Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (306)

Search Parameters:
Keywords = water quotient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 609 KiB  
Article
Leaching of Potentially Toxic Elements from Paper and Plastic Cups in Hot Water and Their Health Risk Assessment
by Mahmoud Mohery, Kholoud Ahmed Hamam, Sheldon Landsberger, Israa J. Hakeem and Mohamed Soliman
Toxics 2025, 13(8), 626; https://doi.org/10.3390/toxics13080626 - 26 Jul 2025
Viewed by 389
Abstract
This study aims to investigate the release of potentially toxic elements from disposable paper and plastic cups when exposed to hot water, simulating the scenario of their use in hot beverage consumption, and to assess the associated health risks. By using ICP-MS, twelve [...] Read more.
This study aims to investigate the release of potentially toxic elements from disposable paper and plastic cups when exposed to hot water, simulating the scenario of their use in hot beverage consumption, and to assess the associated health risks. By using ICP-MS, twelve potentially toxic elements, namely As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Pb, Sb, V, and Zn, were determined in leachates, revealing significant variability in mass fractions between paper and plastic cups, with plastic cups demonstrating greater leaching potential. Health risk assessments, including hazard quotient (HQ) and excess lifetime cancer risk (ELCR), indicated minimal non-carcinogenic and carcinogenic risks for most elements, except Pb, which posed elevated non-carcinogenic risk, especially in plastic cups. Children showed higher relative exposure levels compared to adults due to their lower body weights (the HQ in children is two times greater than in adults). Overall, the findings of the current study underscore the need for stricter monitoring and regulation of materials used in disposable cups, especially plastic ones, to mitigate potential health risks. Future investigations should assess the leaching behavior of potentially toxic elements under conditions that accurately mimic real-world usage. Such investigations ought to incorporate a systematic evaluation of diverse temperature regimes, varying exposure durations, and different beverage types. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

22 pages, 7529 KiB  
Article
Analysis of Human Health Risk Related to the Exposure of Arsenic Concentrations and Temporal Variation in Groundwater of a Semi-Arid Region in Mexico
by Jennifer Ortiz Letechipia, Miguel Eduardo Pinedo Vega, Julián González Trinidad, Hugo Enrique Júnez-Ferreira, Ana Isabel Veyna Gómez, Ada Rebeca Contreras Rodríguez, Cruz Octavio Robles Rovelo and Sandra Dávila Hernández
Water 2025, 17(14), 2143; https://doi.org/10.3390/w17142143 - 18 Jul 2025
Viewed by 275
Abstract
This study evaluates the human health risks associated with exposure to arsenic in groundwater from a semi-arid region of Mexico, focusing on concentration levels and their temporal variation. Arsenic concentrations were analyzed using ordinary kriging for spatial interpolation, along with descriptive and inferential [...] Read more.
This study evaluates the human health risks associated with exposure to arsenic in groundwater from a semi-arid region of Mexico, focusing on concentration levels and their temporal variation. Arsenic concentrations were analyzed using ordinary kriging for spatial interpolation, along with descriptive and inferential statistical methods. Human health risk was assessed through the following two key indicators: the Hazard Quotient (HQ), which estimates non-carcinogenic risk by comparing exposure levels to reference doses and carcinogenic risk (CR), which represents the estimated lifetime probability of developing cancer due to arsenic exposure. The mean arsenic concentration across both study years was 0.0200 mg/L, with median values of 0.0151 mg/L in 2015 and 0.0200 mg/L in 2020. The average HQ was 2.13 in 2015 and 2.17 in 2020, both exceeding the safety threshold of one. Mean CR values were 0.00096 and 0.00097 for 2015 and 2020, respectively, with a consistent median of 0.00072 across both years. A t-test was applied to compare the distributions between years. Both HQ and CR values significantly exceeded the recommended safety limits (p < 0.05), indicating that groundwater in the study area poses a potential carcinogenic and non-carcinogenic health risk. These findings underscore the urgent need for water quality monitoring and the implementation of mitigation measures to safeguard public health in the region. Full article
Show Figures

