Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (133)

Search Parameters:
Keywords = wastes co-treatment and recycling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 11239 KiB  
Review
Microbial Mineral Gel Network for Enhancing the Performance of Recycled Concrete: A Review
by Yuanxun Zheng, Liwei Wang, Hongyin Xu, Tianhang Zhang, Peng Zhang and Menglong Qi
Gels 2025, 11(8), 581; https://doi.org/10.3390/gels11080581 - 27 Jul 2025
Viewed by 235
Abstract
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent [...] Read more.
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent old mortar layers, lead to significant performance degradation of the resulting RC, limiting its widespread application. Traditional methods for enhancing RA often suffer from limitations, including high energy consumption, increased costs, or the introduction of new pollutants. MICP offers an innovative approach for enhancing RC performance. This technique employs the metabolic activity of specific microorganisms to induce the formation of a three-dimensionally interwoven calcium carbonate gel network within the pores and on the surface of RA. This gel network can improve the inherent defects of RA, thereby enhancing the performance of RC. Compared to conventional techniques, this approach demonstrates significant environmental benefits and enhances concrete compressive strength by 5–30%. Furthermore, embedding mineralizing microbial spores within the pores of RA enables the production of self-healing RC. This review systematically explores recent research advances in microbial mineral gel network for improving RC performance. It begins by delineating the fundamental mechanisms underlying microbial mineralization, detailing the key biochemical reactions driving the formation of calcium carbonate (CaCO3) gel, and introducing the common types of microorganisms involved. Subsequently, it critically discusses the key environmental factors influencing the effectiveness of MICP treatment on RA and strategies for their optimization. The analysis focuses on the enhancement of critical mechanical properties of RC achieved through MICP treatment, elucidating the underlying strengthening mechanisms at the microscale. Furthermore, the review synthesizes findings on the self-healing efficiency of MICP-based RC, including such metrics as crack width healing ratio, permeability recovery, and restoration of mechanical properties. Key factors influencing self-healing effectiveness are also discussed. Finally, building upon the current research landscape, the review provides perspectives on future research directions for advancing microbial mineralization gel techniques to enhance RC performance, offering a theoretical reference for translating this technology into practical engineering applications. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

16 pages, 2103 KiB  
Article
Pilot-Scale Fenton-like System for Wastewater Treatment Using Iron Mud Carbon Catalyst
by Lia Wang, Lan Liang, Jinglei Xu, Yanshan Wang, Beibei Yan, Guanyi Chen, Ning Li and Li’an Hou
Appl. Sci. 2025, 15(15), 8210; https://doi.org/10.3390/app15158210 - 23 Jul 2025
Viewed by 222
Abstract
Fenton oxidation can contribute to meeting effluent standards for COD in actual wastewater treatment plant effluents. However, Fenton oxidation is prone to produce iron sludge waste. The application of heterogeneous Fenton-like systems based on Fenton iron mud carbon in wastewater treatment plants is [...] Read more.
Fenton oxidation can contribute to meeting effluent standards for COD in actual wastewater treatment plant effluents. However, Fenton oxidation is prone to produce iron sludge waste. The application of heterogeneous Fenton-like systems based on Fenton iron mud carbon in wastewater treatment plants is essential for Fenton iron mud reduction and recycling. In this study, a Fenton iron mud carbon catalyst/Ferrate salts/H2O2 (FSC/Fe(VI)/H2O2) system was developed to remove chemical oxygen demand (COD) from secondary effluents at the pilot scale. The results showed that the FSC/Fe(VI)/H2O2 system exhibited excellent COD removal performance with a removal rate of 57% under slightly neutral conditions in laboratory experiments. In addition, the effluent COD was stabilized below 40 mg·L−1 for 65 days at the pilot scale. Fe(IV) and 1O2 were confirmed to be the main active species in the degradation process through electron paramagnetic resonance (EPR) and quenching experiments. C=O, O-C=O, N sites and Fe0 were responsible for the generation of Fe(IV) and 1O2 in the FSC/Fe(VI)/H2O2 system. Furthermore, the cost per ton of water treated by the pilot-scale FSC/Fe(VI)/H2O2 system was calculated to be only 0.6209 USD/t, further confirming the application potential of the FSC/Fe(VI)/H2O2 system. This study promotes the engineering application of heterogeneous Fenton-like systems for water treatment. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

