Impact of Various Types of Heat Processing on the Content of Selected Trace Elements of Goose Breast Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meat Samples
2.2. Heat Processing
2.3. Chemical Analysis
2.4. Determination of Retention Factors
2.5. Statistical Analysis
- (1)
- Examination for normality of distribution with the Shapiro–Wilk Test and variation in homogeneity with Levene’s test;
- (2)
- Calculation of arithmetic means and standard errors of a mean (SEM),
- (3)
- Estimation of the significance of differences between the mean values of trace elements contents for individual heat processing (Raw, WBC, G, OCR, PF) and types of meat (with and without skin) and between treatments within particular types of meat using Tukey’s multiple comparison test (at the significance level of p ≤ 0.05 and p ≤ 0.01);
- (4)
- Two-way analysis of variance (ANOVA), according to the linear model Yij = μ + Ai + Bj + (AB)ij + eij, where Yij—feature value; μ—arithmetic mean; Ai—effect of thermal treatment; Bj—effect of meat type (without skin and with skin); (AB)ij—interaction; eij—residual error;
- (5)
- One-way analysis of variance (ANOVA) according to the linear model Yij = μ + Aj + eij, where Yij—feature value; μ—arithmetic mean; Aj—effect of heat treatment within one type of meat (without skin or with skin); eij—residual error.
3. Results and Discussion
3.1. Proximate Composition and Cooking Loss
3.2. Trace Elements Content in Goose Meat After Heat Processing
3.3. Principal Components Analysis
3.4. Trace Elements Retention in Goose Meat After Thermal Treatment
3.5. Coverage of the Nutrient Reference Values by Goose Meat in Adults
3.6. Risk Assessment Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehri, A. Trace Elements in Human Nutrition (II)—An Update. Int. J. Prev. Med. 2020, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Trace Elements in Human Nutrition and Health; World Health Organization, International Atomic Energy Agency & Food and Agriculture Organization of the United Nations: Rome, Italy, 1996; ISBN N92-4-156173-4.
- Institute of Medicine (US). Panel on Micronutrients Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press (US): Washington, DC, USA, 2001; ISBN 0-309-07279-4. [Google Scholar]
- Mikulewicz, M.; Chojnacka, K.; Kawala, B.; Gredes, T. Trace Elements in Living Systems: From Beneficial to Toxic Effects. BioMed Res. Int. 2017, 2017, 2–3. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Scientific Opinion on Dietary Reference Values for Chromium. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). EFSA J. 2014, 12, 3845. [Google Scholar] [CrossRef]
- Sahin, N.; Hayirli, A.; Orhan, C.; Tuzcu, M.; Akdemir, F.; Komorowski, J.R.; Sahin, K. Effects of the Supplemental Chromium Form on Performance and Oxidative Stress in Broilers Exposed to Heat Stress. Poult. Sci. 2017, 96, 4317–4324. [Google Scholar] [CrossRef]
- Untea, A.E.; Panaite, T.D.; Dragomir, C.; Ropota, M.; Olteanu, M.; Varzaru, I. Effect of Dietary Chromium Supplementation on Meat Nutritional Quality and Antioxidant Status from Broilers Fed with Camelina-Meal-Supplemented Diets. Animal 2019, 13, 2939–2947. [Google Scholar] [CrossRef]
- Ali, R.; Ali, S.; Azeem, T.; Umar, W.; Irfan, M.; Ali, A.; Ali, M. Effects of Chromium on Meat and Egg Production in Poultry—A Review. Sci. Lett. 2014, 2, 1–4. [Google Scholar]
- Ahmed, S.; Fatema-Tuj-Zohra; Khan, M.S.H.; Hashem, M.A. Chromium from Tannery Waste in Poultry Feed: A Potential Cradle to Transport Human Food Chain. Cogent Environ. Sci. 2017, 3, 1312767. [Google Scholar] [CrossRef]
- Sorrenti, S.; Baldini, E.; Pironi, D.; Lauro, A.; D’Orazi, V.; Tartaglia, F.; Tripodi, D.; Lori, E.; Gagliardi, F.; Praticò, M.; et al. Iodine: Its Role in Thyroid Hormone Biosynthesis and Beyond. Nutrients 2021, 13, 4469. [Google Scholar] [CrossRef]
- Nedić, O. Iodine: Physiological Importance and Food Sources. eFood 2023, 4, e63. [Google Scholar] [CrossRef]
- World Hearlth Organization. Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination, 3rd ed.; World Hearlth Organization: Geneva, Switzerland, 2007; ISBN 978-92-4-159582-7.
