Microbial Communities and Physicochemical Properties of the Nile River Water in the Suez Canal Area
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Physicochemical Characters
2.3. Bacteriological Analysis
2.4. Microbiome Analysis
2.4.1. Sample Preparation
2.4.2. DNA Extraction
2.4.3. PCR Amplification of 16S rRNA Gene and Illumina MiSeq Sequencing
2.4.4. Manipulation of Raw Sequence Data
2.4.5. Alpha and Beta Diversity
2.4.6. Taxonomy Assignment and Core Microbiome
2.4.7. Linear Discriminant Analysis Effect Size (LEfSE)
2.4.8. Correlation Analysis
2.4.9. Pathway and Functional Prediction
2.4.10. Data Availability
3. Results
3.1. The Physicochemical Parameters
3.2. Total and Fecal Coliform Enumeration and Potential Detection of Common Bacterial Contaminants
3.3. Sequence Analysis
3.3.1. Alpha Diversity
3.3.2. Beta Diversity
3.3.3. Taxonomic Assignment and Core Bacterial Community
3.3.4. Linear Discriminant Analysis Effect Size (LEfSE)
3.3.5. Taxa Correlation Analysis
3.3.6. Functional Pathway Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TDS | Total dissolved solids |
BOD | Biochemical oxygen demand |
DO | Dissolved oxygen |
NH3 | Ammonia |
NO3 | Nitrate |
NO2 | Nitrite |
Cl | Chloride |
CaH | Calcium hardness |
MgH | Magnesium hardness |
Ca | Calcium |
Mg | Magnesium |
TH | Total hardness |
T.Alk | Total alkalinity |
QIIME 2 | Quantitative Insights into Microbial Ecology 2 |
DADA 2 | Divisive Amplicon Denoising Algorithm 2 |
ASV | Amplicon Sequence Variants |
BH | Benjamini–Hochberg |
PCoA | Principal Coordinate Analysis |
PERMANOVA | Permutation-based ANOVA |
BLCA | Bayesian Least Common Ancestor |
LEfSE | Linear discriminant analysis effect size |
LDA | linear discriminant analysis |
KO | KEGG Orthology |
FRI | Functional Redundancy Index |
References
- UNICEF. Triple Threat How Disease, Climate Risks, and Unsafe Water, Sanitation and Hygiene Create a Deadly Combination for Children; United Nations Children’s Fund: New York, NY, USA, 2023. [Google Scholar]
- Fewtrell, L.; Bartram, J. Water Quality: Guidelines, Standards and Health: Assessment of Risk and Risk Management for Water-Related Infectious Disease; IWA Publishing: London, UK, 2013. [Google Scholar]
- Sargaonkar, A.; Deshpande, V. Development of an overall index of pollution for surface water based on a general classification scheme in Indian context. Environ. Monit. Assess. 2003, 89, 43–67. [Google Scholar] [CrossRef]
- Wahaab, R.A.; Badawy, M.I. Water quality assessment of the River Nile system: An overview. Biomed. Environ. Sci. BES 2004, 17, 87–100. [Google Scholar]
- Stahl, R.; Ramadan, A.B. Environmental Studies on Water Quality of the Ismailia Canal/Egypt; Karlsruhe Institute for Technologie Kit-Bioblithek: Karlsruhe, Germany, 2008. [Google Scholar]
- Khalil, M.; Sayed, M.; Amer, A.; Nassif, M. Impact of pollution on macroinvertebrates biodiversity in Ismailia Canal, Egypt. Egypt. J. Aquat. Biolo. Fish. 2012, 16, 69–89. [Google Scholar] [CrossRef]
- Geriesh, M.H.; Balke, K.-D.; El-Rayes, A.E. Problems of drinking water treatment along Ismailia Canal Province, Egypt. J. Zhejiang Univ. Sci. B 2008, 9, 232–242. [Google Scholar] [CrossRef]
- Khairy, W.M.; Ghany, M.B.A. Sustainable Management of Treated Wastewater, the New El-Mahsama Wastewater Treatment Plant in Sinai. J. Environ. Treat. Tech. 2021, 9, 804–814. [Google Scholar]