Figure 1

13 pages, 620 KiB  
Article
Assessing Environmental Risk Posed by Pharmaceuticals and Personal Care Products in Shallow Lakes, Florida, USA—Part B
by Elzbieta Bialkowska-Jelinska, Philip van Beynen and Laurent Calcul
Environments 2025, 12(7), 231; https://doi.org/10.3390/environments12070231 - 8 Jul 2025
Viewed by 843
Abstract
The use of pharmaceuticals and personal care products (PPCPs) is steadily growing as the world’s population both increases and ages. Many of these products are released into the environment via municipal wastewater treatment plants and onsite wastewater treatment systems (septic tanks). Consequently, it [...] Read more.
The use of pharmaceuticals and personal care products (PPCPs) is steadily growing as the world’s population both increases and ages. Many of these products are released into the environment via municipal wastewater treatment plants and onsite wastewater treatment systems (septic tanks). Consequently, it is essential to ascertain whether these contaminants pose any risk to aquatic organisms who live in the water bodies receiving this waste. Risk quotients (RQ) are a commonly used method to do so. For our pilot study, we undertook such analysis for three trophic levels: algae, crustaceans, and fish from two small lakes, one fed by septic tanks and the other not. This research was conducted in 2021 from the end of the dry season and through most of the wet season in west central Florida, USA. Of the 14 PPCPs measured, six had RQs that posed a risk to all three trophic levels. This risk increased during the wet season. Both lakes, regardless of whether they directly received PPCPs from septic tanks or not, had some level of risk. However, the lake without septic tanks had a smaller risk, both in elevated RQs and the occurrence to the various species. Of the PPCPs measured, DEET, caffeine, and theophylline posed the greatest risk. Full article
(This article belongs to the Special Issue Research Progress in Groundwater Contamination and Treatment)
Show Figures

Graphical abstract

13 pages, 1338 KiB  
Article
Human Health Risk Assessment of Phenolic Contaminants in Lake Xingkai, China
by Liang Liu, Jinhua Gao, Yijun Sun, Yibo Sun, Handan Liu, Hongqing Sun and Guangyi Mu
Water 2025, 17(13), 2037; https://doi.org/10.3390/w17132037 - 7 Jul 2025
Viewed by 375
Abstract
Cresols are aromatic organic compounds widely used in industrial and agricultural production. They have been detected in large quantities in aquatic environments, posing health risks such as skin irritation, gastrointestinal stimulation, and chronic neurological effects. In this study, we investigated the exposure concentration [...] Read more.
Cresols are aromatic organic compounds widely used in industrial and agricultural production. They have been detected in large quantities in aquatic environments, posing health risks such as skin irritation, gastrointestinal stimulation, and chronic neurological effects. In this study, we investigated the exposure concentration of cresols in the water bodies of Lake Xingkai (i.e., Daxingkai and Xiaoxingkai Lakes) during four typical hydrological periods (30 April, 22 June, 5 September, and 1 November 2021), assessed the human health risk from phenolic contaminants using the mean value method, and determined the health risk of adult cresol exposure in the Lake Xingkai watershed based on local population exposure parameters. This study developed a water environmental pollution health risk assessment model based on the methodology proposed by the United States Environmental Protection Agency (US EPA). It further evaluated the health risks to humans posed by phenolic pollutants via the drinking water pathway. The results revealed that the concentration range of cresols in water bodies was between 5.91 × 10−1 ng·mL−1 and 6.68 ng·mL−1. The adult drinking water health risk values of cresols in the Lake Xingkai watershed were between 3.15 × 10−4 and 3.57 × 10−3, and all water samples from the 10 sites had hazard quotient (HQ) values less than 1, indicating that the non-carcinogen risk was small or negligible. The cresol HQ value in the water of Xiaoxingkai Lake was 4.6 times that found in Daxingkai Lake. Full article
Show Figures