- Fan, L.; Meng, F.; Sun, Q.; Zhai, Y.; Liu, P. Assessment of Sustainable Elimination Criteria for Iodine Deficiency Disorders Recommended by International Organizations. Front. Nutr. 2022, 9, 852398. [Google Scholar] [CrossRef]
- Goluch, Z.; Haraf, G. Goose Meat as a Source of Dietary Manganese—A Systematic Review. Animals 2023, 13, 840. [Google Scholar] [CrossRef]
- EFSA Scientific Committee. Risks to Human and Animal Health from the Presence of Bromide in Food and Feed. EFSA J. 2025, 23, e9121. [Google Scholar] [CrossRef]
- Sangster, B.; Krajnc, E.I.; Loeber, J.G.; Rauws, A.G.; Van Logten, M.J. Study of Sodium Bromide in Human Volunteers, with Special Emphasis on the Endocrine System. Hum. Exp. Toxicol. 1982, 1, 393–402. [Google Scholar] [CrossRef]
- Pavelka, S. Metabolism of Bromide and Its Interference with the Metabolism of Iodine. Physiol. Res. 2004, 53, S81–S90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Yang, X.; Wang, T.; Ji, X.; Wu, X. Advances in Organic Fluorescent Probes for Bromide Ions, Hypobromous Acid and Related Eosinophil Peroxidase-A Review. Anal. Chim. Acta 2023, 1244, 340626. [Google Scholar] [CrossRef] [PubMed]
- Kefeni, K.K.; Okonkwo, J.O.; Olukunle, O.I.; Botha, B.M. Brominated Flame Retardants: Sources, Distribution, Exposure Pathways, and Toxicity. Environ. Rev. 2011, 19, 238–253. [Google Scholar] [CrossRef]
- Orobchenko, O.; Koreneva, Y.; Paliy, A.; Rodionova, K.; Korenev, M.; Kravchenko, N.; Pavlichenko, O.; Tkachuk, S.; Nechyporenko, O.; Nazarenko, S. Bromine in Chicken Eggs, Feed, and Water from Different Regions of Ukraine. Potravin. Slovak J. Food Sci. 2022, 16, 42–54. [Google Scholar] [CrossRef]
- Buzała, M.; Adamski, M.; Janicki, B. Characteristics of Performance Traits and the Quality of Meat and Fat in Polish Oat Geese. Worlds Poult. Sci. J. 2014, 70, 531–542. [Google Scholar] [CrossRef]
- Çimen, H.; Kızılkaya, P.; Sayın, B.; Alp Baltakesmez, D.; Kırmacı, F. Goose Meat: Salting/Drying Effect on Nutritional Value, Physicochemical and Sensory Properties. Gıda Yem Bilim. Teknol. Derg. 2025, 33, 40–50. [Google Scholar] [CrossRef]
- Dumlu, B. The Global Goose Meat Production Quantity Forecast for the 2023–2027 Years. Selcuk J. Agric. Food Sci. 2024, 38, 326–341. [Google Scholar] [CrossRef]
- Gąsior, R.; Wojtycza, K.; Majcher, M.A.; Bielińska, H.; Odrzywolska, A.; Bączkowicz, M.; Migdał, W. Key Aroma Compounds in Roasted White Kołuda Goose. J. Agric. Food Chem. 2021, 69, 5986–5996. [Google Scholar] [CrossRef] [PubMed]
- National Support Centre for Agriculture. Polish Goose Market; National Support Centre for Agriculture: Warsaw, Poland, 2023.
