Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (19,111)

Search Parameters:
Keywords = water type

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1214 KiB  
Article
Screening of Medicinal Herbs Identifies Cimicifuga foetida and Its Bioactive Component Caffeic Acid as SARS-CoV-2 Entry Inhibitors
by Ching-Hsuan Liu, Yu-Ting Kuo, Chien-Ju Lin, Feng-Lin Yen, Shu-Jing Wu and Liang-Tzung Lin
Viruses 2025, 17(8), 1086; https://doi.org/10.3390/v17081086 - 5 Aug 2025
Abstract
The emergence of SARS-CoV-2 variants highlights the urgent need for novel therapeutic strategies, particularly entry inhibitors that could efficiently prevent viral infection. Medicinal herbs and herbal combination formulas have long been recognized for their effects in treating infectious diseases and their antiviral properties, [...] Read more.
The emergence of SARS-CoV-2 variants highlights the urgent need for novel therapeutic strategies, particularly entry inhibitors that could efficiently prevent viral infection. Medicinal herbs and herbal combination formulas have long been recognized for their effects in treating infectious diseases and their antiviral properties, thus providing abundant resources for the discovery of antiviral candidates. While many candidates have been suggested to have antiviral activity against SARS-CoV-2 infection, few have been validated for their mechanisms, including possible effects on viral entry. This study aimed to identify SARS-CoV-2 entry inhibitors from medicinal herbs and herbal formulas that are known for heat-clearing and detoxifying properties and/or antiviral activities. A SARS-CoV-2 pseudoparticle (SARS-CoV-2pp) system was used to assess mechanism-specific entry inhibition. Our results showed that the methanol extract of Anemarrhena asphodeloides rhizome, as well as the water extracts of Cimicifuga foetida rhizome, Xiao Chai Hu Tang (XCHT), and Sheng Ma Ge Gen Tang (SMGGT), have substantial inhibitory effects on the entry of SARS-CoV-2pps into host cells. Given the observation that Cimicifuga foetida exhibited the most potent inhibition and is a constituent of SMGGT, we further investigated the major compounds of the herb and identified caffeic acid as a bioactive component for blocking SARS-CoV-2pp entry. Entry inhibition of Cimicifuga foetida and caffeic acid was validated on both wild-type and the currently dominant JN.1 strain SARS-CoV-2pp systems. Moreover, caffeic acid was able to both inactivate the pseudoparticles and prevent their entry into pretreated host cells. The results support the traditional use of these herbal medicines and underscore their potential as valuable resources for identifying active compounds and developing therapeutic entry inhibitors for the management of COVID-19. Full article
(This article belongs to the Section Coronaviruses)
40 pages, 2757 KiB  
Article
Water User Associations in Drained and Irrigated Areas for More Sustainable Land and Water Management: Experiences from Poland and Ukraine
by Roman Kuryltsiv, Małgorzata Stańczuk-Gałwiaczek and Robert Łuczyński
Sustainability 2025, 17(15), 7100; https://doi.org/10.3390/su17157100 (registering DOI) - 5 Aug 2025
Abstract
The level of participation and performance of water user associations (WUAs) in drained and irrigated areas is influenced by many factors. This paper aims to identify the main challenges to the functioning and performance of these associations in Poland and Ukraine using the [...] Read more.
The level of participation and performance of water user associations (WUAs) in drained and irrigated areas is influenced by many factors. This paper aims to identify the main challenges to the functioning and performance of these associations in Poland and Ukraine using the methodology of international comparative analysis. We examined legal, organizational, and financial framework of WUAs performance in Poland and Ukraine based on selected case study areas. The results of the study indicate that creation of WUAs in both countries can be assessed as beneficial for sustainable water development in general. However, it is found that the actions intended to bring benefits can actually exacerbate the problem of drought and water shortages. Research shows that the lack of complete documentation on the layout of the drainage networks plays a huge constraint factor that can lead to problems with controlling the reconstruction of drainage networks and significant deterioration of water relations. Another significant problem is the restriction of the scope of WUA activities in Poland to those types of actions subsidized by the state, while lacking financial resources for other necessary activities. Full article
(This article belongs to the Section Social Ecology and Sustainability)
33 pages, 4254 KiB  
Article
A Method of Simplified Synthetic Objects Creation for Detection of Underwater Objects from Remote Sensing Data Using YOLO Networks
by Daniel Klukowski, Jacek Lubczonek and Pawel Adamski
Remote Sens. 2025, 17(15), 2707; https://doi.org/10.3390/rs17152707 - 5 Aug 2025
Abstract
The number of CNN application areas is growing, which leads to the need for training data. The research conducted in this work aimed to obtain effective detection models trained only using simplified synthetic objects (SSOs). The research was conducted on inland shallow water [...] Read more.
The number of CNN application areas is growing, which leads to the need for training data. The research conducted in this work aimed to obtain effective detection models trained only using simplified synthetic objects (SSOs). The research was conducted on inland shallow water areas, while images of bottom objects were obtained using a UAV platform. The work consisted in preparing SSOs, thanks to which composite images were created. On such training data, 120 models based on the YOLO (You Only Look Once) network were obtained. The study confirmed the effectiveness of models created using YOLOv3, YOLOv5, YOLOv8, YOLOv9, and YOLOv10. A comparison was made between versions of YOLO. The influence of the amount of training data, SSO type, and augmentation parameters used in the training process was analyzed. The main parameter of model performance was the F1-score. The calculated statistics of individual models indicate that the most effective networks use partial augmentation, trained on sets consisting of 2000 SSOs. On the other hand, the increased transparency of SSOs resulted in increasing the diversity of training data and improving the performance of models. This research is developmental, and further research should improve the processes of obtaining detection models using deep networks. Full article
Show Figures