Figure 1

31 pages, 2318 KiB  
Article
Mercury Contamination and Human Health Risk by Artisanal Small-Scale Gold Mining (ASGM) Activity in Gunung Pongkor, West Java, Indonesia
by Tia Agustiani, Susi Sulistia, Agus Sudaryanto, Budi Kurniawan, Patrick Adu Poku, Ahmed Elwaleed, Jun Kobayashi, Yasuhiro Ishibashi, Yasumi Anan and Tetsuro Agusa
Earth 2025, 6(3), 67; https://doi.org/10.3390/earth6030067 - 1 Jul 2025
Viewed by 759
Abstract
Artisanal small-scale gold mining (ASGM) is the largest source of global mercury (Hg) emissions. This study investigated Hg contamination in water, soil, sediment, fish, and cassava plants around ASGM sites in Gunung Pongkor, West Java, Indonesia. Hg concentration ranged from 0.06 to 4.49 [...] Read more.
Artisanal small-scale gold mining (ASGM) is the largest source of global mercury (Hg) emissions. This study investigated Hg contamination in water, soil, sediment, fish, and cassava plants around ASGM sites in Gunung Pongkor, West Java, Indonesia. Hg concentration ranged from 0.06 to 4.49 µg/L in water; 0.420 to 144 mg/kg dw in soil; 0.920 to 150 mg/kg dw in sediment; 0.259 to 1.23 mg/kg dw in fish; 0.097 to 5.09 mg/kg dw in cassava root; and 0.350 to 8.84 mg/kg dw in cassava leaf. Geo-accumulation index (Igeo) analysis revealed moderate to heavy soil contamination upstream, likely due to direct ASGM input. In contrast, sediment Igeo values indicated heavy contamination downstream, suggesting Hg transport and sedimentation. Bioconcentration factors (BCFs) in fish were predominantly high in downstream and midstream areas, indicating enhanced Hg bioavailability. Bioaccumulation factors (BAFs) in cassava were higher in upstream areas. Health risk assessment, based on the Hazard Quotient (HQ) and Hazard Index (HI), identified ingestion as the primary exposure route, with children exhibiting significantly higher risks than adults. These findings highlight the significant Hg contamination associated with ASGM in Gunung Pongkor and emphasize the need for targeted mitigation strategies to protect human and environmental health. Full article
Show Figures

Figure 1

29 pages, 2784 KiB  
Article
Interdisciplinary Evaluation of the Săpânța River and Groundwater Quality: Linking Hydrological Data and Vegetative Bioindicators
by Ovidiu Nasca, Thomas Dippong, Maria-Alexandra Resz and Monica Marian
Water 2025, 17(13), 1975; https://doi.org/10.3390/w17131975 - 30 Jun 2025
Viewed by 263
Abstract
This study was carried out to fill the present research gap in the study area by assessing water chemistry, potential heavy metal contamination, and the associated health risk evaluation that goes along with it in surface water bodies and groundwater in the NE [...] Read more.
This study was carried out to fill the present research gap in the study area by assessing water chemistry, potential heavy metal contamination, and the associated health risk evaluation that goes along with it in surface water bodies and groundwater in the NE of Maramureș County, near the Tisa River. The main methods we applied were Piper, Ficklin–Caboi, and Gibbs diagrams for determining the water typology and chemistry, the Overall Water Quality Index (OWQI) and vegetation cover to determine the water quality, a contamination index for analyzing the contamination degree, and a human health risk assessment through water ingestion after exposure of children and adults. This article’s main findings specify that waters were characterized and classified into the CaMgHCO3 dominant category of water type, with precipitation, agricultural, and domestic inputs, related to the Cl (mean ranging between 1.01–5.65 mg/L) and NO3 (mean ranging between 2.23–5.52 mg/L) content. The OWQI scores indicated excellent quality, below the critical value, ranging between 0.70 and 6.57. The applied risk assessment indicated that the daily intake of toxins is higher in the case of children than in adults, up to four and five times. The hazard quotient scores, ranging between 0.00093 and 0.248 for adults and between 0.0039 and 1.040 for children, indicated that if consumed, the studied waters can pose potential negative effects on children. Full article
Show Figures

