Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (135)

Search Parameters:
Keywords = water droplet evaporation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10314 KiB  
Article
Multispectral and Thermal Imaging for Assessing Tequila Vinasse Evaporation: Unmanned Aerial Vehicles and Satellite-Based Observations
by Jesús Gabriel Rangel-Peraza, Sergio Alberto Monjardin-Armenta, Osiris Chávez-Martínez and José de Anda
Processes 2025, 13(7), 2281; https://doi.org/10.3390/pr13072281 - 17 Jul 2025
Viewed by 210
Abstract
This work aims to assess the droplets produced by a novel evaporation process, proposed as an alternative for managing tequila vinasses, using a spectral camera with three spectral bands and a thermal camera mounted on an unmanned aerial vehicle (UAV). High-resolution satellite images [...] Read more.
This work aims to assess the droplets produced by a novel evaporation process, proposed as an alternative for managing tequila vinasses, using a spectral camera with three spectral bands and a thermal camera mounted on an unmanned aerial vehicle (UAV). High-resolution satellite images with seven spectral bands complemented this characterization. The spectral characterization was conducted by comparing three experimental conditions: the background of the study area without droplets, the droplets generated from purified water, and the droplets produced from tequila vinasses. Two monitoring campaigns, conducted in November 2024 and January 2025, revealed that the tequila vinasse droplets exhibited a maximum influence radius of 16 m, primarily regulated by wind speed conditions (6–16 km/h). Thermal analysis identified the droplet plume as a zone with a lower temperature, creating a thermal contrast of up to 6.6 °C against the average background temperature of 36.6 °C. No significant difference was observed in the influence radius between the droplets generated from vinasse and those from potable water. Spectral analysis of the UAV and satellite images showed significant (p < 0.05) differences in reflectance when the droplets were present (e.g., the coastal blue band increased from an average of 14.43 to 95.59 when vinasse droplets were present). This suggests that the presence of chemical compounds altered light absorption and reflection. However, the instrument’s sensitivity limited the detection of organic compounds at concentrations below its detection limit. The monitoring data presented in this manuscript is crucial for developing strategies to mitigate the potential environmental impacts of the droplets emitted by this novel process. Full article
Show Figures

Figure 1

13 pages, 543 KiB  
Article
Overcoming Sperm Cell Survival Challenges Cryopreserved in Nanoliter Volumes
by Bat-Sheva Galmidi, Raoul Orvieto, Naomi Zurgil, Mordechai Deutsch and Dror Fixler
Int. J. Mol. Sci. 2025, 26(13), 6343; https://doi.org/10.3390/ijms26136343 - 30 Jun 2025
Viewed by 379
Abstract
The cryopreservation of limited sperm samples, especially those retrieved from patients, poses significant challenges due to the small number of viable cells available for freezing. Traditional microliter cryopreservation methods are fraught with difficulties, as thawed sperm cells become nearly impossible to locate under [...] Read more.
The cryopreservation of limited sperm samples, especially those retrieved from patients, poses significant challenges due to the small number of viable cells available for freezing. Traditional microliter cryopreservation methods are fraught with difficulties, as thawed sperm cells become nearly impossible to locate under a microscope due to their mobility and the multiple focal planes presented by larger drops. This search time is critical, as sperm cells enter a state of decline post thaw. Conversely, when sperm cells are cryopreserved in nanoliter volumes, they can be easily discovered but do not survive the freezing and thawing processes entirely. This phenomenon is attributed to the diffusion of water molecules from the droplet into the surrounding oil, which, while designed to limit evaporation, inadvertently increases solute concentrations in the aqueous environment, leading to cellular desiccation. This article elucidates the mechanisms underlying this lethal diffusion effect and presents a novel approach for freezing in nanoliter volumes, which has demonstrated significantly improved survival rates through carefully optimized procedures in clinical trials. Our findings highlight the importance of adapting cryopreservation techniques to enhance the viability of individual sperm cells, ultimately facilitating better outcomes in assisted reproductive technologies. This study provides the first quantification of nanoscale water diffusion dynamics during cryopreservation, establishing a predictive model that explains the catastrophic loss of sperm viability and identifying the critical role of water diffusion as a major impediment for limited samples. The novelty of our results lies in both elucidating this specific mechanism of cell death and introducing a novel approach: utilizing water-saturated oil as a protective layer. This method effectively mitigates the osmotic stress caused by water loss, demonstrating remarkably improved cell survival. This work not only advances the scientific understanding of cryopreservation at the nanoscale but also offers a practical, impactful solution poised to revolutionize fertility treatments for patients with low sperm counts and holds promise for broader applications in biological cryopreservation. Full article
(This article belongs to the Special Issue Nanoparticles in Nanobiotechnology and Nanomedicine: 2nd Edition)
Show Figures