Figure 1

24 pages, 3176 KiB  
Article
Influence of Seasonality and Pollution on the Presence of Antibiotic Resistance Genes and Potentially Pathogenic Bacteria in a Tropical Urban River
by Kenia Barrantes-Jiménez, Bradd Mendoza-Guido, Eric Morales-Mora, Luis Rivera-Montero, José Montiel-Mora, Luz Chacón-Jiménez, Keilor Rojas-Jiménez and María Arias-Andrés
Antibiotics 2025, 14(8), 798; https://doi.org/10.3390/antibiotics14080798 (registering DOI) - 5 Aug 2025
Abstract
Background/Objectives: This study examines how seasonality, pollution, and sample type (water and sediment) influence the presence and distribution of antibiotic resistance genes (ARGs), with a focus on antibiotic resistance genes (ARGs) located on plasmids (the complete set of plasmid-derived sequences, including ARGs) in [...] Read more.
Background/Objectives: This study examines how seasonality, pollution, and sample type (water and sediment) influence the presence and distribution of antibiotic resistance genes (ARGs), with a focus on antibiotic resistance genes (ARGs) located on plasmids (the complete set of plasmid-derived sequences, including ARGs) in a tropical urban river. Methods: Samples were collected from three sites along a pollution gradient in the Virilla River, Costa Rica, during three seasonal campaigns (wet 2021, dry 2022, and wet 2022). ARGs in water and sediment were quantified by qPCR, and metagenomic sequencing was applied to analyze chromosomal and plasmid-associated resistance profiles in sediments. Tobit and linear regression models, along with multivariate ordination, were used to assess spatial and seasonal trends. Results: During the wet season of 2021, the abundance of antibiotic resistance genes (ARGs) such as sul-1, intI-1, and tetA in water samples decreased significantly, likely due to dilution, while intI-1 and tetQ increased in sediments, suggesting particle-bound accumulation. In the wet season 2022, intI-1 remained low in water, qnrS increased, and sediments showed significant increases in tetQ, tetA, and qnrS, along with decreases in sul-1 and sul-2. Metagenomic analysis revealed spatial differences in plasmid-associated ARGs, with the highest abundance at the most polluted site (Site 3). Bacterial taxa also showed spatial differences, with greater plasmidome diversity and a higher representation of potential pathogens in the most contaminated site. Conclusions: Seasonality and pollution gradients jointly shape ARG dynamics in this tropical river. Plasmid-mediated resistance responds rapidly to environmental change and is enriched at polluted sites, while sediments serve as long-term reservoirs. These findings support the use of plasmid-based monitoring for antimicrobial resistance surveillance in aquatic systems. Full article
(This article belongs to the Special Issue Origins and Evolution of Antibiotic Resistance in the Environment)
Show Figures