Figure 1

13 pages, 2574 KiB  
Article
Assessment of the Human Health Risks Associated with Heavy Metals in Surface Water Near Gold Mining Sites in Côte d’Ivoire
by Mahamadou Kamagate, Traore Lanciné, Kouadio Aya Nelly Berthe, Gone Droh Lanciné, Karim Kriaa, Amine Aymen Assadi, Jie Zhang and Hichem Tahraoui
Water 2025, 17(13), 1891; https://doi.org/10.3390/w17131891 - 25 Jun 2025
Viewed by 464
Abstract
Heavy metals are a major cause for concern in relation to water systems, due to their high toxicity at elevated levels. The metals can originate from both natural processes, including geological weathering and volcanic activity, as well as anthropogenic activi-ties such as industrial [...] Read more.
Heavy metals are a major cause for concern in relation to water systems, due to their high toxicity at elevated levels. The metals can originate from both natural processes, including geological weathering and volcanic activity, as well as anthropogenic activi-ties such as industrial discharges, agricultural runoff, mining, and urbanization, which significantly contribute to water pollution and environmental degradation. The as-sessment of these risks is crucial for protecting public health, especially in populations reliant on contaminated water sources. Exposure to such contaminants can result in severe health consequences, including neurological impairments, organ deterioration, and an elevated risk of cancer. To conduct this assessment study, six surface water sampling sites were selected (i.e., S1 (Gobia), S2 (Kouamefla), S3 (Benkro), S4 (Dou-kouya), S5 (Doka), and S6 (Zengue)) due to their proximity to mining activities. We used the hazard quotient (HQ) and hazard index (HI) methods to estimate the levels of non-carcinogenic health risk associated with heavy metals. Then, the assessment of carcinogenic health risk was carried out using the Incremental Lifetime Cancer Risk (ILCR) methods. First, the highest ILCR total values were observed in the Doya locality (i.e., 0.4237 for the children and 0.5650 for the adults) and during the great dry season (i.e., 0.4333 for the children and 0.5743 for the adults). These findings highlight that populations in this locale experience heightened exposure during the period of the Great Rainy Season. The results indicated that the population exposed to Cd and Hg may experience health concerns irrespective of season and locality. For As and Pb, risks are present in both seasons (i.e., Short Dry Season (SDS) and Short Rainy Season (SRS)). On the other hand, the HIs are well above 1, indicating that the population may be exposed to non-carcinogenic diseases associated with the metals, regardless of the season or locality. To further explore the results, the assessment by ILCR was em-ployed, which demonstrated that for all the designated localities, the ILCRs of As and Cd are well above 10−4 for the entire population, indicating that the population con-suming this water may develop major carcinogenic risks. In addition, the highest ILCR values were obtained for Cd, regardless of the age group. It should be noted that sea-sonal variation had no significant effect on the trend in ILCRs determined for the en-tire population. Full article
(This article belongs to the Special Issue Soil-Groundwater Pollution Investigations)
Show Figures

Figure 1

24 pages, 1058 KiB  
Article
Impact of Various Types of Heat Processing on the Content of Selected Trace Elements of Goose Breast Meat
by Zuzanna Goluch, Tomasz Czernecki, Gabriela Haraf, Andrzej Okruszek and Monika Wereńska
Appl. Sci. 2025, 15(12), 6795; https://doi.org/10.3390/app15126795 - 17 Jun 2025
Viewed by 476
Abstract
Information about the trace elements content of goose carcass parts with or without skin can be important for consumers when making dietary choices. This study aimed to (1) determine the effects of popular heat processing techniques on the content of chromium (Cr), iodine [...] Read more.
Information about the trace elements content of goose carcass parts with or without skin can be important for consumers when making dietary choices. This study aimed to (1) determine the effects of popular heat processing techniques on the content of chromium (Cr), iodine (I), manganese (Mn), and bromine (Br) in goose breast muscle, and (2) estimate the extent to which 100 g of goose meat—both with and without skin—cover the Nutrient Reference Values (NRV) for Cr, I, Mn, and the Tolerable Daily Intake (TDI) for Br in adults. The heat processing techniques used in the study were water bath cooking (WBC), Oven Convection Roasting (OCR), grilling (G), and pan frying (PF). Grilled goose breast without skin had the highest Br retention (97.4%) and TDI (2.41%). Cooked goose breast (WBC) with skin exhibited the highest retention of Cr (73.8%) and I (73.6%). The highest Mn content was found in meat without skin after OCR processing and grilled meat with skin (0.170 and 0.191 mg/100 g, respectively). The iodine content in the meat decreased (from 0.020 raw to 0.003 mg/100 g after PF) with each heat treatment. The results of our study may provide helpful information for consumers when making dietary choices and using heat treatment techniques. Goose breast muscles, depending on heat treatment and the presence of skin, provide trace elements in the range of 2.21% of NRV (Nutrient Reference Value) for Br without skin to 740.7% of NRV for Cr with skin and may be a valuable component of a varied diet (apart from iodine). The Br content in the meat decreases after WBC treatment (1.29 without skin or 1.43 with skin mg/100 g). For this reason, it seems to be the most beneficial for the consumer’s health because it minimizes the risk of exceeding the TDI value. Total hazard quotients (THQ) in meat (regardless of the treatment and skin presence) for Cr, Mn, and Br contents were <1, indicating a low risk to Polish consumer health. Full article
Show Figures