Graphical abstract

20 pages, 2709 KiB  
Article
Study on the Characteristics of High-Temperature and High-Pressure Spray Flash Evaporation for Zero-Liquid Discharge of Desulfurization Wastewater
by Lanshui Zhang and Zhong Liu
Energies 2025, 18(12), 3180; https://doi.org/10.3390/en18123180 - 17 Jun 2025
Viewed by 312
Abstract
Zero-liquid discharge (ZLD) of desulfurization wastewater from coal-fired power plants is a critical challenge in the thermal power industry. Flash evaporation technology provides an efficient method for wastewater concentration and the recovery of high-quality freshwater resources. In this study, numerical simulations of the [...] Read more.
Zero-liquid discharge (ZLD) of desulfurization wastewater from coal-fired power plants is a critical challenge in the thermal power industry. Flash evaporation technology provides an efficient method for wastewater concentration and the recovery of high-quality freshwater resources. In this study, numerical simulations of the high-temperature and high-pressure spray flash evaporation process within a flash tank were conducted using the Discrete Phase Model (DPM) and a self-developed heat and mass transfer model for superheated droplets under depressurization conditions. The effects of feedwater temperature, pressure, nozzle spray angle, and mass flow rate on spray flash evaporation characteristics were systematically analyzed. Key findings reveal that (1) feedwater temperature is the dominant factor, with the vaporization rate significantly increasing from 19.78% to 55.88% as temperature rises from 240 °C to 360 °C; (2) higher pressure reduces equilibrium time (flash evaporation is complete within 6 ms) but shows negligible impact on final vaporization efficiency (stabilized at 33.93%); (3) increasing the spray angle provides limited improvement to water recovery efficiency (<1%); (4) an optimal mass flow rate exists (0.2 t/h), achieving a peak vaporization rate of 42.6% due to balanced evaporation space utilization. This work provides valuable insights for industrial applications in desulfurization wastewater treatment. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

21 pages, 38577 KiB  
Article
A Novel Variable Volume Capillary Microgripper for Micromanipulation in Aqueous Media
by Enrique Mancha-Sánchez, Andrés J. Serrano-Balbontín, Inés Tejado and Blas M. Vinagre
Micromachines 2025, 16(6), 633; https://doi.org/10.3390/mi16060633 - 27 May 2025
Viewed by 381
Abstract
This study presents a novel capillary microgripper for manipulating micrometer-sized objects directly within aqueous environments. The system features dynamic, vision-based feedback control of a non-volatile silicone oil droplet volume, enabling precise adjustment of the capillary bridge force for the adaptable capture of varying [...] Read more.
This study presents a novel capillary microgripper for manipulating micrometer-sized objects directly within aqueous environments. The system features dynamic, vision-based feedback control of a non-volatile silicone oil droplet volume, enabling precise adjustment of the capillary bridge force for the adaptable capture of varying object sizes. This approach ensures extended working time and stable operation in water, mitigating the issues associated with evaporation common in other systems. COMSOL Multiphysics simulations analyzed capillary bridge formation. Experimental validation demonstrated successful different object shapes and sizes capture in an aqueous environment and further explored active release strategies necessary due to the non-volatile fluid, confirming the system potential for robust underwater micromanipulation. Full article
(This article belongs to the Special Issue Complex Fluid Flows in Microfluidics)
Show Figures