- Abd El Samie, S.G.; Hassan, H.B.; Hamza, M.S. Estimation of the Pollution Level in El Timsah Lake, Egypt. In Proceedings of the Proceedings of the 9 International Conference for Nuclear Sciences and Applications, Sharm Al Sheikh, Egypt, 11–14 February 2008; p. 1239. [Google Scholar]
- Khairy, W.M.; Kamal, R. Economic Valuation of Treated Wastewater use in Sustainable Agriculture—New El-Mahsama Wastewater Treatment Plant in Sinai, Egypt. Lond. J. Res. Sci. Nat. Form. 2021, 21, 45–60. [Google Scholar]
- Goher, M.E.; Hassan, A.M.; Abdel-Moniem, I.A.; Fahmy, A.H.; El-sayed, S.M. Evaluation of surface water quality and heavy metal indices of Ismailia Canal, Nile River, Egypt. Egypt. J. Aquat. Res. 2014, 40, 225–233. [Google Scholar] [CrossRef]
- Abd El-Salam, S.; Amer, M.; Nasr El-din, M.; Radwan, A.; Abo Taleb, S. Physical-chemical and Bacteriological Evaluation of River Nile Water and Drinking Water in Benha City, Egypt. Egypt. J. Bot. 2017, 57, 495–506. [Google Scholar] [CrossRef]
- Ezzat, S.M.; Mahdy, H.; Abo-State, M.A.; Elbahnasawy, M.A. Water Quality Assessment of River Nile at Rosetta Branch: Impact of Drains Discharge. Middle-East J. Sci. Res. 2012, 12, 413–423. [Google Scholar] [CrossRef]
- Rabeh, S.A. Bacteria and Viruses in the Nile. In The Nile; Dumont, H.J., Ed.; Springer: Dordrecht, The Netherlands, 2009; Volume 89, pp. 407–429. [Google Scholar]
- Rifaat, H.M. Bacterial Quality of River Nile Water at Cairo Region in Egypt. Suoseura-Finn. Peatl. Soc. 2007, 59, 1–8. [Google Scholar]
- Steele, H.L.; Streit, W.R. Metagenomics: Advances in ecology and biotechnology. FEMS Microbiol. Lett. 2005, 247, 105–111. [Google Scholar] [CrossRef]
- Nakatsu, C.H.; Byappanahalli, M.N.; Nevers, M.B. Bacterial Community 16S rRNA Gene Sequencing Characterizes Riverine Microbial Impact on Lake Michigan. Front. Microbiol. 2019, 10, 996. [Google Scholar] [CrossRef]
- Fiedler, C.J.; Schönher, C.; Proksch, P.; Kerschbaumer, D.J.; Mayr, E.; Zunabovic-Pichler, M.; Domig, K.J.; Perfler, R. Assessment of Microbial Community Dynamics in River Bank Filtrate Using High-Throughput Sequencing and Flow Cytometry. Front. Microbiol. 2018, 9, 2887. [Google Scholar] [CrossRef]
- Sabae, S.Z.; Rabeh, S.A. Evaluation of the Microbial Quality of the River Nile Water at Dameitta Branch. Egypt. J. Aquat. Res. 2006, 33, 301–311. [Google Scholar]
- Ali, S.; Abo El-Magd, H.; El-Gamal, A.; Afifi, M.; Fouda, A. The Influence of Discharge Effluents on the River Nile Water Quality at Aswan Governorate, Egypt. Egypt. J. Aquat. Biolo. Fish. 2021, 25, 589–606. [Google Scholar] [CrossRef]
- Osman, G.; Kamel, M.; Hassan, H.; Al-Herrawy, A. Microbial quality of nile water and drinking water in some areas of Greater Cairo, Egypt. Aust. J. Basic Appl. Sci. 2011, 5, 1328–1334. [Google Scholar]
- Abo-State, M.A.; Mahdy, H.; Ezzat, S.M.; Elbahnasawy, M.A. Antimicrobial Resistance Profiles of Enterobacteriaceae Isolated from Rosetta Branch of River Nile, Egypt. World Appl. Sci. J. 2012, 19, 1234–1243. [Google Scholar] [CrossRef]
- Hassanein, A.; Abdel-Rahim, K.; Younis, S.; Ismael, M.; Abdel- Azeiz, H. Physicochemical and microbiological studies of River Nile water in Sohag governorate. J. Environ. Stud. 2013, 10, 47–61. [Google Scholar] [CrossRef]