Figure 1

17 pages, 557 KiB  
Article
Derivation of a Freshwater Quality Benchmark and an Ecological Risk Assessment of Ferric Iron in China
by Qijie Geng and Fei Guo
Toxics 2025, 13(6), 475; https://doi.org/10.3390/toxics13060475 - 4 Jun 2025
Viewed by 492
Abstract
Acid drainage resulting from mining operations has led to significant iron contamination in surface waters, posing serious ecological and public health hazards. Elevated iron levels in freshwater ecosystems can severely affect aquatic organisms and human health. However, there remains a considerable gap in [...] Read more.
Acid drainage resulting from mining operations has led to significant iron contamination in surface waters, posing serious ecological and public health hazards. Elevated iron levels in freshwater ecosystems can severely affect aquatic organisms and human health. However, there remains a considerable gap in the establishment of benchmark values and ecological risk assessments (ERAs) for iron in surface waters in China. This study collected and screened 47 acute and chronic toxicity data points of 22 species for ferric iron (Fe3+) from various studies and databases. Three widely utilized methodologies were applied to derive long-term and short-term water quality criteria (LWQC and SWQC, respectively) for Fe3+; the logistic fitting curve based on the species sensitivity distribution (SSD) method was identified as the most optimal method, yielding an acute HC5 of 689 μg/L and an SWQC of 345 μg/L. The LWQC of Fe3+ was estimated to be 28 μg/L by dividing HC5 by the acute-to-chronic ratio (ACR), owing to the inadequacy of chronic toxicity data for model fitting. Utilizing these benchmarks, an ecological risk assessment (ERA) was conducted to compare the benchmarks with 68 iron exposure data points collected from surface waters across 30 provinces from eight river basins of China. The findings of 30% of the acute risk quotients and 83% of the chronic risk quotients raise substantial ecological concerns, primarily regarding the Yellow River Basin, Huaihe River Basin, and Songhua and Liaohe River Basin. This research provides critical insights into Fe3+ toxicity data collection and benchmark derivations, offering a benchmark data foundation for the remediation of surface water iron contamination and water quality management in China. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

