Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (98)

Search Parameters:
Keywords = water supply canals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 15768 KB  
Article
Capacity Configuration and Scheduling Optimization on Wind–Photovoltaic–Storage System Considering Variable Reservoir–Irrigation Load
by Jian-hong Zhu, Yu He, Juping Gu, Xinsong Zhang, Jun Zhang, Yonghua Ge, Kai Luo and Jiwei Zhu
Electronics 2026, 15(2), 454; https://doi.org/10.3390/electronics15020454 - 21 Jan 2026
Viewed by 52
Abstract
High penetration and output volatility of island wind and photovoltaics (PV) pose challenges to energy consumption and supply–demand balance, and cost-effective energy storage configuration. A coupled dispatch model for a wind–PV–storage system is proposed, which treats multiple canal units as virtual ‘loads’ that [...] Read more.
High penetration and output volatility of island wind and photovoltaics (PV) pose challenges to energy consumption and supply–demand balance, and cost-effective energy storage configuration. A coupled dispatch model for a wind–PV–storage system is proposed, which treats multiple canal units as virtual ‘loads’ that switch between generation and pumping under constraints of power balance and available water head model. Considering the variable reservoir–irrigation feature, a multi-objective model framework is developed to minimize both economic cost and storage capacity required. An augmented Lagrangian–Nash product enhanced NSGA-II (AL-NP-NSGA-II) algorithm enforces constraints of irrigation shortfall and overflow via an augmented Lagrangian term and allocates fair benefits across canal units through a Nash product reward. Moreover, updates of Lagrange multipliers and reward weights maintain power balance and accelerate convergence. Finally, a case simulation (3.7 MW wind, 7.1 MW PV, and 24 h rural load) is performed, where 440.98 kWh storage eliminates shortfall/overflow and yields 1.5172 × 104 CNY. Monte Carlo uncertainty analysis (±10% perturbations in load, wind, and PV) shows that increasing storage to 680 kWh can stabilize reliability above 98% and raise economic benefit to 1.5195 × 104 CNY. The dispatch framework delivers coordination of irrigation and power balance in island microgrids, providing a systematic configuration solution. Full article
Show Figures

Figure 1

17 pages, 2735 KB  
Article
Modeling Soil Salinity Dynamics in Paddy Fields Under Long-Term Return Flow Irrigation in the Yinbei Irrigation District
by Hangyu Guo, Chao Shi, Alimu Abulaiti, Hongde Wang and Xiaoqin Sun
Agriculture 2026, 16(2), 222; https://doi.org/10.3390/agriculture16020222 - 15 Jan 2026
Viewed by 152
Abstract
The imbalance between water supply and demand in the arid and semi-arid regions of northwest China has become increasingly severe, highlighting the urgent need to develop and utilize unconventional water resources. Return flow, originating from canal leakage and field drainage, is widely distributed [...] Read more.
The imbalance between water supply and demand in the arid and semi-arid regions of northwest China has become increasingly severe, highlighting the urgent need to develop and utilize unconventional water resources. Return flow, originating from canal leakage and field drainage, is widely distributed in these regions. However, as it contains a certain amount of salts, long-term use of return flow can lead to soil salinization and degradation of soil structure. Therefore, the scientific utilization of return flow has become a key issue for achieving sustainable agricultural development and efficient water use in arid areas. This study was conducted in the Yinbei Irrigation District, Ningxia, northwest China. Water samples were collected from the main and branch drainage ditches and analyzed to evaluate the feasibility of using return flow irrigation in the area. In addition, based on two years of continuous field monitoring and HYDRUS model simulations, the long-term dynamics of soil salinity under moderate return flow irrigation over the next 20 years were predicted. The results show that the total salinity of the main return ditches consistently remained below the agricultural irrigation water quality standard of 2000 mg/L, with Na+ and SO42− as the predominant ions. Seasonal variations in return flow salinity were notable, with higher levels observed in spring compared to summer. Simulation results based on field trial data indicated that soil salinity displayed regular seasonal fluctuations. During the rice-growing season, strong leaching kept the salinity in the plough layer (0–40 cm) low. However, after irrigation ceased, evaporation in autumn and winter led to an increase in surface soil salinity, creating annual peaks. Long-term simulations showed that soil salinity throughout the entire profile (0–100 cm) followed a pattern of “slight increase—gradual decrease—dynamic stability.” Specifically, winter salinity peaks slightly increased during the first two years but then gradually declined, stabilizing after approximately 15 years. This indicates that long-term return-flow irrigation does not result in the accumulation of soil salinity in the plough layer. Full article
Show Figures