- Azzam, M.I.; Ezzat, S.M.; Othman, B.A.; El-Dougdoug, K.A. Antibiotics resistance phenomenon and virulence ability in bacteria from water environment. Water Sci. 2017, 31, 109–121. [Google Scholar] [CrossRef]
- Eraqi, W.A.; ElRakaiby, M.T.; Megahed, S.A.; Yousef, N.H.; Elshahed, M.S.; Yassin, A.S. The Nile River Microbiome Reveals a Remarkably Stable Community Between Wet and Dry Seasons, and Sampling Sites, in a Large Urban Metropolis (Cairo, Egypt). Omics A J. Integr. Biol. 2018, 22, 553–564. [Google Scholar] [CrossRef]
- Baird, R.; Rice, E.; Eaton, A. Standard Methods for the Examination of Water and Wastewaters Water Environment Federation. 23rd ed Washington, DC: American Public Health Association. 2017, 1, 71–90. [Google Scholar]
- Egyptian Law. Ministerial Decree No. 92 of 2013 Amending the Ministerial Decree No. 8 of 1982 on the Executive Regulations of Law No. 48 of 1982 Concerning the Protection of the Nile River and Water Channels from Pollution. 2013. Available online: https://www.fao.org/faolex/results/details/ar/c/LEX-FAOC122154 (accessed on 14 October 2025).
- Egyptian Standards for Potable Water, Resolution No. 458 of 2007 Defining Maximum Limits for Criteria and Requirements Necessary for Drinking Water and Domestic Use. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC083626/ (accessed on 14 October 2025).
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Bhuiya, M.; Sarkar, M.K.I.; Sohag, M.H.; Ali, H.; Roy, C.K.; Akther, L.; Sarker, A.F. Enumerating Antibiotic Susceptibility Patterns of Pseudomonas aeruginosa Isolated from Different Sources in Dhaka City. Open Microbiol J 2018, 12, 172–180. [Google Scholar] [CrossRef]
- Ben Said, M.; Abbassi, M.S.; Gómez, P.; Ruiz-Ripa, L.; Sghaier, S.; Ibrahim, C.; Torres, C.; Hassen, A. Staphylococcus aureus isolated from wastewater treatment plants in Tunisia: Occurrence of human and animal associated lineages. J. Water Health 2017, 15, 638–643. [Google Scholar] [CrossRef]
- Rawway, M.; Kamel, M.S. Microbial and Physico-Chemical Assessment of Water Quality of the River Nile at Assiut Governorate (Upper Egypt). J. Ecol. Health Environ. 2015, 4, 7–14. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef] [PubMed]
- Huson, D.H.; Auch, A.F.; Qi, J.; Schuster, S.C. MEGAN analysis of metagenomic data. Genome Res. 2007, 17, 377–386. [Google Scholar] [CrossRef]
- Estaki, M.; Jiang, L.; Bokulich, N.A.; McDonald, D.; González, A.; Kosciolek, T.; Martino, C.; Zhu, Q.; Birmingham, A.; Vázquez-Baeza, Y.; et al. QIIME 2 Enables Comprehensive End-to-End Analysis of Diverse Microbiome Data and Comparative Studies with Publicly Available Data. CP Bioinform. 2020, 70, e100. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Ashkenazy, H.; Sela, I.; Levy Karin, E.; Landan, G.; Pupko, T. Multiple Sequence Alignment Averaging Improves Phylogeny Reconstruction. Syst. Biol. 2019, 68, 117–130. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
- Wen, T.; Niu, G.; Chen, T.; Shen, Q.; Yuan, J.; Liu, Y.-X. The best practice for microbiome analysis using R. Protein Cell 2023, 14, 713–725. [Google Scholar] [CrossRef]
- Cameron, E.S.; Schmidt, P.J.; Tremblay, B.J.-M.; Emelko, M.B.; Müller, K.M. Enhancing diversity analysis by repeatedly rarefying next generation sequencing data describing microbial communities. Sci. Rep. 2021, 11, 22302. [Google Scholar] [CrossRef]