Graphical abstract

22 pages, 6187 KiB  
Article
Device Modeling Method for the Entire Process of Energy-Saving Retrofit of a Refrigeration Plant
by Xuanru Xu, Lun Zhang, Jun Chen, Qingbin Lin and Junjie Chen
Energies 2025, 18(15), 4147; https://doi.org/10.3390/en18154147 - 5 Aug 2025
Abstract
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the [...] Read more.
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the equipment within the chiller plants of central air-conditioning systems. Traditional modeling approaches have been static and have focused on modeling within narrow time frames when a certain amount of equipment operating data has accumulated, thus prioritizing the precision of the model itself while overlooking the fact that energy-saving retrofits are a long-term process. This study proposes a modeling scheme for the equipment within chiller plants throughout the energy-saving retrofit process. Based on the differences in the amount of available operating data for the equipment and the progress of retrofit implementation, the retrofit process was divided into three stages, each employing different modeling techniques and ensuring smooth transitions between the stages. The equipment within the chiller plants is categorized into two types based on the clarity of their operating characteristics, and two modeling schemes are proposed accordingly. Based on the proposed modeling scheme, chillers and chilled-water pumps were selected to represent the two types of equipment. Real operating data from actual retrofit projects was used to model the equipment and evaluate the accuracy of the model predictions. The results indicate that the models established by the proposed modeling scheme exhibit good accuracy at each stage of the retrofit, with the coefficients of variation (CV) remaining below 6.88%. Furthermore, the prediction accuracy improved as the retrofitting process progressed. The modeling scheme performs better on equipment with simpler and clearer operating characteristics, with a CV as low as 0.67% during normal operation stages. This underscores the potential application of the proposed modeling scheme throughout the energy-saving retrofit process and provides a model foundation for the subsequent optimization of the refrigeration system. Full article
Show Figures

Figure 1

17 pages, 3063 KiB  
Article
Spatiotemporal Variation in Carbon Storage in the Central Plains Urban Agglomeration Under Multi-Scenario Simulations
by Jinxin Wang, Chengyu Zhao, Zhiyi Shi and Xiangkai Cheng
Land 2025, 14(8), 1594; https://doi.org/10.3390/land14081594 - 5 Aug 2025
Abstract
Understanding changes in land use structures under multiple scenarios and their impacts on carbon storage is essential for revealing the evolution of regional development patterns and the underlying mechanisms of carbon cycle dynamics. This study adopted an integrated PLUS-InVEST modeling framework to analyze [...] Read more.
Understanding changes in land use structures under multiple scenarios and their impacts on carbon storage is essential for revealing the evolution of regional development patterns and the underlying mechanisms of carbon cycle dynamics. This study adopted an integrated PLUS-InVEST modeling framework to analyze and predict changes in carbon storage in the Central Plains Urban Agglomeration (CPUA) under different scenarios for the years 2030 and 2060. The results showed the following: (1) From 2000 to 2020, the areas of forest land, water bodies, and construction land expanded, while the areas of cropland, grassland, and barren land decreased. Over this 20-year period, carbon storage showed a declining trend, decreasing from 2390.07 × 106 t in 2000 to 2372.19 × 106 t in 2020. (2) In both 2030 and 2060, cropland remained the primary land use type in the CPUA. Overall, carbon storage in the CPUA was higher in the southwestern area and decreased in the central and eastern parts, which was mainly related to the land use distribution pattern in the CPUA. (3) Carbon storage under the EP (ecological protection) and CP (cropland protection) scenarios was significantly higher than under the other two scenarios, and in 2030, carbon storage under the CP and EP scenarios exceeded that in 2020, while the UD (urban development) scenario had the lowest total carbon storage. This indicated that the expansion of construction land was detrimental to carbon storage enhancement, underscoring the importance of implementing ecological protection strategies. In summary, the results of this study quantitatively reflected the changes in carbon storage in the CPUA under different future development scenarios, providing a reference for formulating regional development strategies. Full article
(This article belongs to the Special Issue Integration of Remote Sensing and GIS for Land Use Change Assessment)
Show Figures