- Belinsky, D.L.; Kuhnlein, H.V. Macronutrient, Mineral, and Fatty Acid Composition of Canada Goose (Branta Canadensis): An Important Traditional Food Resource of the Eastern James Bay Cree of Quebec. J. Food Compos. Anal. 2000, 13, 101–115. [Google Scholar] [CrossRef]
- Geldenhuys, G.; Hoffman, L.C.; Muller, N. Aspects of the Nutritional Value of Cooked Egyptian Goose (Alopochen Aegyptiacus) Meat Compared with Other Well-Known Fowl Species. Poult. Sci. 2013, 92, 3050–3059. [Google Scholar] [CrossRef]
- Oz, F.; Celik, T. Proximate Composition, Color and Nutritional Profile of Raw and Cooked Goose Meat with Different Methods. J. Food Process. Preserv. 2015, 39, 2442–2454. [Google Scholar] [CrossRef]
- Goluch, Z.; Król, B.; Haraf, G.; Wołoszyn, J.; Okruszek, A.; Wereńska, M. Impact of Various Types of Heat Processing on the Energy and Nutritional Values of Goose Breast Meat. Poult. Sci. 2021, 100, 101473. [Google Scholar] [CrossRef]
- Goluch, Z.; Bąkowska, M.; Haraf, G.; Pilarczyk, B. Selenium Content of Goose Breast Meat Depending on the Type of Heat Processing. Appl. Sci. 2024, 14, 4693. [Google Scholar] [CrossRef]
- Nowicka, K.; Przybylski, W. The Genetic Background of Slaughter Value and Quality of Goose Meat—A Review. Anim. Sci. Pap. Rep. 2018, 36, 245–262. [Google Scholar]
- Wojciechowski, J. Hodowla i Chów Gęsi Białych Kołudzkich w Realiach XXI Wieku. In National Research Institute of Animal Production; Koluda Wielka & KPODR: Minikowo, Poland, 2016; pp. 1–20. [Google Scholar]
- Minister of Agriculture and Rural Development. Regulation of the Minister of Agriculture and Rural Development of 15 July 2004 on Veterinary Requirements for the Production of Poultry Meat. J. Laws 2004, item 1636. [Google Scholar]
- Bognár, A.; Piekarski, J. Guidelines for Recipe Information and Calculation of Nutrient Composition of Prepared Foods (Dishes). J. Food Compos. Anal. 2000, 13, 391–410. [Google Scholar] [CrossRef]
- Hassoun, A.; Aït-Kaddour, A.; Sahar, A.; Cozzolino, D. Monitoring Thermal Treatments Applied to Meat Using Traditional Methods and Spectroscopic Techniques: A Review of Advances over the Last Decade. Food Bioprocess Technol. 2021, 14, 195–208. [Google Scholar] [CrossRef]
- Thippareddi, H.; Sanchez, M. Thermal Processing of Meat Products. In Thermal Food Processing. New Technologies and Quality Issues; Sun, D.W., Ed.; Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2006; pp. 155–196. ISBN 1-57444-628-2. [Google Scholar]
- Menezes, E.A.; Oliveira, A.F.; França, C.J.; Souza, G.B.; Nogueira, A.R.A. Bioaccessibility of Ca, Cu, Fe, Mg, Zn, and Crude Protein in Beef, Pork and Chicken after Thermal Processing. Food Chem. 2018, 240, 75–83. [Google Scholar] [CrossRef]
- Bognár, A. Comparative Study of Frying to Other Cooking Techniques Influence on the Nutritive Value. Grasas Aceites 1998, 49, 250–260. [Google Scholar] [CrossRef]
- Teixeira, A.; Rodrigues, S. Consumer Perceptions towards Healthier Meat Products. Curr. Opin. Food Sci. 2021, 38, 147–154. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific Committee on Food. Scientific Panel on Dietetic Products Nutrition and Allergies. In Tolerable Upper Intake Levels for Vitamins and Minerals; European Food Safety Authority: Parma, Italy, 2006; ISBN 9291990140. [Google Scholar]
- Iwegbue, C.M.A.; Nwajei, G.E.; Iyoha, E.H. Heavy Metal Residues of Chicken Meat and Gizzard and Turkey Meat Consumed in Southern Nigeria. Bulg. J. Vet. Med. 2008, 11, 275–280. [Google Scholar]