23 pages, 2581 KiB  
Article
Tripartite Evolutionary Game Analysis of Waste Tire Pyrolysis Promotion: The Role of Differential Carbon Taxation and Policy Coordination
by Xiaojun Shen
Sustainability 2025, 17(14), 6422; https://doi.org/10.3390/su17146422 - 14 Jul 2025
Viewed by 290
Abstract
In China, the recycling system for waste tires is characterized by high output but low standardized recovery rates. This study examines the environmental and health risks caused by non-compliant treatment by individual recyclers and explores the barriers to the large-scale adoption of Pyrolysis [...] Read more.
In China, the recycling system for waste tires is characterized by high output but low standardized recovery rates. This study examines the environmental and health risks caused by non-compliant treatment by individual recyclers and explores the barriers to the large-scale adoption of Pyrolysis Technology. A Tripartite Evolutionary Game Model involving pyrolysis plants, waste tire recyclers, and government regulators is developed. The model incorporates pollutants from pretreatment and pyrolysis processes into a unified metric—Carbon Dioxide Equivalent (CO2-eq)—based on Global Warming Potential (GWP), and designs a Differential Carbon Taxation mechanism accordingly. The strategy dynamics and stability conditions for Evolutionary Stable Strategies (ESS) are analyzed. Multi-scenario numerical simulations explore how key parameter changes influence evolutionary trajectories and equilibrium outcomes. Six typical equilibrium states are identified, along with the critical conditions for achieving environmentally friendly results. Based on theoretical analysis and simulation results, targeted policy recommendations are proposed to promote standardized waste tire pyrolysis: (1) Establish a phased dynamic carbon tax with supporting subsidies; (2) Build a green market cultivation and price stabilization system; (3) Implement performance-based differential incentives; (4) Strengthen coordination between central environmental inspections and local carbon tax enforcement. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

18 pages, 2433 KiB  
Article
Thermodynamic Assessment of the Pyrometallurgical Recovery of a Pb-Ag Alloy from a Mixture of Ammonium Jarosite–Lead Paste Wastes
by Jose Enrique Sanchez Vite, Alejandro Cruz Ramírez, Manuel Eduardo Flores Favela, Ricardo Gerardo Sánchez Alvarado, José Antonio Romero Serrano, Margarita García Hernández, Teresita del Refugio Jiménez Romero and Juan Cancio Jiménez Lugos
Recycling 2025, 10(4), 136; https://doi.org/10.3390/recycling10040136 - 8 Jul 2025
Viewed by 605
Abstract
A previously pyrometallurgical process, developed to obtain a Pb-Ag alloy and a slag rich in sulfur from the recycling of a mixture of industrial wastes of jarosite and lead paste, was thermodynamically assessed at 1200 °C. The industrial jarosite sourced from a Mexican [...] Read more.
A previously pyrometallurgical process, developed to obtain a Pb-Ag alloy and a slag rich in sulfur from the recycling of a mixture of industrial wastes of jarosite and lead paste, was thermodynamically assessed at 1200 °C. The industrial jarosite sourced from a Mexican zinc hydrometallurgical plant corresponded to an ammonium jarosite with a measurable silver content. The specific heat capacity (Cp) of the ammonium jarosite was obtained from TGA and DSC measurements, as well as the thermodynamic functions of enthalpy, entropy, and Gibbs free energy. The Cp was successfully modeled using polynomial regression, with a second-degree polynomial employed to describe the low-temperature behavior. The thermodynamic data generated were input into the thermodynamic software FactSage 8.2 for modeling of the lead paste–ammonium jarosite-Na2CO3-SiC system and represented by stability phase diagrams. The thermodynamic assessment of the pyrometallurgical process predicted compounds formed at high temperatures, showing that a Pb-Ag alloy and a slag rich in Na, S, and Fe (NaFeS2 and NaFeO2) were obtained. The compounds formed evidence of the effective sulfur retention in the slag, which is crucial for mitigating SO2 emissions during high-temperature treatments. The experimental compounds, after solidification, were determined by X-ray diffraction measurements to be Na2Fe(SO4)2 and Na2(SO4), which reasonably match the thermodynamic assessment. The heat capacity of the ammonium jarosite provides essential thermodynamic insights into the compositional complexities of industrial waste, which are particularly relevant for thermodynamic modeling and process optimization in pyrometallurgical systems aimed at metal recovery and residue valorization. Full article
Show Figures