Figure 1

29 pages, 7104 KiB  
Article
The Importance of Humidity in the Afternoon Local-Scale Precipitation Intensity over Eastern China and Its Impacts on the Aerosol Effects
by Xinlei Tang, Qian Chen, Jianping Guo, Jing Yang, Zeyong Zou, Jinghua Chen and Yue Sun
Remote Sens. 2025, 17(5), 778; https://doi.org/10.3390/rs17050778 - 23 Feb 2025
Cited by 1 | Viewed by 651
Abstract
Thermally driven local-scale precipitation (LSP) is an important type of summer precipitation over China, but the prestorm environmental conditions remain unclear. In order to investigate the major factors controlling the LSP intensity, the meteorological parameters preceding the occurrence of light and heavy afternoon [...] Read more.
Thermally driven local-scale precipitation (LSP) is an important type of summer precipitation over China, but the prestorm environmental conditions remain unclear. In order to investigate the major factors controlling the LSP intensity, the meteorological parameters preceding the occurrence of light and heavy afternoon LSP over Eastern China during 2018–2022 are examined using rain gauge, radiosonde sounding, and satellite observations. The temperature differences between heavy and light LSP events are relatively small, but heavy LSP events exhibit larger water vapor mixing ratios (Qv) below a 5 km altitude than light LSP. With an almost identical vertical temperature distribution, an increment in Qv increases the relative humidity (RH) in the lower troposphere. Furthermore, large eddy simulations with spectral bin microphysics are performed to investigate the impacts of humidity and aerosols on the LSP intensity. Increased low-level RH leads to larger mass concentrations of rain and graupel at the expense of cloud droplets due to enhanced drop collisions and the riming of ice particles, respectively, thereby reinforcing the LSP. However, an increased aerosol concentration leads to more cloud water but reduced rain water content, resulting mainly from suppressed drop collisions. The graupel mixing ratio exhibits a non-monotonic trend with aerosols, mostly contributed by riming. As a result, the LSP intensity first increases and then decreases with an increment in the aerosol concentration in both dry and humid air. Moreover, more aerosols lead to the humidification of the surrounding air due to the enhanced evaporation of cloud droplets, particularly under lower-RH conditions. These findings provide an enhanced understanding of the effects of covariations in humidity and aerosol concentrations on the afternoon LSP intensity over Eastern China. Full article
Show Figures

Figure 1

17 pages, 3687 KiB  
Article
Ignition and Puffing Characteristics of Kerosene Droplets with Addition of Boron Particles and Water/Ethanol Under Sub-Atmospheric Pressure
by Jie Huang, Hongkun Lv, Jing Nie, Liwei Ding, Xinrui Xiong, Kang Zhang, Jiaying Chen, Zhenya Lai and Zhihua Wang
Energies 2025, 18(5), 1025; https://doi.org/10.3390/en18051025 - 20 Feb 2025
Viewed by 548
Abstract
To address the problems of the reduced evaporation rate and increased ignition time of kerosene droplets at sub-atmospheric pressures and high temperatures, boron and ethanol/water were selected as additives to be blended with RP-3 kerosene, respectively. The effects of different types of blended [...] Read more.
To address the problems of the reduced evaporation rate and increased ignition time of kerosene droplets at sub-atmospheric pressures and high temperatures, boron and ethanol/water were selected as additives to be blended with RP-3 kerosene, respectively. The effects of different types of blended fuels on the evaporation, micro-explosion, and spontaneous ignition characteristics of RP-3 kerosene droplets were tested and compared using an independently designed, high-temperature, controlled-pressure experimental droplet system. A low-pressure environment (0.4 bar) promoted the high-intensity micro-explosion of RP-3/B and RP-3/water/ethanol droplets while reducing the number of puffing events. A comparative study of RP-3/B and RP-3/ethanol/water found that ethanol/water blended fuels had a higher micro-explosion intensity (1000–10,000 vs. 0.2–15 mm/s) and shorter droplet lifetimes and self-ignition times at low pressure. The 30%water fuel (30 vol.%water in water/ethanol sub-droplet) had the shortest ignition/breakup time, with an ignition time of 0.5715 s at 0.8 bar, 26.92% shorter than RP-3’s 0.782 s. This 30%water fuel mixture can increase the release rate of combustible vapors prior to ignition by inducing puffing and micro-explosions at high temperatures. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