- Nawrocka, A.; Szkoda, J. Determination of Chromium in Biological Material by Electrothermal Atomic Absorption Spectrometry Method. Bull. Vet. Inst. Pulawy 2012, 56, 585–589. [Google Scholar] [CrossRef]
- Bratakos, M.S.; Lazos, E.S.; Bratakos, S.M. Chromium Content of Selected Greek Foods. Sci. Total Environ. 2002, 290, 47–58. [Google Scholar] [CrossRef]
- Szymandera-Buszka, K.; Waszkowiak, K. Iodine Retention in Ground Pork Burgers Fried in Fat Free Conditions. Acta Sci. Pol. Technol. Aliment. 2004, 3, 157–162. [Google Scholar]
- Winger, R.J.; König, J.; House, D.A. Technological Issues Associated with Iodine Fortification of Foods. Trends Food Sci. Technol. 2008, 19, 94–101. [Google Scholar] [CrossRef]
- Meinhardt, A.K.; Müller, A.; Lohmayer, R.; Dederer, I.; Manthey-Karl, M.; Münch, S.; Brüggemann, D.; Fritsche, J.; Greiner, R. Influence of Processing and Storage on the Iodine Content of Meat and Fish Products Using Iodized Salt. Food Chem. 2022, 389, 133092. [Google Scholar] [CrossRef]
- Khramova, V.N.; Korolyov, A.V.; Khramova, Y.I.; Korotkova, A.A.; Kartushina, Y.N. Development of Natural Semi-Finished Poultry Meat Products Enriched with Iodine. IOP Conf. Ser. Earth Environ. Sci. 2021, 848, 012032. [Google Scholar] [CrossRef]
- Herzig, I.; Trávniček, J.; Kursa, V.; Kroupová, J.; Řezníček, I. Content of Iodine in Broiler Meat. Acta Vet. Brno 2007, 76, 137–141. [Google Scholar] [CrossRef]
- Souci, S.W.; Scherz, H.; Fachmann, W.; Kraut, H.; Senser, F. Food Composition and Nutrition Tables, 6th ed.; Medpharm Scientific Publications: Centurion, Gauteng, 2000; ISBN 9783887630768. [Google Scholar]
- Food Composition Database for Epidemiological Studies in Italy. Available online: https://bda.ieo.it/?page_id=690&lang=en (accessed on 22 April 2025).
- The Danish Food Composition Database Version 5.3. Available online: https://frida.fooddata.dk/data?lang=en (accessed on 22 April 2025).
- Kunachowicz, H.; Przygoda, B.; Nadolna, I.; Iwanow, K. Tables of Composition and Nutritional Value of Food; PZWL: Warszawa, Poland, 2020; ISBN 9788320062588. [Google Scholar]
- Łoś-Kuczera, M.; Piekarska, J. Composition and Nutritional Value of Food Products. Part II-VII; Państwowy Zakład Wydawnictw Lekarskich: Warsaw, Poland, 1988; ISBN 83-200-1110-8. [Google Scholar]
- Röttger, A.S.; Halle, I.; Wagner, H.; Breves, G.; Flachowsky, G. The Effect of Various Iodine Supplementations and Two Different Iodine Sources on Performance and Iodine Concentrations in Different Tissues of Broilers. Br. Poult. Sci. 2011, 52, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Behroozlak, M.; Daneshyar, M.; Farhomand, P. The Effects of Dietary Iodine and Its Consumption Duration on Performance, Carcass Characteristics, Meat Iodine, Thyroid Hormones and Some Blood Indices in Broiler Chickens. J. Anim. Physiol. Anim. Nutr. 2020, 104, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Krzepiłko, A.; Prazak, R.; Skwaryło-Bednarz, B.; Molas, J. Agronomic Biofortification as a Means of Enriching Plant Foodstuffs with Iodine. Acta Agrobot. 2019, 72, 1–9. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Ligas, B.; Mikula, K.; Witek-Krowiak, A.; Moustakas, K.; Chojnacka, K. Biofortification of Edible Plants with Selenium and Iodine—A Systematic Literature Review. Sci. Total Environ. 2021, 754, 141983. [Google Scholar] [CrossRef]
- ANSES-CIQUAL French Food Composition Table Version 2020. Available online: https://ciqual.anses.fr/ (accessed on 22 April 2025).