Figure 1

16 pages, 9789 KiB  
Article
CO2 Sequestration Potential Competitive with H2O and N2 in Abandoned Coal Mines Based on Molecular Modeling
by Tianyang Liu, Yun Li, Yaxuan Hu, Hezhao Li, Binghe Chen, Qixu Zhang, Qiufeng Xu and Yong Li
Processes 2025, 13(7), 2123; https://doi.org/10.3390/pr13072123 - 3 Jul 2025
Viewed by 357
Abstract
To facilitate the local recycling of coal mine waste gas and investigate multi-component gas adsorption under high pressure conditions, this study develops a coal nanopore model using molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) methods and simulates the adsorption behavior of [...] Read more.
To facilitate the local recycling of coal mine waste gas and investigate multi-component gas adsorption under high pressure conditions, this study develops a coal nanopore model using molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) methods and simulates the adsorption behavior of coal mine waste gas components (CO2, H2O, N2) under varying pressure levels and gas molar ratios at 353.15 K. We evaluated the adsorption capacity and selectivity for both single-component and multi-component gases, quantifying adsorption interactions through adsorption heat, interaction energy, and energy distribution. The simulation results revealed that the contribution of the three gases to the total adsorption amount followed the order: H2O > CO2 > N2. The selective adsorption coefficient of a gas exhibits an inverse correlation with its molar volume ratio. Isothermal heat adsorption of gases in coal was positive, decreasing sharply with increasing pressure before leveling off. Electrostatic interactions dominated CO2 and H2O adsorption, while van der Waals forces governed N2 adsorption. As the gas mixture complexity increased, the overlap of energy distribution curves pronounced, highlighting competitive adsorption behavior. These findings offer a theoretical foundation for optimizing coal mine waste gas treatment and CO2 sequestration technologies. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

15 pages, 3887 KiB  
Article
Cold Consolidation of Waste Glass by Alkali Activation and Curing by Traditional and Microwave Heating
by Francesco Carollo, Emanuele De Rienzo, Antonio D’Angelo, Paolo Sgarbossa, Luisa Barbieri, Cristina Leonelli, Isabella Lancellotti, Michelina Catauro and Enrico Bernardo
Materials 2025, 18(11), 2628; https://doi.org/10.3390/ma18112628 - 4 Jun 2025
Viewed by 622
Abstract
Despite efforts to recycle, boro-alumino-silicate pharmaceutical glass (BASG) results in a significant portion of glass cullet currently landfilled. Highly contaminated fractions of BASG cullet are largely unemployed because of the presence of metals in their composition that prevents recycling. This waste glass can [...] Read more.
Despite efforts to recycle, boro-alumino-silicate pharmaceutical glass (BASG) results in a significant portion of glass cullet currently landfilled. Highly contaminated fractions of BASG cullet are largely unemployed because of the presence of metals in their composition that prevents recycling. This waste glass can be eligible to produce sustainable alkali-activated materials (AAMs) reducing at the same time consumption of raw materials and CO2 emissions. The ‘weak’ alkaline attack (NaOH < 3 M) determines the gelation of glass suspensions. Condensation reactions occur in hydrated surface layers, leading to strong bonds (Si-O-Si, Al-O-Si, etc.) between individual glass particles. Alkali are mostly expelled from the gel due to the formation of water-soluble hydrated carbonates. Microwave treatment has been implemented on samples after precuring at 40 °C, saving time and energy and achieving better mechanical properties. To improve the stability and reduce the release of glass components into solution, the consolidated monoliths were subjected to boiling/drying cycles. The chemical stability, cytotoxicity and antibacterial behavior of the final products have been investigated with the purpose of obtaining new competitive and sustainable materials. For further stabilization and for finding new applications, the activated and boiled samples can be fired at low temperature (700 °C) to obtain, respectively, a homogeneous foam or a compact material with glass-like density and microstructure. Full article
Show Figures