Figure 1

15 pages, 2188 KiB  
Article
Research and Simulation Analysis on a Novel U-Tube Type Dual-Chamber Oscillating Water Column Wave Energy Conversion Device
by Shaohui Yang, Haijian Li, Yan Huang, Jianyu Fan, Zhichang Du, Yongqiang Tu, Chenglong Li and Beichen Lin
Energies 2025, 18(15), 4141; https://doi.org/10.3390/en18154141 - 5 Aug 2025
Abstract
With the development of wave energy, a promising renewable resource, oscillating water column (OWC) devices, has been extensively studied for its potential in harnessing this energy. However, traditional OWC devices face challenges such as corrosion and damage from prolonged exposure to harsh marine [...] Read more.
With the development of wave energy, a promising renewable resource, oscillating water column (OWC) devices, has been extensively studied for its potential in harnessing this energy. However, traditional OWC devices face challenges such as corrosion and damage from prolonged exposure to harsh marine environments, limiting their long-term viability and efficiency. To address these limitations, this paper proposes a novel U-tube type dual chamber OWC wave energy conversion device integrated within a marine vehicle. The research involves the design of a U-tube dual-chamber OWC device, which utilizes the pitch motion of a marine vehicle to drive the oscillation of water columns within the U-tube, generating reciprocating airflow that drives an air turbine. Numerical simulations using computational fluid dynamics (CFD) were conducted to analyze the effects of various structural dimensions, including device length, width, air chamber height, U-tube channel width, and bottom channel height, on the aerodynamic power output. The simulations considered real sea conditions, focusing on low-frequency waves prevalent in China’s sea areas. Simulation results reveal that increasing the device’s length and width substantially boosts aerodynamic power, while air chamber height and U-tube channel width have minor effects. These findings provide valuable insights into the optimal design of U-tube dual-chamber OWC devices for efficient wave energy conversion, laying the foundation for future physical prototype development and experimental validation. Full article
Show Figures

Figure 1

20 pages, 4676 KiB  
Article
Multifunctional, Biocompatible Hybrid Surface Coatings Combining Antibacterial, Hydrophobic and Fluorescent Applications
by Gökçe Asan and Osman Arslan
Polymers 2025, 17(15), 2139; https://doi.org/10.3390/polym17152139 - 5 Aug 2025
Abstract
The hybrid inorganic–organic material concept plays a bold role in multifunctional materials, combining different features on one platform. Once varying properties coexist without cancelling each other on one matrix, a new type of supermaterial can be formed. This concept showed that silver nanoparticles [...] Read more.
The hybrid inorganic–organic material concept plays a bold role in multifunctional materials, combining different features on one platform. Once varying properties coexist without cancelling each other on one matrix, a new type of supermaterial can be formed. This concept showed that silver nanoparticles can be embedded together with inorganic and organic surface coatings and silicon quantum dots for symbiotic antibacterial character and UV-excited visible light fluorescent features. Additionally, fluorosilane material can be coupled with this prepolymeric structure to add the hydrophobic feature, showing water contact angles around 120°, providing self-cleaning features. Optical properties of the components and the final material were investigated by UV-Vis spectroscopy and PL analysis. Atomic investigations and structural variations were detected by XPS, SEM, and EDX atomic mapping methods, correcting the atomic entities inside the coating. FT-IR tracked surface features, and statistical analysis of the quantum dots and nanoparticles was conducted. Multifunctional final materials showed antibacterial properties against E. coli and S. aureus, exhibiting self-cleaning features with high surface contact angles and visible light fluorescence due to the silicon quantum dot incorporation into the sol-gel-produced nanocomposite hybrid structure. Full article
(This article belongs to the Special Issue Polymer Coatings for High-Performance Applications)
Show Figures