- Azaroual, S.E.; Kasmi, Y.; Aasfar, A.; El Arroussi, H.; Zeroual, Y.; El Kadiri, Y.; Zrhidri, A.; Elfahime, E.; Sefiani, A.; Meftah Kadmiri, I. Investigation of bacterial diversity using 16S rRNA sequencing and prediction of its functionalities in Moroccan phosphate mine ecosystem. Sci. Rep. 2022, 12, 3741. [Google Scholar] [CrossRef]
- Scolari, F.; Sandionigi, A.; Carlassara, M.; Bruno, A.; Casiraghi, M.; Bonizzoni, M. Exploring Changes in the Microbiota of Aedes albopictus: Comparison Among Breeding Site Water, Larvae, and Adults. Front. Microbiol. 2021, 12, 624170. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Lin, H.; Revanna, K.; Dong, Q. A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy. BMC Bioinform. 2017, 18, 247. [Google Scholar] [CrossRef]
- Thom, C.; Smith, C.J.; Moore, G.; Weir, P.; Ijaz, U.Z. Microbiomes in drinking water treatment and distribution: A meta-analysis from source to tap. Water Res. 2022, 212, 118106. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, G.; Ewald, J.; Pang, Z.; Shiri, T.; Xia, J. MicrobiomeAnalyst 2.0: Comprehensive statistical, functional and integrative analysis of microbiome data. Nucleic Acids Res. 2023, 51, W310–W318. [Google Scholar] [CrossRef]
- Barberán, A.; Bates, S.T.; Casamayor, E.O.; Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 2012, 6, 343–351. [Google Scholar] [CrossRef]
- Wemheuer, F.; Taylor, J.A.; Daniel, R.; Johnston, E.; Meinicke, P.; Thomas, T.; Wemheuer, B. Tax4Fun2: Prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environ. Microbiome 2020, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Meinicke, P. UProC: Tools for ultra-fast protein domain classification. Bioinformatics 2015, 31, 1382–1388. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Ćirić, S.; Prodanović, D.; Milošević, B.; Prodanović, M. Bacterial load in relation to physico-chemical parameters and faecal indicators of drinking water source. Univ Thought Publ Nat Sci 2019, 9, 8–16. [Google Scholar] [CrossRef]
- Poma, H.R.; Cacciabue, D.G.; Garcé, B.; Gonzo, E.E.; Rajal, V.B. Towards a rational strategy for monitoring of microbiological quality of ambient waters. Sci. Total Environ. 2012, 433, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Liguori, G.; Cavallotti, I.; Arnese, A.; Amiranda, C.; Anastasi, D.; Angelillo, I.F. Microbiological quality of drinking water from dispensers in Italy. BMC Microbiol. 2010, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Stres, B.; Danevčič, T.; Pal, L.; Fuka, M.M.; Resman, L.; Leskovec, S.; Hacin, J.; Stopar, D.; Mahne, I.; Mandic-Mulec, I. Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms: Influence of T and soil moisture on microbial communities. FEMS Microbiol. Ecol. 2008, 66, 110–122. [Google Scholar] [CrossRef]
- Abdel-Satar, A.M.; Ali, M.H.; Goher, M.E. Indices of water quality and metal pollution of Nile River, Egypt. Egypt. J. Aquat. Res. 2017, 43, 21–29. [Google Scholar] [CrossRef]
- Yengejeh, R.J.; Morshedi, J.; Yazdizadeh, R. The Study and Zoning of Dissolved Oxygen and Biochemical Oxygen Demand of Dez River by GIS Software. J. Appl. Res. Water Wastewater 2014, 1, 23–27. [Google Scholar]
- Olutiola, P.; Awojobi, K.; Oyedeji, O.; Ayansina, A.; Cole, O. Relationship between bacterial density and chemical composition of a tropical sewage oxidation pond. Afr. J. Environ. Sci. Technol. 2010, 4, 595–602. [Google Scholar]