26 pages, 3667 KiB  
Article
Occurrence of 97 Pharmaceuticals in Wastewater and Receiving Waters: Analytical Validation and Treatment Influence
by Paula Paíga, Sónia Figueiredo, Manuela Correia, Magda André, Roberto Barbosa, Sandra Jorge and Cristina Delerue-Matos
J. Xenobiot. 2025, 15(3), 78; https://doi.org/10.3390/jox15030078 - 23 May 2025
Viewed by 1616
Abstract
This study analyzed 97 pharmaceuticals in samples of surface water, as well as influent and effluent from various wastewater treatment plants (WWTPs), during winter 2022 and spring 2023. Approximately 40% of the tested compounds were detected, at amounts ranging from below the methods’ [...] Read more.
This study analyzed 97 pharmaceuticals in samples of surface water, as well as influent and effluent from various wastewater treatment plants (WWTPs), during winter 2022 and spring 2023. Approximately 40% of the tested compounds were detected, at amounts ranging from below the methods’ detection limits to 5623 ng/L (2-hydroxyibuprofen in surface water) and 12,664 ng/L (caffeine in wastewater). Twelve compounds (acetaminophen, ampicillin, azithromycin, caffeine, fluoxetine, gemfibrozil, 2-hydroxyibuprofen, ibuprofen, ketoprofen, mazindol, naproxen, and salicylic acid) were detected with a 100% frequency in both surface water and wastewater samples. The observed high detection frequency of pharmaceuticals within the nonsteroidal anti-inflammatory drugs/analgesics, antibiotics, and psychiatric drug classes aligns with their high consumption. Caffeine was both the compound with the highest concentration and the most prevalent compound detected. Seasonal differences were observed, with higher concentrations detected during winter. Six of the eleven targeted metabolites and degradation products were detected in at least one sample. Risk quotient assessment revealed potential ecological risks, particularly for atorvastatin, caffeine, carbamazepine, and venlafaxine, exceeding risk thresholds for various trophic levels. The studied WWTPs showed limited removal efficiencies, with some compounds presenting higher concentrations in effluent than in influent, emphasizing the need for enhanced treatment to mitigate micropollutant risks. Full article
Show Figures

Graphical abstract

23 pages, 7994 KiB  
Article
Hydrogeochemical and Geospatial Insights into Groundwater Contamination: Fluoride and Nitrate Risks in Western Odisha, India
by Subhasmita Barad, Rakesh Ranjan Thakur, Debabrata Nandi, Dillip Kumar Bera, Pramod Chandra Sahu, Priyanka Mishra, Kshyana Prava Samal and Bojan Ðurin
Water 2025, 17(10), 1514; https://doi.org/10.3390/w17101514 - 16 May 2025
Cited by 1 | Viewed by 1060
Abstract
Fresh groundwater is essential for sustaining life and socio-economic development, particularly in regions with limited safe drinking water alternatives. However, contamination from natural and anthropogenic sources poses severe health and environmental risks. This research examines the health risks linked to groundwater quality in [...] Read more.
Fresh groundwater is essential for sustaining life and socio-economic development, particularly in regions with limited safe drinking water alternatives. However, contamination from natural and anthropogenic sources poses severe health and environmental risks. This research examines the health risks linked to groundwater quality in the agroeconomic region of Boudh district, Odisha, India, where residents depend on untreated groundwater due to limited access to alternative sources. A total of 82 groundwater samples were analyzed during pre- and post-monsoon of the year 2023 using multivariate statistical methods (PCA, correlation analysis) to determine pollutant sources and regulatory factors, while XRD was employed to characterize fluoride-bearing minerals in associated rock samples. Fluoride concentrations range from 0.14 to 4.6 mg/L, with 49% of samples exceeding the WHO limit of 1.5 mg/L, which raises significant health concerns. Nitrate levels fluctuate between 1.57 and 203.51 mg/L, primarily due to agricultural fertilizers. A health risk assessment (hazard quotient and hazard index) indicates that 63% of samples fall into the low-risk category, 21% into moderate-risk, and 16% into high-risk. Children (HI = 29.23) and infants (HI = 19.51) are at the greatest health risk, surpassing that of adult males (HI = 12.2) and females (HI = 11.2). Findings provide scientific evidence for policymakers to implement groundwater protection and remediation strategies. Immediate interventions, including water quality monitoring, defluoridation measures, and community awareness programs, are essential for ensuring long-term water security and public health. Full article
Show Figures