Figure 1

14 pages, 1379 KiB  
Article
Efficient Co-Production of Reducing Sugars and Xylo-Oligosaccharides from Waste Wheat Straw Through FeCl3-Mediated p-Toluene Sulfonic Acid Pretreatment
by Xiuying Hu, Qianqian Gao and Yucai He
Processes 2025, 13(5), 1615; https://doi.org/10.3390/pr13051615 - 21 May 2025
Viewed by 397
Abstract
Waste wheat straw (WS) is a common agricultural waste with a low acquisition cost and a high annual yield, making it a promising feedstock for a biorefinery. In this work, efficient co-production of reducing sugars and xylo-oligosaccharides (XOSs) from WS was realized through [...] Read more.
Waste wheat straw (WS) is a common agricultural waste with a low acquisition cost and a high annual yield, making it a promising feedstock for a biorefinery. In this work, efficient co-production of reducing sugars and xylo-oligosaccharides (XOSs) from WS was realized through FeCl3-assisted p-toluene sulfonic acid (PTSA) pretreatment. The effects of reaction conditions (PTSA content, FeCl3 loading, pretreatment duration, and temperature) on lignin and xylan elimination and enzymolysis were analyzed. The results manifested that the enzymolysis of WS substantially elevated from 22.0% to 79.3% through the treatment with FeCl3-PTSA/water (120 °C, 60 min). The xylan removal and delignification were 79.7% and 66.6%, respectively. XOSs (4.0 g/L) were acquired in the pretreatment liquor. The linear fitting about LogR0 with enzymolysis, delignification, xylan elimination and XOSs content was investigated to explain the reasons for the elevated enzymolysis and to clarify the comprehensive understanding of WS enzymolysis through the FeCl3-PTSA/water treatment. In addition, the recycling test of FeCl3-PTSA/water manifested a good recycling ability for WS treatment, which would reduce the pretreatment cost and enhance the economic benefit. To sum up, FeCl3-assisted PTSA treatment of biomass for co-production of reducing sugars and XOSs is an alternative method of waste biomass valorization. Full article
(This article belongs to the Section Catalysis Enhanced Processes)
Show Figures

Figure 1

20 pages, 1098 KiB  
Article
Biochar Supplementation of Recycled Manure Solids: Impact on Their Characteristics and Greenhouse Gas Emissions During Storage
by Ana José Pires, Catarina Esteves, Ricardo Bexiga, Manuela Oliveira and David Fangueiro
Agronomy 2025, 15(4), 973; https://doi.org/10.3390/agronomy15040973 - 17 Apr 2025
Cited by 1 | Viewed by 545
Abstract
Recycled manure solids (RMS) are increasingly adopted in dairy farming for their economic advantages and their role in improving nutrient recycling and waste management; however, concerns regarding greenhouse gas (GHG) emissions during storage persist. This study assessed the effects of biochar supplementation at [...] Read more.
Recycled manure solids (RMS) are increasingly adopted in dairy farming for their economic advantages and their role in improving nutrient recycling and waste management; however, concerns regarding greenhouse gas (GHG) emissions during storage persist. This study assessed the effects of biochar supplementation at 2.5% (2.5B) and 10% (10B) compared to untreated RMS (C−) and acidified RMS (C+) on GHG emissions (measured both continuously and intermittently) and RMS characteristics during a one-month storage period. The results showed that the addition of biochar increased heavy metals concentration (with the exception of molybdenum) and the electrical conductivity of the RMS. Storage of RMS generally led to an increase in its dry matter content, except in the 10B treatment. The results showed that 10% biochar significantly reduced cumulative CO2 and N2O emissions, resulting in a 32% GWP reduction compared to untreated RMS. In contrast, the 2.5% dose led to higher CO2 emissions, possibly due to microbial stimulation. Adding 10% biochar mitigated GHG emissions similarly to H2SO4 acidification but with fewer environmental and operational risks, making it a preferable farm-scale option. Continuous monitoring captured transient emission peaks, highlighting the importance of high-resolution assessments. Despite the emissions generated during biochar production, its application in RMS bedding systems offsets these environmental costs by mitigating GHG emissions and increasing nutrient content. Biochar’s mitigation potential, especially at higher doses, presents a safer, multifunctional alternative that aligns with EU climate goals. These findings support the integration of biochar into sustainable manure management strategies, though further research is needed to optimize application rates and assess cost-effectiveness in dairy farming. However, continued assessments at a larger scale and with different biochar addition rates are necessary to fully determine the potential of biochar supplementation to RMS. Full article
Show Figures