Figure 1

17 pages, 2287 KiB  
Article
Compressive Strength Impact on Cut Depth of Granite During Abrasive Water Jet Machining
by Isam Qasem, La’aly A. Al-Samrraie and Khalideh Al Bkoor Alrawashdeh
J. Manuf. Mater. Process. 2025, 9(8), 262; https://doi.org/10.3390/jmmp9080262 - 5 Aug 2025
Abstract
Background: Compared to the conventional method of machining granite, abrasive water jet machining (AWJM) offers several benefits, including flexible cutting mechanisms and machine efficiency, among other possible advantages. The high-speed particles carried by water remove the materials, preventing heat damage and maintaining the [...] Read more.
Background: Compared to the conventional method of machining granite, abrasive water jet machining (AWJM) offers several benefits, including flexible cutting mechanisms and machine efficiency, among other possible advantages. The high-speed particles carried by water remove the materials, preventing heat damage and maintaining the granite’s structure. Methods: Three types of granite with different compressive strengths are investigated in terms of the effects of pump pressure (P), traverse speed (T), and abrasive mass flow (A) on the cutting depth. Results: The results of the study demonstrated that the coarse-grained granite negatively affected the penetration depth, while the fine-grained granite produced a higher cutting depth. The value of an optimal depth of penetration was also generated; for example, the optimum depth obtained for Black Galaxy Granite, M1 (32.27 mm), was achieved at P = 300 MPa, T = 100 mm/min, and A = 180.59 g/min. Conclusions: In terms of processing parameters, the maximum penetration depth can be achieved in granite with a higher compressive strength. Full article
Show Figures

Figure 1

18 pages, 1259 KiB  
Article
Artificial Neural Network-Based Prediction of Clogging Duration to Support Backwashing Requirement in a Horizontal Roughing Filter: Enhancing Maintenance Efficiency
by Sphesihle Mtsweni, Babatunde Femi Bakare and Sudesh Rathilal
Water 2025, 17(15), 2319; https://doi.org/10.3390/w17152319 - 4 Aug 2025
Abstract
While horizontal roughing filters (HRFs) remain widely acclaimed for their exceptional efficiency in water treatment, especially in developing countries, they are inherently susceptible to clogging, which necessitates timely maintenance interventions. Conventional methods for managing clogging in HRFs typically involve evaluating filter head loss [...] Read more.
While horizontal roughing filters (HRFs) remain widely acclaimed for their exceptional efficiency in water treatment, especially in developing countries, they are inherently susceptible to clogging, which necessitates timely maintenance interventions. Conventional methods for managing clogging in HRFs typically involve evaluating filter head loss coefficients against established water quality standards. This study utilizes artificial neural network (ANN) for the prediction of clogging duration and effluent turbidity in HRF equipment. The ANN was configured with two outputs, the clogging duration and effluent turbidity, which were predicted concurrently. Effluent turbidity was modeled to enhance the network’s learning process and improve the accuracy of clogging prediction. The network steps of the iterative training process of ANN used different types of input parameters, such as influent turbidity, filtration rate, pH, conductivity, and effluent turbidity. The training, in addition, optimized network parameters such as learning rate, momentum, and calibration of neurons in the hidden layer. The quantities of the dataset accounted for up to 70% for training and 30% for testing and validation. The optimized structure of ANN configured in a 4-8-2 topology and trained using the Levenberg–Marquardt (LM) algorithm achieved a mean square error (MSE) of less than 0.001 and R-coefficients exceeding 0.999 across training, validation, testing, and the entire dataset. This ANN surpassed models of scaled conjugate gradient (SCG) and obtained a percentage of average absolute deviation (%AAD) of 9.5. This optimal structure of ANN proved to be a robust tool for tracking the filter clogging duration in HRF equipment. This approach supports proactive maintenance and operational planning in HRFs, including data-driven scheduling of backwashing based on predicted clogging trends. Full article
(This article belongs to the Special Issue Advanced Technologies on Water and Wastewater Treatment)
Show Figures