15 pages, 4141 KiB  
Article
The Role of Re-Entrant Microstructures in Modulating Droplet Evaporation Modes
by Hoang Huy Vu, Nam-Trung Nguyen and Navid Kashaninejad
Micromachines 2024, 15(12), 1507; https://doi.org/10.3390/mi15121507 - 18 Dec 2024
Viewed by 985
Abstract
The evaporation dynamics of sessile droplets on re-entrant microstructures are critical for applications in microfluidics, thermal management, and self-cleaning surfaces. Re-entrant structures, such as mushroom-like shapes with overhanging features, trap air beneath droplets to enhance non-wettability. The present study examines the evaporation of [...] Read more.
The evaporation dynamics of sessile droplets on re-entrant microstructures are critical for applications in microfluidics, thermal management, and self-cleaning surfaces. Re-entrant structures, such as mushroom-like shapes with overhanging features, trap air beneath droplets to enhance non-wettability. The present study examines the evaporation of a water droplet on silicon carbide (SiC) and silicon dioxide (SiO2) re-entrant structures, focusing on the effects of material composition and solid area fraction on volume reduction, contact angle, and evaporation modes. Using surface free energy (SFE) as an indicator of wettability, we find that the low SFE of SiC promotes quick depinning and contact line retraction, resulting in shorter CCL phases across different structures. For instance, the CCL phase accounts for 55–59% of the evaporation time on SiC surfaces, while on SiO2 it extends to 51–68%, reflecting a 7–23% increase in duration due to stronger pinning effects. Additionally, narrower pillar gaps, which increase the solid area fraction, further stabilize droplets by extending both CCL and constant contact angle (CCA) phases, while wider gaps enable faster depinning and evaporation. These findings illustrate how hydrophobicity (via SFE) and structural geometry (via solid area fraction) influence microscale interactions, offering insights for designing surfaces with optimized liquid management properties. Full article
Show Figures

Figure 1

13 pages, 2529 KiB  
Article
Concave Microwell Formation Induced by PDMS Water Vapor Permeability for Spheroid Generation
by Min-Cheol Lim, Tai-Yong Kim, Gyeongsik Ok, Hyun Jung Kim, Yun-Sang Choi and Young-Rok Kim
Micromachines 2024, 15(12), 1496; https://doi.org/10.3390/mi15121496 - 14 Dec 2024
Cited by 1 | Viewed by 1408
Abstract
This study introduces a novel method for the fabrication of concave microwells involving water vapor permeation through polydimethylsiloxane (PDMS). This method leverages the exceptional water vapor permeability of PDMS to enable a scalable and cost-effective fabrication process, addressing the limitations of existing techniques [...] Read more.
This study introduces a novel method for the fabrication of concave microwells involving water vapor permeation through polydimethylsiloxane (PDMS). This method leverages the exceptional water vapor permeability of PDMS to enable a scalable and cost-effective fabrication process, addressing the limitations of existing techniques such as photolithography that are resource-intensive and complex. PDMS is more permeable to water vapor than to other gas molecules, resulting in the formation of microwells. Smooth-sloped concave microwells are formed by depositing droplets of 10% ethylene glycol on a PDMS substrate followed by curing at 70 °C and evaporation of water vapor. These microwells exhibit a unique structural gradient that is highly conducive for biological applications. Concave microwells were further used as a platform to generate animal cell spheroids, demonstrating their potential for three-dimensional cell culture. Unlike conventional methods, this approach allows precise control over microwell morphology by simply adjusting droplet size and curing conditions, offering enhanced tunability and reproducibility. The formation yield of these microwells is dependent on the volume of the water droplets, demonstrating the importance of droplet size in controlling microwell morphology. This approach provides a simple and effective method for creating microwells without complex lithographic processes, making it a highly promising tool for a range of biomedical applications, including tissue engineering, cancer research, and high-throughput drug screening. Full article
Show Figures