Figure 1

20 pages, 3162 KiB  
Article
Cheesecake Customized Using Juice and By-Products from Prickly Pears: A Case Study of Recycling and Environmental Impact Evaluation
by Alessia Le Rose, Olimpia Panza, Dario Caro, Amalia Conte and Matteo Alessandro Del Nobile
Foods 2025, 14(7), 1159; https://doi.org/10.3390/foods14071159 - 26 Mar 2025
Cited by 1 | Viewed by 583
Abstract
Due to the increasing concern about the negative impact of the modern food system and the need to design foods to improve their healthiness and sustainability, in the current study, a fortified cheesecake was developed by using juice, peels, and pomace from prickly [...] Read more.
Due to the increasing concern about the negative impact of the modern food system and the need to design foods to improve their healthiness and sustainability, in the current study, a fortified cheesecake was developed by using juice, peels, and pomace from prickly pears, which are fruit by-products rich in active compounds. After proper dehydration and being ground to produce a fine powder, some traditional ingredients were substituted with fruit juice and by-products. The water content loss during dehydration and the energy consumed per g of dehydrated by-product were assessed using a proper mathematical approach. A sensory evaluation was carried out using a panel test, thus verifying that the new dessert made with prickly pears was comparable to the traditional one; both recorded high scores of acceptability (sensory score ranged between 8 and 9). The centesimal composition of the two cheesecakes also demonstrated that the ingredient substitution did not affect the energetic value of the final product (290 vs. 248 kcal/100 g); on the contrary, it promoted an increase in carbohydrates (27.38 vs. 26.26 g/100 g), lipids (16.98 vs. 12.94 g/100 g), and total fibers (5.7 vs. 4.2 g/100 g). To demonstrate that the recycling of by-products from prickly pears could represent an advantage from an environmental point of view, a full Life Cycle Assessment (LCA) was carried out. In relation to this, three environmental impact categories, such as Global Warming Potential, Acidification and Eutrophication, which are associated with three different biowaste treatment options—such as composting, landfilling, and recycling—were assessed. The results from the LCA highlighted that recycling always emerged as the most sustainable biowaste management option. For all environmental impact categories analyzed, recycling resulted in an overall environmental saving (−7.63 kgCO2eq/kg biowaste; −0.116 kgSO2eq/kg biowaste; and −0.055 kgPO43−eq/kg biowaste). In addition, the comparison between the traditional cheesecake and the fortified one, in terms of impacts per kg of cheesecake, demonstrated that replacing food items with recycled biowaste may result in a general reduction in emissions and resources. Therefore, this case study represents a valid example of zero-waste production, offering a concrete suggestion as to how processed foods can be redesigned to make them healthier from a more sustainable perspective. Full article
(This article belongs to the Special Issue Comprehensive Utilization of By-Products in Food Industry)
Show Figures