Figure 1

17 pages, 3334 KB  
Article
Water Scarcity Risk for Paddy Field Development Projects in Pre-Modern Japan: Case Study of the Kinu River Basin
by Adonis Russell Ekpelikpeze, Minh Hong Tran, Atsushi Ishii and Yohei Asada
Water 2026, 18(2), 179; https://doi.org/10.3390/w18020179 - 9 Jan 2026
Viewed by 263
Abstract
Japanese modern irrigation management is considered a successful model of water governance worldwide. However, debates continue over whether this success is due to natural water abundance or to water management practices. This study evaluates pre-modern water scarcity risk for six irrigation schemes, developed [...] Read more.
Japanese modern irrigation management is considered a successful model of water governance worldwide. However, debates continue over whether this success is due to natural water abundance or to water management practices. This study evaluates pre-modern water scarcity risk for six irrigation schemes, developed during that period in the Kinu River Basin (1603–1868); a period without large reservoirs, canal systems, or modern regulatory technologies. As the methodology, pre-modern river flows were reconstructed by removing the effects of four modern dams from the present-day river discharge, adjusting the conveyance efficiency, changes in paddy field area, rainfall input, and return flows. Water demand was assessed using Japanese irrigation standards of 5 mm/d (minimum water demand corresponding to evapotranspiration) and 20 mm/d (easy management), and risk was evaluated under both the prior appropriation and Equal Water Distribution rules. Results show that modern flow in the dry season is approximately 25 m3/s, whereas reconstructed natural flow during drought years declines to 10–18 m3/s, and about 15 m3/s after rainfall adjustment. Under the 20 mm/d demand scenario, scarcity occurred in four schemes (2 of 17 years in the third scheme and 7 of 17 years for the sixth scheme), while no scarcity occurred under the minimum-demand scenario (5 mm/d), even during low-flow conditions. This indicates that the available water in these schemes was at a level where drought damage could occur under extensive irrigation management, but could be avoided by intensive irrigation management to supply the minimum necessary water to all paddy fields. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

24 pages, 4142 KB  
Article
NSGA-II and Entropy-Weighted TOPSIS for Multi-Objective Joint Operation of the Jingou River Irrigation Reservoir System
by Kai Zeng, Ningning Liu, Yu Dong, Mingjiang Deng and Zhenhua Wang
Water 2026, 18(1), 36; https://doi.org/10.3390/w18010036 - 22 Dec 2025
Viewed by 308
Abstract
Rational allocation and coordinated operation of water resources in arid inland river basins are crucial for sustaining irrigated agriculture, maintaining ecological baseflow and ensuring reservoir safety. To address this need, this study develops and evaluates joint-operation schemes for the Jingou River-Hongshan Reservoir irrigation [...] Read more.
Rational allocation and coordinated operation of water resources in arid inland river basins are crucial for sustaining irrigated agriculture, maintaining ecological baseflow and ensuring reservoir safety. To address this need, this study develops and evaluates joint-operation schemes for the Jingou River-Hongshan Reservoir irrigation system in Xinjiang, northwestern China, to improve coordination among irrigation water supply, ecological baseflow maintenance and reservoir safety. A monthly reservoir-canal-irrigation operation model is formulated with irrigation demands, ecological flow constraints and key engineering limits. Using this model, operating schemes are generated to explore trade-offs among three objectives: shortages, reliability and non-beneficial reservoir releases. The non-dominated schemes obtained from multi-objective optimization are then ranked using an entropy-weighted TOPSIS framework, from which representative solutions are selected for further interpretation. The results indicate that the top-ranked schemes deliver comparable and relatively well-balanced performance across the objectives. Under the preferred compromise scheme, annual irrigation shortages amount to about 39% of total demand, the mean satisfaction level of irrigation and ecological requirements reaches roughly 57%, and the combined index of spill losses and end-of-year storage deviation remains low. Schemes that push shortage reduction or reliability enhancement to extremes tend to increase spill losses, compromise storage security or both, thereby degrading overall performance. The proposed optimization-ranking framework offers a transparent basis for identifying robust operating strategies that reflect local management priorities and is transferable to other reservoir-supported irrigation systems in arid regions. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