Figure 1

23 pages, 5576 KiB  
Article
On the Numerical Investigation of Two-Phase Evaporative Spray Cooling Technology for Data Centre Applications
by Ning Gao, Syed Mughees Ali and Tim Persoons
Fluids 2024, 9(12), 284; https://doi.org/10.3390/fluids9120284 - 29 Nov 2024
Viewed by 1114
Abstract
Two-phase evaporative spray cooling technology can significantly reduce power consumption in data centre cooling applications. However, the literature lacks an established methodology for assessing the overall performance of such evaporation systems in terms of the water-energy nexus. The current study develops a Lagrangian–Eulerian [...] Read more.
Two-phase evaporative spray cooling technology can significantly reduce power consumption in data centre cooling applications. However, the literature lacks an established methodology for assessing the overall performance of such evaporation systems in terms of the water-energy nexus. The current study develops a Lagrangian–Eulerian computational fluid dynamics (CFD) modelling approach to examine the functionality of these two-phase evaporative spray cooling systems. To replicate a modular system, a hollow spray cone nozzle with Rosin–Rammler droplet size distribution is simulated in a turbulent convective natural-air environment. The model was validated against the available experimental data from the literature. Parametric studies on geometric, flow, and climatic conditions, namely, domain length, droplet size, water mass flow rate, temperature, and humidity, were performed. The findings indicate that at elevated temperatures and low humidity, evaporation results in a bulk temperature reduction of up to 12 °C. A specific focus on the climatic conditions of Dublin, Ireland, was used as an example to optimize the evaporative system. A new formulation for the coefficient of performance (COP) is established to assess the performance of the system. Results showed that doubling the injector water mass flow rate improved the evaporated mass flow rate by 188% but reduced the evaporation percentage by 28%, thus reducing the COP. Doubling the domain length improved the temperature drop by 175% and increased the relative humidity by 160%, thus improving the COP. The COP of the evaporation system showed a systematic improvement with a reduction in the droplet size and the mass flow rate for a fixed domain length. The evaporated system COP improves by two orders of magnitude (~90 to 9500) with the reduction in spray Sauter mean diameter (SMD) from 292 μm to 8–15 μm. Under this reduction, close to 100% evaporation rate was achieved in comparison to only a 1% evaporation rate for the largest SMD. It was concluded that the utilization of a fine droplet spray nozzle provides an effective solution for the reduction in water consumption (97% in our case) for data centres, whilst concomitantly augmenting the proportion of evaporation. Full article
(This article belongs to the Special Issue Evaporation, Condensation and Heat Transfer)
Show Figures

Figure 1

17 pages, 16085 KiB  
Article
Movement Characteristics of Droplet Deposition in Flat Spray Nozzle for Agricultural UAVs
by Shiyun Hu, Xiaojie Xu, Junyu Liu, Jianzhou Guo, Runhong Guan, Zhiyan Zhou, Yubin Lan and Shengde Chen
Agriculture 2024, 14(11), 1994; https://doi.org/10.3390/agriculture14111994 - 6 Nov 2024
Cited by 4 | Viewed by 1204
Abstract
At present, research on aerial spraying operations with UAVs mainly focuses on the deposition outcomes of droplets, with insufficient depth in the exploration of the movement process of droplet deposition. The movement characteristics of droplet deposition as the most fundamental factors affecting the [...] Read more.
At present, research on aerial spraying operations with UAVs mainly focuses on the deposition outcomes of droplets, with insufficient depth in the exploration of the movement process of droplet deposition. The movement characteristics of droplet deposition as the most fundamental factors affecting the effectiveness of pesticide application by UAVs are of great significance for improving droplet deposition. This study takes flat spray nozzles as the research object, uses the Particle Image Velocimetry (PIV) technique to obtain movement data of water droplet deposition under the influence of rotor flow fields, and investigates the variation characteristics of droplet deposition speed under different influencing factors. The results show that the deposition speed and the distribution area of high-speed (>12 m/s) particles increase with the increase of rotor speed, spraying pressure, and nozzle size. When the rotor speed increases from 0 r/min to 1800 r/min, the average increase in maximum droplet deposition speed for nozzle models LU120-02, LU120-03 and LU120-04 is 33.26%, 19.02%, and 7.62%, respectively. The rotor flow field significantly increases the number of high-speed droplets, making the dispersed droplet velocity distribution more concentrated. When the rotor speed is 0, 1000, 1500, and 1800 r/min, the average decay rates of droplet deposition speed are 36.72%, 20.00%, 15.47%, and 13.21%, respectively, indicating that the rotor flow field helps to reduce the decrease in droplet deposition speed, enabling droplets to deposit on the target area at a higher speed, reducing drift risk and evaporation loss. This study’s results are beneficial for revealing the mechanism of droplet deposition movement in aerial spraying by plant protection UAVs, improving the understanding of droplet movement, and providing data support and guidance for precise spraying operations. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