- Aram, S.A.; Saalidong, B.M.; Osei Lartey, P. Comparative assessment of the relationship between coliform bacteria and water geochemistry in surface and ground water systems. PLoS ONE 2021, 16, e0257715. [Google Scholar] [CrossRef]
- Odonkor, S.T.; Mahami, T. Escherichia coli as a Tool for Disease Risk Assessment of Drinking Water Sources. Int. J. Microbiol. 2020, 2020, 2534130. [Google Scholar] [CrossRef]
- El-Taweel, G.E. Microbiological profile of raw Nile water. J. Egypt Public Health Assoc. 1998, 73, 449–477. [Google Scholar]
- Al-Afify, A.D.G.; Othman, A.A.; Ramadan, M.F. Characterization of chemical and microbiological quality of Nile River surface water at Cairo (Egypt). Rend. Fis. Acc. Lincei 2018, 29, 725–736. [Google Scholar] [CrossRef]
- Goja, A.M. Bacterial Genera and Their Some Species of Nile Water. Asian J. Biol. Sci. 2013, 6, 116–123. [Google Scholar] [CrossRef]
- Mick, E.; Sorek, R. Erratum: High-resolution metagenomics. Nat. Biotechnol. 2014, 32, 1166. [Google Scholar] [CrossRef]
- Bruno, A.; Sandionigi, A.; Bernasconi, M.; Panio, A.; Labra, M.; Casiraghi, M. Changes in the Drinking Water Microbiome: Effects of Water Treatments Along the Flow of Two Drinking Water Treatment Plants in a Urbanized Area, Milan (Italy). Front. Microbiol. 2018, 9, 2557. [Google Scholar] [CrossRef] [PubMed]
- Newton, R.J.; Jones, S.E.; Eiler, A.; McMahon, K.D.; Bertilsson, S. A Guide to the Natural History of Freshwater Lake Bacteria. Microbiol. Mol. Biol. Rev. 2011, 75, 14–49. [Google Scholar] [CrossRef]
- Iliev, I.; Yahubyan, G.; Marhova, M.; Apostolova, E.; Gozmanova, M.; Gecheva, G.; Kostadinova, S.; Ivanova, A.; Baev, V. Metagenomic profiling of the microbial freshwater communities in two Bulgarian reservoirs. J. Basic. Microbiol. 2017, 57, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kaown, D.; Mayer, B.; Lee, J.-Y.; Lee, K.-K. Combining pyrosequencing and isotopic approaches to assess denitrification in a hyporheic zone. Sci. Total Environ. 2018, 631–632, 755–764. [Google Scholar] [CrossRef]
- Zwart, G.; Crump, B.; Kamst-van Agterveld, M.; Hagen, F.; Han, S. Typical freshwater bacteria: An analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat. Microb. Ecol. 2002, 28, 141–155. [Google Scholar] [CrossRef]
- Collins, M.D.; Dorsch, M.; Stackebrandt, E. Transfer of Pimelobacter tumescens to Terrabacter gen. nov. as Terrabacter tumescens comb. nov. and of Pimelobacter jensenii to Nocardioides as Nocardioides jensenii comb. nov. Int. J. Syst. Bacteriol. 1989, 39, 1–6. [Google Scholar] [CrossRef]
- Matsumoto, A.; Kasai, H.; Matsuo, Y.; Ōmura, S.; Shizuri, Y.; Takahashi, Y. Ilumatobacter fluminis gen. nov., sp. nov., a novel actinobacterium isolated from the sediment of an estuary. J. Gen. Appl. Microbiol. 2009, 55, 201–205. [Google Scholar] [CrossRef]
- Yosef, M.; Elrefy, A.; Elfeky, F. Metagenomic Analysis Reveals Microbial Communities in Lake Qarun—Egypt. J. Ecol. Eng. 2022, 23, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.S.; Kumar, A.; Rai, A.N.; Singh, D.P. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability. Front. Microbiol. 2016, 7, 529. [Google Scholar] [CrossRef]
- Lee, C.S.; Kim, M.; Lee, C.; Yu, Z.; Lee, J. The Microbiota of Recreational Freshwaters and the Implications for Environmental and Public Health. Front. Microbiol. 2016, 7, 1826. [Google Scholar] [CrossRef]