20 pages, 8586 KB  
Article
Multi-Objective Optimization for Irrigation Canal Water Allocation and Intelligent Gate Control Under Water Supply Uncertainty
by Qingtong Cai, Xianghui Xu, Mo Li, Xingru Ye, Wuyuan Liu, Hongda Lian and Yan Zhou
Water 2025, 17(24), 3585; https://doi.org/10.3390/w17243585 - 17 Dec 2025
Viewed by 508
Abstract
Open-channel irrigation systems often face constraints due to water supply uncertainty and insufficient gate control precision. This study proposes an integrated framework for canal water allocation and gate control that combines interval-based uncertainty analysis with intelligent optimization to address these challenges. First, we [...] Read more.
Open-channel irrigation systems often face constraints due to water supply uncertainty and insufficient gate control precision. This study proposes an integrated framework for canal water allocation and gate control that combines interval-based uncertainty analysis with intelligent optimization to address these challenges. First, we predict the inflow process using an Auto-Regressive Integrated Moving Average (ARIMA) model and quantify the range of water supply uncertainty through Maximum Likelihood Estimation (MLE). Based on these results, we formulate a bi-objective optimization model to minimize both main canal flow fluctuations and canal network seepage losses. We solve the model using the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to obtain Pareto-optimal water allocation schemes under uncertain inflow conditions. This study also designs a Fuzzy Proportional–Integral–Derivative (Fuzzy PID) controller. We adaptively tune its parameters using the Particle Swarm Optimization (PSO) algorithm, which enhances the dynamic response and operational stability of open-channel gate control. We apply this framework to the Chahayang irrigation district. The results show that total canal seepage decreases by 1.21 × 107 m3, accounting for 3.9% of the district’s annual water supply, and the irrigation cycle is shortened from 45 days to 40.54 days, improving efficiency by 9.91%. Compared with conventional PID control, the PSO-optimized Fuzzy PID controller reduces overshoot by 4.84%, and shortens regulation time by 39.51%. These findings indicate that the proposed method can significantly improve irrigation water allocation efficiency and gate control performance under uncertain and variable water supply conditions. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

23 pages, 3139 KB  
Article
Microbial Communities and Physicochemical Properties of the Nile River Water in the Suez Canal Area
by Noha Elkayal, Samira Zakeer, Marwa Azab, Ali Abdellah and Sarah Shabayek
Microorganisms 2025, 13(10), 2395; https://doi.org/10.3390/microorganisms13102395 - 19 Oct 2025
Viewed by 907
Abstract
Monitoring freshwater resources is crucial to drinking water quality. The Ismailia Canal supplies most freshwater to the Suez Canal area in Egypt. However, information on the freshwater microbiome is limited in this region. A total of 59 freshwater samples were collected. Along with [...] Read more.
Monitoring freshwater resources is crucial to drinking water quality. The Ismailia Canal supplies most freshwater to the Suez Canal area in Egypt. However, information on the freshwater microbiome is limited in this region. A total of 59 freshwater samples were collected. Along with determining the physicochemical properties of the samples, we used conventional methods to identify indicator bacteria. To overcome limitations of conventional culture, we employed high-throughput 16S rRNA gene sequencing, taxonomy profiling, and functional prediction to study uncultivated microbial communities. Total and fecal coliforms prevailed in 100% and 80% of samples, respectively. Predominant contaminants included E. coli, fecal streptococci, Pseudomonas aeruginosa, and Staphylococcus aureus. Taxonomic profiling revealed dominance of Proteobacteria and Actinobacteriota. Proteobacteria showed a positive correlation with Bacteroidetes and a negative correlation with Actinobacteria. Most samples had similar bacterial community structures, despite location-driven variability. Elevated bacterial loads were notable at the Qassasin district, which exhibited the highest relative abundance of genes associated with bacterial infections. This study provides key insights into the impact of freshwater microbiome on public health. Full article
(This article belongs to the Special Issue Water Microorganisms Associated with Human Health, 2nd Edition)
Show Figures