Figure 1

30 pages, 4529 KiB  
Article
Rainwater Harvesting Site Assessment Using Geospatial Technologies in a Semi-Arid Region: Toward Water Sustainability
by Ban AL- Hasani, Mawada Abdellatif, Iacopo Carnacina, Clare Harris, Bashar F. Maaroof and Salah L. Zubaidi
Water 2025, 17(15), 2317; https://doi.org/10.3390/w17152317 - 4 Aug 2025
Abstract
Rainwater harvesting for sustainable agriculture (RWHSA) offers a viable and eco-friendly strategy to alleviate water scarcity in semi-arid regions, particularly for agricultural use. This study aims to identify optimal sites for implementing RWH systems in northern Iraq to enhance water availability and promote [...] Read more.
Rainwater harvesting for sustainable agriculture (RWHSA) offers a viable and eco-friendly strategy to alleviate water scarcity in semi-arid regions, particularly for agricultural use. This study aims to identify optimal sites for implementing RWH systems in northern Iraq to enhance water availability and promote sustainable farming practices. An integrated geospatial approach was adopted, combining Remote Sensing (RS), Geographic Information Systems (GIS), and Multi-Criteria Decision Analysis (MCDA). Key thematic layers, including soil type, land use/land cover, slope, and drainage density were processed in a GIS environment to model runoff potential. The Soil Conservation Service Curve Number (SCS-CN) method was used to estimate surface runoff. Criteria were weighted using the Analytical Hierarchy Process (AHP), enabling a structured and consistent evaluation of site suitability. The resulting suitability map classifies the region into four categories: very high suitability (10.2%), high (26.6%), moderate (40.4%), and low (22.8%). The integration of RS, GIS, AHP, and MCDA proved effective for strategic RWH site selection, supporting cost-efficient, sustainable, and data-driven agricultural planning in water-stressed environments. Full article
20 pages, 4989 KiB  
Article
Analysis of the Trade-Off/Synergy Effect and Driving Factors of Ecosystem Services in Hulunbuir City, China
by Shimin Wei, Jian Hou, Yan Zhang, Yang Tai, Xiaohui Huang and Xiaochen Guo
Agronomy 2025, 15(8), 1883; https://doi.org/10.3390/agronomy15081883 - 4 Aug 2025
Abstract
An in-depth understanding of the spatiotemporal heterogeneity of ecosystem service (ES) trade-offs and synergies, along with their driving factors, is crucial for formulating key ecological restoration strategies and effectively allocating ecological environmental resources in the Hulunbuir region. This study employed an integrated analytical [...] Read more.
An in-depth understanding of the spatiotemporal heterogeneity of ecosystem service (ES) trade-offs and synergies, along with their driving factors, is crucial for formulating key ecological restoration strategies and effectively allocating ecological environmental resources in the Hulunbuir region. This study employed an integrated analytical approach combining the InVEST model, ArcGIS geospatial processing, R software environment, and Optimal Parameter Geographical Detector (OPGD). The spatiotemporal patterns and driving factors of the interaction of four major ES functions in Hulunbuir area from 2000 to 2020 were studied. The research findings are as follows: (1) carbon storage (CS) and soil conservation (SC) services in the Hulunbuir region mainly show a distribution pattern of high values in the central and northeast areas, with low values in the west and southeast. Water yield (WY) exhibits a distribution pattern characterized by high values in the central–western transition zone and southeast and low values in the west. For forage supply (FS), the overall pattern is higher in the west and lower in the east. (2) The trade-off relationships between CS and WY, CS and SC, and SC and WY are primarily concentrated in the western part of Hulunbuir, while the synergistic relationships are mainly observed in the central and eastern regions. In contrast, the trade-off relationships between CS and FS, as well as FS and WY, are predominantly located in the central and eastern parts of Hulunbuir, with the intensity of these trade-offs steadily increasing. The trade-off relationship between SC and FS is almost widespread throughout HulunBuir. (3) Fractional vegetation cover, mean annual precipitation, and land use type were the primary drivers affecting ESs. Among these factors, fractional vegetation cover demonstrates the highest explanatory power, with a q-value between 0.6 and 0.9. The slope and population density exhibit relatively weak explanatory power, with q-values ranging from 0.001 to 0.2. (4) The interactions between factors have a greater impact on the inter-relationships of ESs in the Hulunbuir region than individual factors alone. The research findings have facilitated the optimization and sustainable development of regional ES, providing a foundation for ecological conservation and restoration in Hulunbuir. Full article
Show Figures