Figure 1

11 pages, 982 KiB  
Article
Bioaccumulation of Heavy Metals in Water and Organs of Stone moroko (Pseudoraspora parva) in Freshwater in Turkey
by Semra Küçük
Processes 2025, 13(4), 1251; https://doi.org/10.3390/pr13041251 - 21 Apr 2025
Viewed by 670
Abstract
Anthropogenic activities have been causing pollution in the environment and aquaculture activities via the contamination of heavy metals from industrial developments. As a result, this environmental pollution may cause health problems in humans. In this study, water (n = 3) and fish [...] Read more.
Anthropogenic activities have been causing pollution in the environment and aquaculture activities via the contamination of heavy metals from industrial developments. As a result, this environmental pollution may cause health problems in humans. In this study, water (n = 3) and fish (n = 10–15) samples were evaluated from Topçam Barrage to assess the heavy metal concentrations in the water and tissue samples of fish, Pseudoraspora parva (muscle, liver, kidney, spleen, gonads, and gills). All samples were measured using the ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometer) in conjunction with a standard solution (As, Cd, Cr, Cu, Zn, Ni, and Pb). The bioaccumulation factor (BCF), target hazard quotient (THQ), and hazard index (HI) were calculated for human health due to fish consumption. A significant degree of heavy metals was found, which followed the order of Zn > Cu > Pb > Ni > Cd > Cr for fish tissues. Heavy metal amounts were found to be mostly higher for Cu and Pb. It was reported that their amounts were around the limit values established by the FAO (Food and Agriculture Organisation) and WHO (World Health Organisation). Further studies are needed on the precautions how to more increase the water quality level. Full article
(This article belongs to the Special Issue Research on Water Pollution Control and Remediation Technology)
Show Figures

Figure 1

16 pages, 1977 KiB  
Article
Pesticides in Ground and Surface Water from the Rio Preto Hydrographic Basin, an Important Agricultural Area in the Midwestern Region of Brazil
by Nayara Luiz Pires, Esmeralda Pereira de Araújo, Daphne Heloisa de Freitas Muniz, Eduardo Cyrino Oliveira-Filho and Eloisa Dutra Caldas
Water 2025, 17(8), 1186; https://doi.org/10.3390/w17081186 - 15 Apr 2025
Viewed by 575
Abstract
The use of pesticides in agriculture can leave residues in the treated crops. Pesticides are also potential contaminants of ground and surface water, as reported in many countries. The development of efficient analytical methods to quantify pesticides in water samples is a challenge [...] Read more.
The use of pesticides in agriculture can leave residues in the treated crops. Pesticides are also potential contaminants of ground and surface water, as reported in many countries. The development of efficient analytical methods to quantify pesticides in water samples is a challenge due to the low levels present. The objective of this work was to develop and validate a method for pesticide analysis in water using sample lyophilization followed by UHPLC–MS/MS and to determine pesticide levels in samples from a Brazilian hydrographic basin. In total, 77 compounds were included, of which 28 were considered only qualitatively. The method was applied to analyze 142 water samples collected during the dry and rainy seasons of 2021–2022, of which 90 were surface and 52 were groundwater samples. In total, 19 compounds were detected in the samples (≥LOD), mainly atrazine (72.5%), atrazine-2-hydroxy (50%), fipronil (18.3%), and pirimiphos-methyl (15.5%). Most compounds (17) were detected during the rainy season regardless of the environmental compartment. Twenty-five samples had quantified levels of the compounds (≥LOQ), of which 80% were collected during the dry season, and 58.3% were groundwater samples (up to 1.045 µg L−1 of 2,4-D in an artesian well). The highest concentrations found in surface water were of atrazine-2-hydroxy (0.171 and 0.179 µg L−1), levels that represent a potential risk to aquatic organisms (risk quotient of 1.1). This work provides an analytical method for determining pesticides in water that can be applied to other environmental pollutants. Although the levels found in the samples complied with Brazilian legislation, constant monitoring should be conducted in the region to guarantee safe levels of the pesticide in water. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