17 pages, 29257 KiB  
Article
Realistic Simulation of Dissolution Process on Rock Surface
by Xiaoying Nie, Chunqing Zhou, Zhaoxi Yu and Gang Yang
Algorithms 2024, 17(10), 466; https://doi.org/10.3390/a17100466 - 19 Oct 2024
Viewed by 1435
Abstract
Hydraulic dissolution, driven by carbon dioxide-rich precipitation and runoff, leads to the gradual breakdown and removal of soluble rock materials, creating unique surface and subsurface features. Dissolution is a complex process that is related to numerous factors, and the complete simulation of its [...] Read more.
Hydraulic dissolution, driven by carbon dioxide-rich precipitation and runoff, leads to the gradual breakdown and removal of soluble rock materials, creating unique surface and subsurface features. Dissolution is a complex process that is related to numerous factors, and the complete simulation of its process is a challenging problem. On the basis of deep investigation of the theories of geology and rock geomorphology, this paper puts forward a method for simulating the dissolution phenomenon on a rock surface. Around the movement of water, this method carries out dissolution calculations, including processes such as droplet dissolution, water flow, dissolution, deposition, and evaporation. It also considers the lateral dissolution effect of centrifugal force when water flows through bends, achieving a comprehensive simulation of the dissolution process. This method can realistically simulate various typical karst landforms such as karst pits, karst ditches, and stone forests, with interactive simulation efficiency. Full article
Show Figures

Figure 1

16 pages, 3322 KiB  
Article
The Non-Monotonic Response of Cumulus Congestus to the Concentration of Cloud Condensation Nuclei
by Xin Deng, Shizuo Fu and Huiwen Xue
Atmosphere 2024, 15(10), 1225; https://doi.org/10.3390/atmos15101225 - 14 Oct 2024
Cited by 1 | Viewed by 1031
Abstract
This study uses idealized simulations to investigate the impact of cloud condensation nuclei (CCN) on a cumulus congestus. Thirteen cases with the initial CCN_C, which is the CCN concentration at 1% supersaturation with respect to water, from 10 to 10,000 cm−3 [...] Read more.
This study uses idealized simulations to investigate the impact of cloud condensation nuclei (CCN) on a cumulus congestus. Thirteen cases with the initial CCN_C, which is the CCN concentration at 1% supersaturation with respect to water, from 10 to 10,000 cm−3 are simulated. The analysis focuses on the liquid phase due to the negligible ice phase in this study. A non-monotonic response of cloud properties and precipitation to CCN concentration is observed. When CCN_C is increased from 10 to 50 cm−3, the enhanced condensation due to the more numerous droplets invigorates the cumulus congestus. The delayed precipitation formation due to the smaller droplets also facilitates the cloud development. The two processes together lead to a higher liquid water path (LWP), higher cloud top, and heavier precipitation. The cumulus congestus has the highest cloud top, the strongest updraft, and the most accumulated precipitation and at CCN_C = 50 cm−3. When CCN_C is increased from 50 to 500 cm−3, the condensation near the cloud base is further enhanced and the precipitation is further delayed, both of which lead to more liquid water remaining in the cloud, and thus an even higher LWP and heavier precipitation rate in the later stage. However, the significantly enhanced evaporation near the cloud top limits the vertical development of the cumulus congestus, leading to a lower cloud top. When CCN_C is further increased to be higher than 1000 cm−3, the cumulus congestus is strongly suppressed, and no precipitation forms. The ratio of the precipitation production rate to vertical cloud water flux in the updraft is not a constant, as is generally assumed in cumulus parameterization schemes, but decreases significantly with increasing CCN concentration. It is also found that the CCN effect on the cumulus congestus relies on which parameters are used to describe the cloud strength. In this study, as CCN_C increases, the LWP and the maximum precipitation rate peak at CCN_C = 500 cm−3, while the cloud top height, maximum updraft, and accumulated precipitation amount peak at CCN_C = 50 cm−3. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

17 pages, 2398 KiB  
Article
Effects of Water Mist on the Initial Evolution of Turbulent Premixed Hydrogen/Air Flame Kernels
by Riccardo Concetti, Josef Hasslberger, Nilanjan Chakraborty and Markus Klein
Energies 2024, 17(18), 4632; https://doi.org/10.3390/en17184632 - 16 Sep 2024
Cited by 2 | Viewed by 1257
Abstract
In this study, a series of carrier-phase direct numerical simulations are conducted on spherical expanding premixed hydrogen/air flames with liquid water addition. An Eulerian–Lagrangian approach with two-way coupling is employed to describe the liquid–gas interaction. The impacts of preferential diffusion, the equivalence ratio, [...] Read more.
In this study, a series of carrier-phase direct numerical simulations are conducted on spherical expanding premixed hydrogen/air flames with liquid water addition. An Eulerian–Lagrangian approach with two-way coupling is employed to describe the liquid–gas interaction. The impacts of preferential diffusion, the equivalence ratio, water loading, and the initial diameter of the water droplets are examined and analyzed in terms of flame evolution. It is observed that liquid water has the potential to influence flame propagation characteristics by reducing the total burning rate, flame area, and burning rate per unit area, attributed to flame cooling effects. However, these effects become discernible only under conditions where water evaporation is sufficiently intense. For the conditions investigated, the influence of preferential diffusion on flame evolution is found to be more significant than the interaction with liquid water. The results suggest that due to the slow evaporation rate of water, which is a result of its high latent heat of evaporation, the water droplets do not disturb the initial flame kernel growth significantly. This has implications for water injection concepts in internal combustion engines and for explosion mitigation. Full article
(This article belongs to the Special Issue Towards Climate Neutral Thermochemical Energy Conversion)
Show Figures