Figure 1

58 pages, 8116 KiB  
Review
Electrochemical Detection of Heavy Metals Using Graphene-Based Sensors: Advances, Meta-Analysis, Toxicity, and Sustainable Development Challenges
by Muhammad Saqib, Anna N. Solomonenko, Nirmal K. Hazra, Shojaa A. Aljasar, Elena I. Korotkova, Elena V. Dorozhko, Mrinal Vashisth and Pradip K. Kar
Biosensors 2025, 15(8), 505; https://doi.org/10.3390/bios15080505 - 4 Aug 2025
Abstract
Contamination of food with heavy metals is an important factor leading to serious health concerns. Rapid identification of these heavy metals is of utmost priority. There are several methods to identify traces of heavy metals in food. Conventional methods for the detection of [...] Read more.
Contamination of food with heavy metals is an important factor leading to serious health concerns. Rapid identification of these heavy metals is of utmost priority. There are several methods to identify traces of heavy metals in food. Conventional methods for the detection of heavy metal residues have their limitations in terms of cost, analysis time, and complexity. In the last decade, voltammetric analysis has emerged as the most prominent electrochemical determination method for heavy metals. Voltammetry is a reliable, cost-effective, and rapid determination method. This review provides a detailed primer on recent advances in the development and application of graphene-based electrochemical sensors for heavy metal monitoring over the last decade. We critically examine aspects of graphene modification (fabrication process, stability, cost, reproducibility) and analytical properties (sensitivity, selectivity, rapid detection, lower detection, and matrix effects) of these sensors. Furthermore, to our knowledge, meta-analyses were performed for the first time for all investigated parameters, categorized based on graphene materials and heavy metal types. We also examined the pass–fail criteria according to the WHO drinking water guidelines. In addition, the effects of heavy metal toxicity on human health and the environment are discussed. Finally, the contribution of heavy metal contamination to the seventeen Sustainable Development Goals (SDGs) stated by the United Nations in 2015 is discussed in detail. The results confirm the significant impact of heavy metal contamination across twelve SDGs. This review critically examines the existing knowledge in this field and highlights significant research gaps and future opportunities. It is intended as a resource for researchers working on graphene-based electrochemical sensors for the detection of heavy metals in food safety, with the ultimate goal of improving consumer health protection. Full article
Show Figures