Graphical abstract

15 pages, 3663 KiB  
Article
Influence of Accelerated Carbonation Conditions on the Physical Properties Improvement of Recycled Coarse Aggregate
by Nasir Mehmood, Pinghua Zhu, Hui Liu, Haichao Li and Xudong Zhu
Materials 2025, 18(4), 901; https://doi.org/10.3390/ma18040901 - 19 Feb 2025
Cited by 2 | Viewed by 596
Abstract
The preparation of new-generation concrete from recycled coarse aggregate (RA) is an effective way to realize the resource utilization of construction waste. However, loose and porous attached mortar leads to RA showing low-density, high-water absorption, and high crushing value. However, carbonation modification treatment [...] Read more.
The preparation of new-generation concrete from recycled coarse aggregate (RA) is an effective way to realize the resource utilization of construction waste. However, loose and porous attached mortar leads to RA showing low-density, high-water absorption, and high crushing value. However, carbonation modification treatment can effectively improve the performance of RA. This paper studied the effects of carbon dioxide (CO2) concentration, gas pressure, and moisture content on the RA physical properties (apparent density, water absorption, crushing value, and soundness) of waste concrete. The results showed that, when the (CO2) concentration increased from 20% to 60%, the apparent density of RA after carbonation increased by 0.23–0.31%, the water absorption decreased by 0.57–0.93%, the crushing value decreased by 0.36–0.61%, and the soundness decreased by 0.47–0.85%. When the (CO2) concentration was further increased from 60% to 80%, the apparent density of RA after carbonation was increased by 0.04–0.05%, the water absorption was improved by 0.15–0.31%, the crushing value was reduced by 0.06–0.07%, and the soundness was reduced by 0.09–0.11%. During the carbonation modification process, the performance of RA was significantly enhanced when the moisture content was 3.4% and the dissolution of hydration products was accelerated. The diffusion rate of CO2 and the carbonation reaction rate decreased with the high moisture content of RA. As gas pressure increases to 0.01 MPa, the physical properties of RA change significantly, because gas pressure promotes the carbonation reaction between hydration products and CO2 in attached mortar. As the gas pressure increased to 0.5 MPa, RA’s apparent density gradually increased, while its water absorption, crushing value, and stability gradually decreased. The result improved RA’s performance. SEM images show that carbonation modification of RA under different gas pressures increases CaCO3 in attached mortar, filling the Interfacial Transition Zone (ITZ), and decreasing crack width and number. Gas pressure accelerates CO2 diffusion and reaction with hydration products, resulting in narrower ITZ and dense mortar. Full article
(This article belongs to the Special Issue Sustainable and Advanced Cementitious Materials)
Show Figures

Figure 1

12 pages, 1415 KiB  
Article
Recycling of Multilayer Flexible Packaging Waste Through Delamination with Recoverable Switchable Hydrophilicity Solvents
by Roberta Mastroddi, Chiara Samorì, Martina Vagnoni, Chiara Gualandi, Paola Galletti and Emilio Tagliavini
Separations 2025, 12(2), 45; https://doi.org/10.3390/separations12020045 - 11 Feb 2025
Cited by 1 | Viewed by 2459
Abstract
Multilayer flexible packaging wastes (MFPWs) consist of complex materials composed of multiple plastic films, which are often laminated with aluminum foil, and they constitute a large portion of packaging waste. The use of several polymeric layers is essential to achieve the desired technical [...] Read more.
Multilayer flexible packaging wastes (MFPWs) consist of complex materials composed of multiple plastic films, which are often laminated with aluminum foil, and they constitute a large portion of packaging waste. The use of several polymeric layers is essential to achieve the desired technical and mechanical performance of the packaging; however, this makes layer separation and recycling challenging. Currently, this type of waste is predominantly incinerated or landfilled; non-industrial recycling processes have recently been developed, but they mostly rely on traditional solvent-based treatments, which can be problematic. We present a versatile process for recycling MFPWs using switchable hydrophilicity solvents (SHSs). By treating waste with SHSs through a temperature-controlled process, we efficiently recovered the polymeric layers as sorted transparent films, effectively removing all additives while preserving the original properties of the polymers. Aluminum was recovered as well. N,N-dimethylcyclohexylamine was the best solvent for the delamination of the 26 different packaging materials tested, containing polypropylene, polyethylene, polyethylene terephthalate, and aluminum. The main advantage of this method is the straightforward recovery of the different components that can be efficiently delaminated and easily removed from the solvent, even from highly variable input material. Moreover, by exploiting the CO2-triggered switchable behavior of the solvent, its purification and recovery can be achieved, maintaining its delamination efficacy over several cycles. Full article
(This article belongs to the Special Issue Novel Solvents and Methods for Extraction of Chemicals)
Show Figures