- Horak, K.; Chipman, R.; Murphy, L.; Johnston, J. Environmental Contaminant Concentrations in Canada Goose (Branta canadensis) Muscle: Probabilistic Risk Assessment for Human Consumers. J. Food Prot. 2014, 77, 1634–1641. [Google Scholar] [CrossRef] [PubMed]
- Geldenhuys, G.; Hoffman, L.C.; Muller, N. The Fatty Acid, Amino Acid, and Mineral Composition of Egyptian Goose Meat as Affected by Season, Gender, and Portion. Poult. Sci. 2015, 94, 1075–1087. [Google Scholar] [CrossRef]
- McCance, W. McCance Widdowsons Composition of Foods Integrated Dataset 2021. Available online: https://www.gov.uk/government/publications/composition-of-foods-integrated-dataset-cofid (accessed on 22 April 2025).
- Silva, A.M.; Heymsfield, S.B.; Gallagher, D.; Albu, J.; Pi-Sunyer, X.F.; Pierson, R.N.; Wang, J.; Heshka, S.; Sardinha, L.B.; Wang, Z.M. Evaluation of Between-Methods Agreement of Extracellular Water Measurements in Adults and Children. Am. J. Clin. Nutr. 2008, 88, 315–323. [Google Scholar] [CrossRef]
- Essary, E. Moisture, Fat, Protein and Mineral Content of Mechanically Deboned Poultry Meat. J. Food Sci. 1979, 44, 1070–1073. [Google Scholar] [CrossRef]
- Rose, M.; Miller, P.; Baxter, M.; Appleton, G.; Crews, H.; Croasdale, M. Bromine and Iodine in 1997 UK Total Diet Study Samples. J. Environ. Monit. 2001, 3, 361–365. [Google Scholar] [CrossRef]
- Costa, M.M.; Pestana, J.M.; Carvalho, P.; Alfaia, C.M.; Martins, C.F.; Carvalho, D.; Mourato, M.; Gueifão, S.; Delgado, I.; Coelho, I.; et al. Effect on Broiler Production Performance and Meat Quality of Feeding Ulva Lactuca Supplemented with Carbohydrases. Animals 2022, 12, 1720. [Google Scholar] [CrossRef]
- Alfaifi, B.M.; Al-Ghamdi, S.; Othman, M.B.; Hobani, A.I.; Suliman, G.M. Advanced Red Meat Cooking Technologies and Their Effect on Engineering and Quality Properties: A Review. Foods 2023, 12, 2564. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.; Marais, J.; Strydom, P.E.; Hoffman, L.C. Effects of Increasing Internal End-Point Temperatures on Physicochemical and Sensory Properties of Meat: A Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2843–2872. [Google Scholar] [CrossRef] [PubMed]
- Pathare, P.B.; Roskilly, A.P. Quality and Energy Evaluation in Meat Cooking. Food Eng. Rev. 2016, 8, 435–447. [Google Scholar] [CrossRef]
- Ángel-Rendón, S.V.; Filomena-Ambrosio, A.; Hernández-Carrión, M.; Llorca, E.; Hernando, I.; Quiles, A.; Sotelo-Díaz, I. Pork Meat Prepared by Different Cooking Methods. A Microstructural, Sensorial and Physicochemical Approach. Meat Sci. 2020, 163, 108089. [Google Scholar] [CrossRef]
- Macharáčková, B.; Bogdanovičová, K.; Ježek, F.; Bednář, J.; Haruštiaková, D.; Kameník, J. Cooking Loss in Retail Beef Cuts: The Effect of Muscle Type, Sex, Ageing, PH, Salt and Cooking Method. Meat Sci. 2021, 171, 108270. [Google Scholar] [CrossRef]
- Purchas, R.W.; Wilkinson, B.H.P.; Carruthers, F.; Jackson, F. A Comparison of the Nutrient Content of Uncooked and Cooked Lean from New Zealand Beef and Lamb. J. Food Compos. Anal. 2014, 35, 75–82. [Google Scholar] [CrossRef]
- Yong, W.; Amin, L.; Dongpo, C. Status and Prospects of Nutritional Cooking. Food Qual. Saf. 2019, 3, 137–143. [Google Scholar] [CrossRef]
- Referenzwerte Für Die Nährstoffzufuhr. Neustadt an Der Weinstraße, Duitsland. Available online: https://www.dge.de/wissenschaft/referenzwerte/kupfer-mangan-chrom-molybdaen/ (accessed on 22 April 2025).