Figure 1

20 pages, 6078 KB  
Article
Hydroclimate Drivers and Spatiotemporal Dynamics of Reference Evapotranspiration in a Changing Climate
by Aamir Shakoor, Sabab Ali Shah, Muhammad Nouman Sattar, Akinwale T. Ogunrinde, Raied Saad Alharbi and Faizan ur Rehman
Water 2025, 17(17), 2586; https://doi.org/10.3390/w17172586 - 1 Sep 2025
Cited by 1 | Viewed by 1496
Abstract
Evapotranspiration (ET) variation is typically influenced by climatic factors, which are considered the primary drivers of agricultural water requirements. Any changes in ET rates directly affect crop water demands. In this study, temporal trends and magnitudes of key climatic variables, and their impacts [...] Read more.
Evapotranspiration (ET) variation is typically influenced by climatic factors, which are considered the primary drivers of agricultural water requirements. Any changes in ET rates directly affect crop water demands. In this study, temporal trends and magnitudes of key climatic variables, and their impacts on reference evapotranspiration (ETo) during 1981–2020, were evaluated across 36 districts of Punjab, Pakistan. Positive serial correlations, ranging from 0.29 to 0.48, were identified and removed using the pre-whitening technique. Increasing trends in maximum temperature (Tmax) and wind speed (WS) across Punjab and its subregions were observed, while relative humidity (RH) exhibited both increasing and decreasing trends. No significant trends were detected for the minimum temperature (Tmin). On a monthly scale, in the Southern Punjab (SP) region, Sen’s slope estimated an increase in ETo, ranging from 0.239 mm/year in November to 0.636 mm/year in May, at a significance level of α = 0.05 (5%). At the provincial scale, significant upward trends in ETo were observed for the annual, Kharif, and autumn seasons, with Z-values of 2.04, 2.16, and 3.13, respectively, at α = 0.05 and 0.01. It was determined that, on an annual scale in Punjab, ETo sensitivity to climatic parameters followed the following order: Tmax > wind speed (WS) > Tmin > RH. The best-fitted models for Tmax, Tmin, WS, and RH were Gaussian, exponential, and spherical. ETo was found to increase spatially from North to South Punjab, with an approximate rise of 70–80 mm/decade. The results provide a scientific basis for understanding hydroclimatic drivers of ETo in semi-arid regions and contribute to improving climate impact assessments on agricultural water use. The observed ETo increases, particularly in South Punjab and lower Central Punjab, highlight the need for region-specific irrigation scheduling and water allocation. These findings can guide cropping calendars, improve irrigation efficiency, and increase canal water supplies to high-ETo areas, supporting adaptive strategies against climate variability in Punjab. Full article
Show Figures