Graphical abstract

26 pages, 6044 KiB  
Article
Mapping Tradeoffs and Synergies in Ecosystem Services as a Function of Forest Management
by Hazhir Karimi, Christina L. Staudhammer, Matthew D. Therrell, William J. Kleindl, Leah M. Mungai, Amobichukwu C. Amanambu and C. Nathan Jones
Land 2025, 14(8), 1591; https://doi.org/10.3390/land14081591 - 4 Aug 2025
Abstract
The spatial variation of forest ecosystem services at regional scales remains poorly understood, and few studies have explicitly analyzed how ecosystem services are distributed across different forest management types. This study assessed the spatial overlap between forest management types and ecosystem service hotspots [...] Read more.
The spatial variation of forest ecosystem services at regional scales remains poorly understood, and few studies have explicitly analyzed how ecosystem services are distributed across different forest management types. This study assessed the spatial overlap between forest management types and ecosystem service hotspots in the Southeastern United States (SEUS) and the Pacific Northwest (PNW) forests. We used the InVEST suite of tools and GIS to quantify carbon storage and water yield. Carbon storage was estimated, stratified by forest group and age class, and literature-based biomass pool values were applied. Average annual water yield and its temporal changes (2001–2020) were modeled using the annual water yield model, incorporating precipitation, potential evapotranspiration, vegetation type, and soil characteristics. Ecosystem service outputs were classified to identify hotspot zones (top 20%) and to evaluate the synergies and tradeoffs between these services. Hotspots were then overlaid with forest management maps to examine their distribution across management types. We found that only 2% of the SEUS and 11% of the PNW region were simultaneous hotspots for both services. In the SEUS, ecological and preservation forest management types showed higher efficiency in hotspot allocation, while in PNW, production forestry contributed relatively more to hotspot areas. These findings offer valuable insights for decision-makers and forest managers seeking to preserve the multiple benefits that forests provide at regional scales. Full article
Show Figures

Figure 1

23 pages, 2656 KiB  
Article
rRNA-specific antisense DNA and dsDNA trigger rRNA biogenesis and cause potent insecticidal effect on insect pest Coccus hesperidum L.
by Vol Oberemok, Nikita Gal’chinsky, Ilya Novikov, Alexander Sharmagiy, Ekaterina Yatskova, Ekaterina Laikova and Yuri Plugatar
Int. J. Mol. Sci. 2025, 26(15), 7530; https://doi.org/10.3390/ijms26157530 (registering DOI) - 4 Aug 2025
Abstract
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, [...] Read more.
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, which are key vectors of plant DNA viruses and among the most economically damaging herbivorous insects. To further explore the potential of CUADb, this study evaluated the insecticidal efficacy of short 11-mer antisense DNA oligos against Coccus hesperidum, in comparison with long 56-mer single-stranded and double-stranded DNA sequences. The short oligos exhibited higher insecticidal activity. By day 9, the highest mortality rate (97.66 ± 4.04%) was recorded in the Coccus-11 group, while the most effective long sequence was the double-stranded DNA in the dsCoccus-56 group (77.09 ± 6.24%). This study also describes the architecture of the DNA containment (DNAc) mechanism, highlighting the intricate interactions between rRNAs and various types of DNA oligos. During DNAc, the Coccus-11 treatment induced enhanced ribosome biogenesis and ATP production through a metabolic shift from carbohydrates to lipid-based energy synthesis. However, this ultimately led to a ‘kinase disaster’ due to widespread kinase downregulation resulting from insufficient ATP levels. All DNA oligos with high or moderate complementarity to target rRNA initiated hypercompensation, but subsequent substantial rRNA degradation and insect mortality occurred only when the oligo sequence perfectly matched the rRNA. Both short and long oligonucleotide insecticide treatments led to a 3.75–4.25-fold decrease in rRNA levels following hypercompensation, which was likely mediated by a DNA-guided rRNase, such as RNase H1, while crucial enzymes of RNAi (DICER1, Argonaute 2, and DROSHA) were downregulated, indicating fundamental difference in molecular mechanisms of DNAc and RNAi. Consistently, significant upregulation of RNase H1 was detected in the Coccus-11 treatment group. In contrast, treatment with random DNA oligos resulted in only a 2–3-fold rRNA decrease, consistent with the normal rRNA half-life maintained by general ribonucleases. These findings reveal a fundamental new mechanism of rRNA regulation via complementary binding between exogenous unmodified antisense DNA and cellular rRNA. From a practical perspective, this minimalist approach, applying short antisense DNA dissolved in water, offers an effective, eco-friendly and innovative solution for managing sternorrhynchans and other insect pests. The results introduce a promising new concept in crop protection: DNA-programmable insect pest control. Full article
(This article belongs to the Special Issue New Insights into Plant and Insect Interactions (Second Edition))
Show Figures

Figure 1

Back to TopTop