- European Food Safety Authority (EFSA). Overview on Tolerable Upper Intake Levels as Derived by the Scientific Committee on Food (SCF) and the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Eur. Food Saf. Auth. 2024, 10, 1–8. [Google Scholar]
- Saraiva, M.; Chekri, R.; Guérin, T.; Sloth, J.J.; Jitaru, P. Chromium Speciation Analysis in Raw and Cooked Milk and Meat Samples by Species-Specific Isotope Dilution and HPLC-ICP-MS. Food Addit. Contam. Part A 2021, 38, 304–314. [Google Scholar] [CrossRef]
- Genchi, G.; Lauria, G.; Catalano, A.; Carocci, A.; Sinicropi, M.S. The Double Face of Metals: The Intriguing Case of Chromium. Appl. Sci. 2021, 11, 638. [Google Scholar] [CrossRef]
- WHO Regional Office for Europe; Iodine Global Network. Prevention and Control of Iodine Deficiency in the WHO European Region: Adapting to Changes in Diet and Lifestyle; World Health Organization, Ed.; WHO Regional Office for Europe: Copenhagen, Denmark, 2024; ISBN 9789289061193.
- Ockerman, H.W.; Basu, L. Hides and Skins, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 1, ISBN 9780323851251. [Google Scholar]
- da Silva Araújo, Í.B.; Pereira Da Silva, F.A.; Moreira Fernandes Santos, M.; do Nascimento Alves, R. Chapter 25—Recovery and Application of Bioactive Proteins from Poultry by-Products. In Valorization of Agri-Food Wastes and By-Products; Bhat, R., Ed.; Academic Press: Oxford, UK, 2021; pp. 497–514. ISBN 978-0-12-824044-1. [Google Scholar]
- Zaichick, V. Determination the Content of Bromine, Calcium, Chlorine, Iodine, Potassium, Magnesium, Manganese, and Sodium in the Nodular Goiter of Human Thyroid Gland Using Neutron Activation Analysis. Aditum J. Clin. Biomed. Res. 2021, 3, 1–8. [Google Scholar]
- European Parliament Regulation (EU). No 1169/2011 of the European Parliament and of the Counsil of 25 October 2011 on the Provision of Food Information to Consumers. Off. J. Eur. Union 2011, 304, 18–41. [Google Scholar]
- Mariussen, E.; Alexander, J.; Bukhvalova, B.A.; Dahl, L.; Olsen, A.-K.H.; Kvalem, H.E.; Schlabach, M.; Amlund, H.; Hannisdal, R.; Ruus, A.; et al. Risk Assessment of Grilled and Barbecued Food Scientific Opinion of the Panel on Contaminants of the Norwegian Scientific Committee for Food and Environment. Food Risk Assess Eur. 2024, 2, 0024E. [Google Scholar]
- Zheng, N.; Wang, Q.; Zhang, X.; Zheng, D.; Zhang, Z.; Zhang, S. Population Health Risk Due to Dietary Intake of Heavy Metals in the Industrial Area of Huludao City, China. Sci. Total Environ. 2007, 387, 96–104. [Google Scholar] [CrossRef]
- CASRN 16065-83-1; US EPA-IRIS Chromium (III), Insoluble Salts. Integrated Risk Information System (IRIS), U.S. Chemical Assessment Summary National Center for Environmental Assessment: Washington, DC, USA, 1998; pp. 1–16.
- CASRN 7439-96-5; US EPA-IRIS Manganese. Integrated Risk Information System (IRIS): Washington, DC, USA, 1995; pp. 1–46.