Figure 1

31 pages, 7304 KB  
Article
Integrating Groundwater Modelling for Optimized Managed Aquifer Recharge Strategies
by Ghulam Zakir-Hassan, Jehangir F. Punthakey, Catherine Allan and Lee Baumgartner
Water 2025, 17(14), 2159; https://doi.org/10.3390/w17142159 - 20 Jul 2025
Cited by 3 | Viewed by 2284
Abstract
Managed aquifer recharge (MAR) is a complex and hidden process of storing surplus water under the ground surface and extracting it as, when and where needed. Evaluation of the success of any MAR project is challenging due to uncertainty in estimating the hydrogeological [...] Read more.
Managed aquifer recharge (MAR) is a complex and hidden process of storing surplus water under the ground surface and extracting it as, when and where needed. Evaluation of the success of any MAR project is challenging due to uncertainty in estimating the hydrogeological characteristics of the subsurface media. This paper demonstrates the use of a groundwater model (MODFLOW) to evaluate a new, large-scale regional MAR project in the agricultural heartland in Punjab, Pakistan. In this MAR project, flood waters have been diverted to the bed of an abandoned canal, where 144 recharge wells (the wells for accelerating the recharge into the aquifer) have been constructed to accelerate the recharge to the aquifer. The model was calibrated for a period of five years from October 2015 to June 2020 on a monthly stress period and the resulting water levels were simulated till 2035. The water balance components and future response of the aquifer to different scenarios up to 2035 including with and without MAR situations are presented. The model simulations showed that MAR can contribute to the replenishment of the aquifer and its potential for the case study site to contribute significantly to the management of groundwater and to enhance supplies for intensive agriculture. It was further established that MODFLOW can help in the evaluation of effectiveness of a MAR scheme. This study is unique as it evaluates a significantly large MAR project in an area where this practice has not been developed for improving groundwater access for large scale irrigation. The model provides guidelines for decision makers in the region as well as for the global community and livelihood benefits for rural communities. Full article
(This article belongs to the Special Issue Advances in Surface Water and Groundwater Simulation in River Basin)
Show Figures

Figure 1

34 pages, 6364 KB  
Review
Salinity Barriers to Manage Saltwater Intrusion in Coastal Zone Aquifers During Global Climate Change: A Review and New Perspective
by Thomas M. Missimer and Robert G. Maliva
Water 2025, 17(11), 1651; https://doi.org/10.3390/w17111651 - 29 May 2025
Cited by 5 | Viewed by 6801
Abstract
Climate change will have a significant impact on saltwater intrusion in coastal aquifers between now and 2150. Global sea levels are predicted to rise somewhere between 0.5 and 1.8 m. To mitigate sea level rise, coastal aquifers will require intensive management to avoid [...] Read more.
Climate change will have a significant impact on saltwater intrusion in coastal aquifers between now and 2150. Global sea levels are predicted to rise somewhere between 0.5 and 1.8 m. To mitigate sea level rise, coastal aquifers will require intensive management to avoid inland migration of seawater that could impact water supplies. In addition to reducing pumping of freshwater, the construction and operation of salinity barriers will be required in many locations. Eleven types of salinity barriers were investigated, including physical barriers (curtain wall and grout curtains), infiltration canals filled with freshwater paralleling the coastline, injection of freshwater (treated surface water or wastewater), pumping or abstraction barriers, mixed injection and abstraction barriers, combined abstraction, desalination, and recharge (ADR), ADR hybrid barriers using various water sources including desalinated water and treated wastewater, compressed air barriers, aquifer storage and recovery dual use systems, biofilm barriers, and clay swelling or dispersion barriers. Feasibility of the use of each salinity barrier type was evaluated within the context of the most recent projections of sea level changes. Key factors used in the evaluation included local hydrogeology, land surface slope, water use, the rate of sea level rise, technical feasibility (operational track record), and economics. Full article
(This article belongs to the Special Issue Research on Hydrogeology and Hydrochemistry: Challenges and Prospects)
Show Figures