- Matchado, M.S.; Lauber, M.; Reitmeier, S.; Kacprowski, T.; Baumbach, J.; Haller, D.; List, M. Network analysis methods for studying microbial communities: A mini review. Comput. Struct. Biotechnol. J. 2021, 19, 2687–2698. [Google Scholar] [CrossRef] [PubMed]
- Adu-Oppong, B.; Gasparrini, A.J.; Dantas, G. Genomic and functional techniques to mine the microbiome for novel antimicrobials and antimicrobial resistance genes. Ann. N. Y. Acad. Sci. 2017, 1388, 42–58. [Google Scholar] [CrossRef]
- Aßhauer, K.P.; Wemheuer, B.; Daniel, R.; Meinicke, P. Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 2015, 31, 2882–2884. [Google Scholar] [CrossRef]
- Chen, H.; Ma, K.; Lu, C.; Fu, Q.; Qiu, Y.; Zhao, J.; Huang, Y.; Yang, Y.; Schadt, C.W.; Chen, H. Functional Redundancy in Soil Microbial Community Based on Metagenomics Across the Globe. Front. Microbiol. 2022, 13, 878978. [Google Scholar] [CrossRef]
- Gamfeldt, L.; Hillebrand, H.; Jonsson, P.R. Multiple Functions Increase the Importance of Biodiversity for Overall Ecosystem Functioning. Ecology 2008, 89, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Chen, X.; Chang, J.; Yu, J.; Tong, Q.; Li, S.; Niu, H. Compositional and predicted functional analysis of the gut microbiota of Radix auricularia (Linnaeus) via high-throughput Illumina sequencing. PeerJ 2018, 6, e5537. [Google Scholar] [CrossRef]
- Kim, N.; Ma, J.; Kim, W.; Kim, J.; Belenky, P.; Lee, I. Genome-resolved metagenomics: A game changer for microbiome medicine. Exp. Mol. Med. 2024, 56, 1501–1512. [Google Scholar] [CrossRef] [PubMed]
- Matchado, M.S.; Rühlemann, M.; Reitmeier, S.; Kacprowski, T.; Frost, F.; Haller, D.; Baumbach, J.; List, M. On the limits of 16S rRNA gene-based metagenome prediction and functional profiling. Microb. Genom. 2024, 10, 001203. [Google Scholar] [CrossRef]
- Allison, S.D.; Martiny, J.B.H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 2008, 5, 11512–11519. [Google Scholar] [CrossRef] [PubMed]
- Biggs, C.R.; Yeager, L.A.; Bolser, D.G.; Bonsell, C.; Dichiera, A.M.; Hou, Z.; Keyser, S.R.; Khursigara, A.J.; Lu, K.; Muth, A.F.; et al. Does functional redundancy affect ecological stability and resilience? A review and meta-analysis. Ecosphere 2020, 11, e03184. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkayal, N.; Zakeer, S.; Azab, M.; Abdellah, A.; Shabayek, S. Microbial Communities and Physicochemical Properties of the Nile River Water in the Suez Canal Area. Microorganisms 2025, 13, 2395. https://doi.org/10.3390/microorganisms13102395
Elkayal N, Zakeer S, Azab M, Abdellah A, Shabayek S. Microbial Communities and Physicochemical Properties of the Nile River Water in the Suez Canal Area. Microorganisms. 2025; 13(10):2395. https://doi.org/10.3390/microorganisms13102395
Chicago/Turabian StyleElkayal, Noha, Samira Zakeer, Marwa Azab, Ali Abdellah, and Sarah Shabayek. 2025. "Microbial Communities and Physicochemical Properties of the Nile River Water in the Suez Canal Area" Microorganisms 13, no. 10: 2395. https://doi.org/10.3390/microorganisms13102395
APA StyleElkayal, N., Zakeer, S., Azab, M., Abdellah, A., & Shabayek, S. (2025). Microbial Communities and Physicochemical Properties of the Nile River Water in the Suez Canal Area. Microorganisms, 13(10), 2395. https://doi.org/10.3390/microorganisms13102395