16 pages, 871 KiB  
Article
Health Risk Assessment of Potentially Toxic Element Uptake by Lotus (Nelumbo nucifera) in Floating Lake Gardens
by Mohssen Elbagory, Farahat S. Moghanm, Ibrahim Mohamed, Sahar El-Nahrawy, Alaa El-Dein Omara, Madhumita Goala, Pankaj Kumar, Boro Mioč, Željko Andabaka and Ivan Širić
Toxics 2025, 13(4), 306; https://doi.org/10.3390/toxics13040306 - 13 Apr 2025
Viewed by 814
Abstract
The present study investigated the uptake and health risks of potentially toxic elements (PTEs) by lotus (Nelumbo nucifera) cultivated in floating lake gardens of Dal Lake, Srinagar, India. Rapid urbanization and anthropogenic activities have led to PTE contamination in the lake, [...] Read more.
The present study investigated the uptake and health risks of potentially toxic elements (PTEs) by lotus (Nelumbo nucifera) cultivated in floating lake gardens of Dal Lake, Srinagar, India. Rapid urbanization and anthropogenic activities have led to PTE contamination in the lake, raising concerns about food safety and ecological sustainability. The objectives were to evaluate the physicochemical properties of water and sediment and to quantify PTEs (Cd, Cu, Cr, Co, Fe, Mn, Ni, and Zn) accumulation in different tissues of N. nucifera with associated health risks. A systematic sampling approach was adopted across four zones of the lake, collecting water, sediment, and plant tissues (August to October 2024). The results showed significant PTE contamination, with sediment showing high concentrations of Fe (1610.51 mg/kg), Mn (31.48 mg/kg), and Cr (29.72 mg/kg). Bioaccumulation factors indicated preferential PTE accumulation in roots, with Fe exhibiting the highest uptake (95.11). Translocation factors were low for most PTEs, suggesting limited mobility to edible parts. Health risk assessment indicated that Cr posed the highest non-carcinogenic risk (HRI = 1.8000 in rhizomes). The cumulative target hazard quotient (THQ) remained below 1, suggesting no immediate risk, but long-term exposure warrants concern. The study provided valuable information on the necessity of continuous monitoring and pollution mitigation strategies to ensure the food safety of floating lake garden-derived crops. Full article
Show Figures

Figure 1

28 pages, 2397 KiB  
Article
Risk Assessment of Micropollutants for Human and Environmental Health: Alignment with the Urban Wastewater Treatment Directive in Southeastern Spain
by Lissette Díaz-Gamboa, Agustín Lahora, Sofía Martínez-López, Luis Miguel Ayuso-García and Isabel Martínez-Alcalá
Toxics 2025, 13(4), 275; https://doi.org/10.3390/toxics13040275 - 4 Apr 2025
Viewed by 914
Abstract
The reuse of reclaimed water is essential for sustainable water management in arid regions. However, despite advancements in Wastewater Treatment Plants (WWTPs), certain micropollutants may persist. To address these challenges, the recently enacted European Urban Wastewater Treatment Directive (UWWTD) has established strict standards [...] Read more.
The reuse of reclaimed water is essential for sustainable water management in arid regions. However, despite advancements in Wastewater Treatment Plants (WWTPs), certain micropollutants may persist. To address these challenges, the recently enacted European Urban Wastewater Treatment Directive (UWWTD) has established strict standards focused on monitoring twelve specific indicator compounds. In line with this, the present study aims to evaluate the concentrations and potential risks of these twelve UWWTD-designated compounds across various water sources, including surface water, groundwater, and effluents from a WWTP in the southeast of Spain. Although none of the evaluated water sources are, as expected, intended for human consumption, risks were assessed based on worst-case scenarios that could amplify their impact. The study assessed potential risks to human health across different age groups and ecosystems, focusing on key organisms such as fish, daphnia, and algae, using empirical assessment approaches. The risk assessment identified a low risk for most compounds regarding human health, except for citalopram (HRQ = 19.116) and irbesartan (HRQ = 1.104), which showed high human risk quotients (HQR > 1) in babies, particularly in reclaimed water. In terms of ecotoxicological risk, irbesartan presented the highest ecological risk quotient (ERQ = 3.500) in fish, followed by clarithromycin, with algae (ERQ = 1.500) being the most vulnerable organism. Furthermore, compounds like citalopram, venlafaxine, and benzotriazole exhibited moderate ecological risks (ERQ between 0.1 and 1) in the reclaimed water, and their risk was reduced in surface water and groundwater. Finally, this study discussed the potential impacts of elevated concentrations of these emerging compounds, emphasizing the need for rigorous wastewater monitoring to protect human health and ecosystem integrity. It also revealed notable differences in risk assessment outcomes when comparing two distinct evaluation approaches, further highlighting the complexities of accurately assessing these risks. Full article
Show Figures

Graphical abstract

Back to TopTop