Figure 1

23 pages, 7384 KB  
Article
Hydrogeochemical and Isotopic Approach to Groundwater Management in a Mediterranean City Dependent on External Water Supply (Aix-en-Provence, SE France)
by Christelle Claude, Hélène Miche, Ghislain Gassier, Ferhat Cherigui and Yves Dutour
Water 2025, 17(11), 1634; https://doi.org/10.3390/w17111634 - 28 May 2025
Viewed by 1523
Abstract
Drought frequency and severity intensify with climate change, challenging many Mediterranean cities to face securing sustainable water supplies. In this context, groundwater emerges as a key but often overlooked resource, particularly in urban areas historically reliant on external drinking water systems. This study [...] Read more.
Drought frequency and severity intensify with climate change, challenging many Mediterranean cities to face securing sustainable water supplies. In this context, groundwater emerges as a key but often overlooked resource, particularly in urban areas historically reliant on external drinking water systems. This study provides a comprehensive hydrogeological characterisation of the groundwater system in Aix-en-Provence (southeastern France), with a specific focus on hypothermal springs and the cold springs of the Vallon des Pinchinats, which historically supplied the town before the creation of the Canal de Provence by the company of the same name (Société du Canal de Provence (SCP)). By combining chemical and isotopic analyses (δ18O, δ2H, and chloride concentrations) with a statistical clustering (DACMAD method), we characterise the origin and dynamics of distinct water sources and evaluate their influence with surface water and external supply systems. Four key hydrological entities influencing the study area were identified. (1) regional precipitation (RRW) contributing significantly to groundwater recharge in the region. The isotope composition of the RRW was calculated (δ18O: −6.68‰, δ2H: −41.80‰, Cl: 2.2 mg/L) (2) Groundwater from the Oligocene aquifer (OG) characterised by an enrichment in chloride and sulphate. (3) Groundwater from the Cretaceous–Jurassic aquifer (CJG), a karstified aquifer from the Sainte-Victoire-Concors massif, which supplies the cold and hypothermal springs in Aix-en-Provence and multiple springs in the region. (4) Canal de Provence water (CPW) as an external water source, used for domestic supply, which has left a traceable signal in the local hydrosystem. The study reveals that cold springs of the Vallon des Pinchinats result from the mixing of Oligocene and Cretaceous–Jurassic groundwaters. Hypothermal springs (20–30 °C) circulate at moderate depths (165–500 m), unlike previous models suggesting deeper infiltration and mixing processes. This study contributes a novel hydrogeochemical and isotopic framework applicable to other Mediterranean urban areas facing similar pressures and highlights the strategic role that local groundwater can play in building long-term water resilience. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

20 pages, 4769 KB  
Article
Evolution of Nuntași-Tuzla Lake Chemistry in the Context of Human Intervention
by Gabriel Dobrica, Carmen Elena Maftei, Ionela Carazeanu Popovici and Naliana Lupascu
Water 2025, 17(10), 1482; https://doi.org/10.3390/w17101482 - 14 May 2025
Viewed by 867
Abstract
This paper analyzes the chemical evolution of Nuntași-Tuzla Lake (Romania) in the context of human intervention. Situated on the shore of the Black Sea, approximately 35 km north of Constanța, Nuntași-Tuzla Lake is part of the Razim–Sinoe Lake complex and a component of [...] Read more.
This paper analyzes the chemical evolution of Nuntași-Tuzla Lake (Romania) in the context of human intervention. Situated on the shore of the Black Sea, approximately 35 km north of Constanța, Nuntași-Tuzla Lake is part of the Razim–Sinoe Lake complex and a component of the Danube Delta Biosphere Reserve. This area has undergone significant transformations over the past 120 years: canalization of the connecting channels with the St. George arm, construction of polders for agriculture, closure of the connections to the Black Sea, and construction of the Razim–Sinoe irrigation system. After the irrigation system stopped working (around 2000), due to the isolation of the lake and the low flow coming from the two rivers that supply the lake with fresh water, it completely dried up in 2020. All these interventions have led to the ecological, hydrological, and chemical deterioration of the lake’s water. The main effects are (i) a decrease in water salinity and (ii) reduction in the production of sapropelic mud as the salinity decreases due to the influx of fresh water. Full article
(This article belongs to the Special Issue Climate Change and Hydrological Processes, 2nd Edition)
Show Figures

