059. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Xu, Y.; Huang, B.; Zhang, W.; Wang, Y. Three-Dimensionally Printed K-Band Radar Stealth Lightweight Material with Lotus Leaf Structure. Polymers 2024, 16, 2677. https://doi.org/10.3390/polym16182677
Liu C, Xu Y, Huang B, Zhang W, Wang Y. Three-Dimensionally Printed K-Band Radar Stealth Lightweight Material with Lotus Leaf Structure. Polymers. 2024; 16(18):2677. https://doi.org/10.3390/polym16182677
Chicago/Turabian StyleLiu, Chuangji, Yingjie Xu, Beiqing Huang, Wan Zhang, and Yuxin Wang. 2024. "Three-Dimensionally Printed K-Band Radar Stealth Lightweight Material with Lotus Leaf Structure" Polymers 16, no. 18: 2677. https://doi.org/10.3390/polym16182677
APA StyleLiu, C., Xu, Y., Huang, B., Zhang, W., & Wang, Y. (2024). Three-Dimensionally Printed K-Band Radar Stealth Lightweight Material with Lotus Leaf Structure. Polymers, 16(18), 2677. https://doi.org/10.3390/polym16182677