Element | LOD [mg/kg] | LOQ [mg/kg] | Precision [%] | Recovery [%] | Uncertainty [%] |
---|---|---|---|---|---|
Cr | 0.003 | 0.008 | 3.15 | 98 | 7 |
I | 0.005 | 0.012 | 7.80 | 96 | 10 |
Mn | 0.002 | 0.005 | 2.10 | 101 | 5 |
Br | 0.006 | 0.014 | 6.50 | 97 | 11 |
Item | Meat | Raw | Heat Processing | Total | SEM | Level of Significance | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Water Bath Cooking (WBC) | Grilled (G) | Oven Convecion Roasting (OCR) | Pan Fried (PF) | ||||||||
Meat (M) | Heat Processing (HP) | M × HP | |||||||||
Cr | without skin with skin Total SEM | 0.096 B 0.179 Ab 0.138 BC 0.011 | 0.094 B 0.177 Ab 0.135 BC 0.011 | 0.144 A 0.114 Bc 0.129 C 0.004 | 0.132 A 0.217 Aa 0.175 A 0.012 | 0.133 A 0.174 Ab 0.154 AB 0.006 | 0.120 Y 0.172 X 0.146 | 0.004 0.006 0.005 | 0.000 | 0.000 | 0.000 |
I | without skin with skin Total SEM | 0.029 A 0.011 Aa 0.020 Aa 0.003 | 0.010 B 0.009 A 0.009 Bb 0.001 | 0.008 B 0.007 ABb 0.008 BCbc 0.0004 | 0.005 B 0.004 Bc 0.004 Ccd 0.0002 | 0.003 B 0.004 Bc 0.003 Cd 0.0001 | 0.011 X 0.007 Y 0.009 | 0.002 0.001 0.001 | 0.000 | 0.000 | 0.000 |
Mn | without skin with skin Total SEM | 0.149 0.139 a 0.144 0.013 | 0.144 0.075 Bb 0.110 Bb 0.010 | 0.107 b 0.191 Aa 0.149 a 0.016 | 0.170 a 0.147 Aa 0.159 Aa 0.008 | 0.144 0.142 Aa 0.143 0.006 | 0.143 0.139 0.141 | 0.007 0.008 0.050 | 0.484 | 0.002 | 0.000 |
Br | without skin with skin Total SEM | 0.415 Bc 0.463 Bbc 0.439 B 0.025 | 0.438 Bbc 0.359 Bc 0.399 B 0.025 | 0.675 Aa 0.575 0.625 A 0.028 | 0.497 Bb 0.716 Aa 0.606 A 0.040 | 0.624 Aa 0.589 0.606 A 0.025 | 0.530 0.541 0.535 | 0.017 0.028 0.016 | 0.957 | 0.000 | 0.000 |
Items | PC1 1 | PC2 1 | PC3 1 | |
---|---|---|---|---|
Trace elements contents: | Cr | 0.83 | −0.21 | 0.02 |
Br | 0.30 | 0.72 | 0.21 | |
I | −0.73 | −0.38 | 0.41 | |
Mn | −0.15 | 0.35 | 0.53 | |
Type of meat (M): | M {without skin} | −0.79 | 0.44 | −0.30 |
M {with skin} | 0.79 | −0.44 | 0.30 | |
Kind of heat processing (HP): | HP {raw} | −0.40 | −0.52 | 0.60 |
HP {WBC} | −0.12 | −0.50 | −0.71 | |
HP {G} | −0.02 | 0.37 | 0.21 | |
HP {OCR} | 0.31 | 0.31 | 0.08 | |
HP {PF} | 0.23 | 0.34 | −0.18 |
Item | Meat | Raw | Heat Processing | Total | SEM | Level of Significance | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Water Bath Cooking (WBC) | Grilled (G) | Oven Convection Roasting (OCR) | Pan Fried (PF) | ||||||||
Meat (M) | Heat Processing (HP) | M × HP | |||||||||
Cr | without skin with skin Total SEM | - - - - | 69.3 73.8 Aa 71.5 4.76 | 96.9 32.5 Cc 64.7 b 8.92 | 90.2 62.7 a 76.5 a 5.90 | 95.5 48.9 Bb 72.2 6.83 | 88.0 X 54.5 Y 71.2 | 4.52 3.09 3.37 | 0.000 | 0.014 | 0.000 |
I | without skin with skin Total SEM | - - - - | 26.4 Aa 73.6 Aa 50.0 A 11.2 | 19.8 Aab 37.4 a 28.6 A 3.56 | 10.7 Bbc 18.5 Bb 14.6 B 1.28 | 8.5 Bc 18.3 Bb 13.4 B 1.89 | 16.4 Y 37.0 X 26.7 | 2.07 6.00 3.42 | 0.000 | 0.000 | 0.659 |