Figure 1

15 pages, 5204 KB  
Article
Correlation Analysis of Wetland Pattern Changes and Groundwater in Kaifeng Downstream of the Yellow River, China
by Xiangxiang Cui, Lin Guo, Xueqing Zhang, Suhua Meng, Shan Lei, Wengeng Cao and Xiangzhi Li
Water 2025, 17(9), 1374; https://doi.org/10.3390/w17091374 - 2 May 2025
Viewed by 930
Abstract
(1) Background: This study aims to provide a viable theoretical framework for wetland ecological restoration in the lower reaches of the Yellow River within the city of Kaifeng, China. (2) Methods: Using remote sensing and image interpretation to identify the long-term evolution characteristics [...] Read more.
(1) Background: This study aims to provide a viable theoretical framework for wetland ecological restoration in the lower reaches of the Yellow River within the city of Kaifeng, China. (2) Methods: Using remote sensing and image interpretation to identify the long-term evolution characteristics of wetlands in the study area and analyzing the impact of runoff, riverway changes, and groundwater flow fields in the lower reaches of the Yellow River on wetland conditions along the Yellow River. (3) Results: With natural wetland as its major wetland type, the study area saw an increase in the total wetland area from 2000–2021. Among others, the total area of artificial wetlands increased by 43%, while that of flooding wetlands in natural wetlands decreased by 37%. Surface water discharge and water level saw a year-by-year drop. Moreover, the significant wandering and oscillations of riverways led to a direct impact on the area and stability of tidal flat wetlands. After 2010, affected by rainfall and exploitation, the groundwater level declined sharply. The degraded areas of artificial wetlands were mainly distributed at the northern embankment of the Yellow River, where the groundwater burial depth decreased significantly. In contrast, at the southern embankment, for the sake of the irrigation canal diverted from the Yellow River, new back river depressions had formed and helped build a more stable ecological environment. Yellow River water levels and discharge directly impacted the area of rivers and flooding wetlands. The decline in groundwater levels led to the degradation of ponds in artificial wetlands. (4) Conclusions: The reduction of groundwater exploitation and an adequate supply of diverted Yellow River water were conducive to the development of wetlands in the back river depressions on the outside of the Yellow River embankment. Full article
(This article belongs to the Special Issue Assessment of Groundwater Quality and Pollution Remediation)
Show Figures

Figure 1

23 pages, 9358 KB  
Article
Economic Operation Scheme of Cascade Pump Station Group Under the Power Market Situation—Taking the Yellow River to Qingdao Project as an Example
by Ying Zheng, Yu Gu, Chao Wang, Hailong Wang and Tian Gan
Water 2025, 17(7), 1004; https://doi.org/10.3390/w17071004 - 28 Mar 2025
Viewed by 683
Abstract
To solve the problems of s arehigh operating costs and excessive electricity consumption of cascade water supply pump stations in large-scale water transfer projects, this paper develops three optimized operation models for pump station group. Model 1 aims to minimize the daily total [...] Read more.
To solve the problems of s arehigh operating costs and excessive electricity consumption of cascade water supply pump stations in large-scale water transfer projects, this paper develops three optimized operation models for pump station group. Model 1 aims to minimize the daily total electricity cost, Model 2 aims to minimize the daily total electricity consumption, and Model 3 considers both time-of-use electricity prices and regulation and storage of canal section. The dynamic programming algorithm was employed to solve the optimized models. Taking the cascade pump station group of the Yellow River to Qingdao Water Regulation Project in China as an example, application research was conducted under average daily pumping flow of 8 m3/s; 16 m3/s; 24 m3/s; and 32 m3/s. Results indicate that all models exhibit excellent economic performance. Among them, the best performance was achieved by the Model 3 scenario, which consumed 98,700 kWh, 195,600 kWh, 293,400 kWh, and 394,500 kWh of electricity, and reduced the operating costs by 37,100, 38,100, 34,300, and 4400 USD, respectively, compared with the fixed-flow condition. Full article
Show Figures