Figure 1

17 pages, 6601 KiB  
Article
Anti-Corrosion Flocking Surface with Enhanced Wettability and Evaporation
by Die Lu, Jing Ni, Zhen Zhang and Kai Feng
Materials 2024, 17(16), 4166; https://doi.org/10.3390/ma17164166 - 22 Aug 2024
Cited by 1 | Viewed by 1208
Abstract
The corrosion protection of tool steel surfaces is of significant importance for ensuring cutting precision and cost savings. However, conventional surface protection measures usually rely on toxic organic solvents, posing threats to the environment and human health. In this regard, an integrated process [...] Read more.
The corrosion protection of tool steel surfaces is of significant importance for ensuring cutting precision and cost savings. However, conventional surface protection measures usually rely on toxic organic solvents, posing threats to the environment and human health. In this regard, an integrated process of laser texturing and electrostatic flocking is introduced as a green anti-corrosion method on a high-speed steel (HSS) surface. Drawing from the principles of textured surface energy barrier reduction and fiber array capillary water evaporation enhancement, a flocking surface with a synergistic optimization of surface wettability and evaporation performance was achieved. Then, contact corrosion tests using 0.1 mol/L of NaCl droplets were performed. Contact angles representing wettability and change in droplet mass representing evaporation properties were collected. The elements and chemical bonds presented on the corroded surfaces were characterized by X-ray photoelectron spectroscopy (XPS). The results revealed that the flocking surface exhibited the lowest degree of corrosion when compared with smooth and textured surfaces. Corrosion resistance of the flocking surface was achieved through the rapid spread and evaporation of droplets, which reduced the reaction time and mitigated electrochemical corrosion. This innovative flocking surface holds promise as an effective treatment in anti-corrosion strategies for cutting tools. Full article
Show Figures

Figure 1

24 pages, 9662 KiB  
Article
Creating Diverse Patterns on Thin Polystyrene Film through Water-in-Oil Emulsion Coating and Utilizing the Derived Hydrophilic Holes as a Microreactor
by Zin Thwe Hauan and Liang Hong
Coatings 2024, 14(8), 956; https://doi.org/10.3390/coatings14080956 - 1 Aug 2024
Cited by 1 | Viewed by 1595
Abstract
The study investigates the surface morphology of polystyrene (PS) thin films, which were crafted by drying a cast emulsion layer on a microscope glass slide. A water-in-oil (w/o) emulsion was previously formulated by dispersing a small quantity of water (or an aqueous solution) [...] Read more.
The study investigates the surface morphology of polystyrene (PS) thin films, which were crafted by drying a cast emulsion layer on a microscope glass slide. A water-in-oil (w/o) emulsion was previously formulated by dispersing a small quantity of water (or an aqueous solution) into a chloroform–PS solution containing a dissolved emulsifier (surfactant). The resultant emulsion was spin-coated onto the glass slide. Subsequently, the type and dosage of surfactant utilized played a critical role in incubating the pattern formation during solvent evaporation. Mechanistically, the surface patterns resulted from a collaborative interplay of drying-induced droplet migration/partial coagulation and surface enrichment of surfactants. Span-80 induces a collection of bowl-shaped holes with a diameter of approximately 1 µm, while AOT induces an M-shaped geometrical pattern. The holes on PS film act as a microreactor to carry out the crystallization of acrylamide, as well as the growth of Ni-P alloy dendrites by electroless plating means. Alternatively, the dispersed aqueous droplet of the emulsion was utilized to conduct in situ reduction to grow copper nanoparticles. It is also noteworthy that the patterned PS films achieved exhibit diverse glass transition behaviors, attributed to the unique interaction of surfactant and PS chains. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

Back to TopTop