Mn | without skin with skin Total SEM | - - - - | 76.2 46.0 61.3 8.72 | 54.7 87.3 71.0 11.9 | 90.5 62.4 76.4 11.4 | 82.8 57.6 70.2 10.5 | 76.2 63.3 69.7 | 8.54 6.08 2.26 | 0.401 | 0.756 | 0.172 |
Br | without skin with skin Total SEM | - - - - | 67.2 B 67.8 67.5 7.30 | 97.2 A 64.8 81.0 4.89 | 72.9 B 81.8 77.4 3.74 | 98.1 A 73.2 85.6 6.67 | 83.9 X 71.9 Y 77.9 | 2.99 4.95 2.96 | 0.007 | 0.099 | 0.073 |
Item | NRVs 1/ *TDI 2 (mg) | Meat | Raw | Heat Processing | Total | SEM | Level of Significance | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Water Bath Cooking (WBC) | Grilled (G) | Oven Convection Roasting (OCR) | Pan Fried (PF) | |||||||||
Meat (M) | Heat Processing (HP) | M × HP | ||||||||||
Cr | 0.04 | without skin with skin Total SEM | 240.5 B 447.2 A 343.9 BCb 28.8 | 234.3 B 441.7 Ab 228.0 Cb 28.6 | 359.7 A 286.1 Bc 322.9 BCb 10.6 | 330.6 A 542.5 Aa 436.5 Aa 30.9 | 332.5 A 436.1 Ab 384.3 ABa 15.9 | 299.5 Y 740.7 X 365.1 | 10.0 15.5 11.5 | 0.001 | 0.001 | 0.001 |
I | 0.15 | without skin with skin Total SEM | 19.7 A 7.32 A 13.5 A 1.99 | 6.69 B 5.76 A 6.22 B 0.52 | 5.37 B 4.94 A 5.16 B 0.30 | 3.21 C 2.43 B 2.82 C 0.13 | 2.21 C 2.36 B 2.29 C 0.09 | 7.34 X 4.56 Y 5.99 | 1.08 0.38 0.59 | 0.001 | 0.001 | 0.001 |
Mn | 2 | without skin with skin Total SEM | 74.7 69.4 A 72.0 6.96 | 72.1 37.7 B 54.9 Bb 4.92 | 53.4 b 95.5 A 74.4 a 7.95 | 85.2 a 73.4 A 79.3 Aa 4.00 | 71.8 71.1 A 71.5 3.21 | 71.4 69.4 70.4 | 3.26 4.11 2.61 | 0.402 | 0.001 | 0.001 |
Br * | 0.4 | without skin with skin Total SEM | 1.48 C 1.65 Abc 1.57 B 0.09 | 1.57 BC 1.29 Bc 1.43 B 0.09 | 2.41 A 2.05 Aab 2.23A 0.10 | 1.77 B 2.56 Aa 2.17 A 0.14 | 2.23 A 2.10 Aab 2.16 A 0.09 | 1.89 1.93 1.91 | 0.06 0.10 0.06 | 0.648 | 0.001 | 0.001 |
Element | Concentration in Meat [mg/kg] | EDI [mg/kg BW/day] | RfD/ARfD [mg/kg BW/day] | HQ |
---|---|---|---|---|
Cr | 1.46 | 0.0000171 | 0.003 | 0.0057 |
Mn | 1.41 | 0.0000165 | 0.1 | 0.00017 |
Br | 5.35 | 0.0000627 | 0.4 | 0.00016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goluch, Z.; Czernecki, T.; Haraf, G.; Okruszek, A.; Wereńska, M. Impact of Various Types of Heat Processing on the Content of Selected Trace Elements of Goose Breast Meat. Appl. Sci. 2025, 15, 6795. https://doi.org/10.3390/app15126795
Goluch Z, Czernecki T, Haraf G, Okruszek A, Wereńska M. Impact of Various Types of Heat Processing on the Content of Selected Trace Elements of Goose Breast Meat. Applied Sciences. 2025; 15(12):6795. https://doi.org/10.3390/app15126795
Chicago/Turabian StyleGoluch, Zuzanna, Tomasz Czernecki, Gabriela Haraf, Andrzej Okruszek, and Monika Wereńska. 2025. "Impact of Various Types of Heat Processing on the Content of Selected Trace Elements of Goose Breast Meat" Applied Sciences 15, no. 12: 6795. https://doi.org/10.3390/app15126795
APA StyleGoluch, Z., Czernecki, T., Haraf, G., Okruszek, A., & Wereńska, M. (2025). Impact of Various Types of Heat Processing on the Content of Selected Trace Elements of Goose Breast Meat. Applied Sciences, 15(12), 6795. https://doi.org/10.3390/app15126795