Figure 1

49 pages, 10138 KB  
Review
Water Supply Systems: Past, Present Challenges, and Future Sustainability Prospects
by Andreas N. Angelakis, Andrea G. Capodaglio, Rohitashw Kumar, Mohammad Valipour, Abdelkader T. Ahmed, Alper Baba, Esra B. Güngör, Laila Mandi, Vasileios A. Tzanakakis, Nektarios N. Kourgialas and Nicholas Dercas
Land 2025, 14(3), 619; https://doi.org/10.3390/land14030619 - 14 Mar 2025
Cited by 1 | Viewed by 4451
Abstract
At the beginning of human history, surface water, especially from rivers and springs, was the most frequent water supply source. Groundwater was used in arid and semi-arid regions, e.g., eastern Crete (Greece). As the population increased, periodic water shortages occurred, which led to [...] Read more.
At the beginning of human history, surface water, especially from rivers and springs, was the most frequent water supply source. Groundwater was used in arid and semi-arid regions, e.g., eastern Crete (Greece). As the population increased, periodic water shortages occurred, which led to the development of sophisticated hydraulic structures for water transfer and for the collection and storage of rainwater, as seen, for example, in Early Minoan times (ca 3200–2100 BC). Water supply and urban planning had always been essentially related: the urban water supply systems that existed in Greece since the Bronze Age (ca 3200–1100 BC) were notably advanced, well organized, and operable. Water supply systems evolved considerably during the Classical and Hellenistic periods (ca 480–31 BC) and during the Roman period (ca 31 BC–480 AD). Also, early Indian society was an amazing vanguard of technology, planning, and vision, which significantly impacted India’s architectural and cultural heritage, thus laying the foundation for sustainable urban living and water resource management. In ancient Egypt, the main source of freshwater was the Nile River; Nile water was conveyed by open and closed canals to supply water to cities, temples, and fields. Underground stone-built aqueducts supplied Nile water to so-called Nile chambers in temples. The evolution of water supply and urban planning approaches from ancient simple systems to complex modern networks demonstrates the ingenuity and resilience of human communities. Many lessons can be learned from studying traditional water supply systems, which could be re-considered for today’s urban sustainable development. By digging into history, measures for overcoming modern problems can be found. Rainwater harvesting, establishing settlements in proximity of water sources to facilitate access to water, planning, and adequate drainage facilities were the characteristics of ancient civilizations since the ancient Egyptian, Minoan, Mohenjo-Daro, Mesopotamian, and Roman eras, which can still be adopted for sustainability. This paper presents significant lessons on water supply around the world from ancient times to the present. This diachronic survey attempts to provide hydro-technology governance for the present and future. Full article
Show Figures

Figure 1

14 pages, 8366 KB  
Article
Digital Elevation Model Extraction and Correction of Hilly River Channel Network in Pi-Shi-Hang Irrigation District, China
by Longzhu Guo and Yiming Huang
Water 2025, 17(2), 176; https://doi.org/10.3390/w17020176 - 10 Jan 2025
Viewed by 1511
Abstract
This research focuses on river and canal systems extraction in hilly irrigation areas. It aims to improve extraction precision and correct the DEM. Given the significance and challenges, the hilly area of the Pi-Shi-Hang Irrigation District is selected as the study area. The [...] Read more.
This research focuses on river and canal systems extraction in hilly irrigation areas. It aims to improve extraction precision and correct the DEM. Given the significance and challenges, the hilly area of the Pi-Shi-Hang Irrigation District is selected as the study area. The study integrates water systems with channels uses with 12.5 m DEM data for 2018 from Pi-Shi-Hang Irrigation District. The key working areas are determined through slope analysis. Based on ArcGIS 10.8.2, the elevation of the raster at the inflection points in the problem area is lowered by 3 m. ArcSWAT 2012_10.8.26 is used to construct a complete water network structure and to search for an appropriate threshold for the water system in the Pi-Shi-Hang Irrigation District. It is based on integrating three key features: water system density, tributary development coefficient, and water system connectivity. Research results derived in this paper show that the chosen thresholds of 50 hectares for the Yangtze River system and 150–200 hectares for the Huai River system can more accurately reflect the characteristics of the water system in this region. Moreover, the corrected and optimized DEM has remarkably enhanced the accuracy of extracting the river channel network in hilly areas, thus supplying more precise basic data for related field applications. Full article
Show Figures

Figure 1

Back to TopTop