Graphical abstract

19 pages, 10945 KiB  
Article
Assessment of Fishery By-Products for Immobilization of Arsenic and Heavy Metals in Contaminated Soil and Evaluation of Heavy Metal Uptake in Crops
by Se Hyun Park, Sang Hyeop Park and Deok Hyun Moon
Agronomy 2025, 15(2), 423; https://doi.org/10.3390/agronomy15020423 - 7 Feb 2025
Viewed by 693
Abstract
The contamination of soil with arsenic (As) and heavy metal is an increasing global environmental concern. The objective of this study was to rehabilitate soil contaminated with As, Pb, and Zn using fishery by-products as stabilizers to achieve both soil restoration and waste [...] Read more.
The contamination of soil with arsenic (As) and heavy metal is an increasing global environmental concern. The objective of this study was to rehabilitate soil contaminated with As, Pb, and Zn using fishery by-products as stabilizers to achieve both soil restoration and waste resource recycling. Cockle shells (CS) and manila clam shells (MC), selected as fishery by-product stabilizers, were processed into −#10-mesh and −#20-mesh materials. Additionally, a −#10-mesh material was calcined at a high temperature to produce calcined cockle shells (CCS) and calcined manila clam shells (CMC). Contaminated soil was treated with 2–10 wt% of these stabilizers and subjected to wet incubation for 1–4 weeks. Subsequently, the concentrations of As, Pb, and Zn eluted by 0.1 M HCl were evaluated. Additionally, lettuce was grown in stabilized soil to evaluate the reduction in contaminant mobility. The stabilization treatment results indicated that the concentrations of eluted As, Pb, and Zn were significantly reduced when treated with the −#10-mesh and −#20-mesh CS and MC, and they were rarely detected when treated with the calcined materials (CCS and CMC). The Pb concentration in lettuce grown in the contaminated soil pot exceeded the criterion for leafy vegetables (0.3 mg/kg); however, Pb was not detected in lettuce from the stabilized soil pot. An X-ray diffraction (XRD) analysis revealed that CaCO3, the main component of CS and MC, was converted to CaO after calcination. Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) and SEM elemental dot map analyses revealed that the immobilization of As was related to Ca–As precipitation and the immobilization of Pb and Zn to the pozzolanic reaction. Thus, recycling and processing CS and MC as stabilizers for contaminated soil can restore the agricultural value of the soil by immobilizing As, Pb, and Zn into safe forms, thus effectively preventing their uptake by crops. Full article
Show Figures

Figure 1

17 pages, 5587 KiB  
Article
Assessment of the Applicability of Waste Concrete Fine Powder as a Raw Material for Cement Clinker
by Sangchul Shin, Geonwoo Kim, Jinman Kim, Haseog Kim and Sungyu Park
Recycling 2025, 10(1), 17; https://doi.org/10.3390/recycling10010017 - 1 Feb 2025
Viewed by 2240
Abstract
The cement industry is responsible for a significant portion of global CO2 emissions, primarily due to the decarbonatization of limestone during clinker production. To mitigate this environmental impact, this study investigated the feasibility of using waste concrete fine powder, produced during the [...] Read more.
The cement industry is responsible for a significant portion of global CO2 emissions, primarily due to the decarbonatization of limestone during clinker production. To mitigate this environmental impact, this study investigated the feasibility of using waste concrete fine powder, produced during the recycling of waste concrete, as a decarbonized raw material in cement clinker production. As a decarbonized material, waste concrete fine powder presents a valuable opportunity to reduce CO2 emissions typically produced during the decarbonatization of limestone in clinker production. In addition, its use supports the recycling of construction waste, contributing to both emissions reduction and resource sustainability. In this study, samples were collected from 20 intermediate treatment plants in South Korea, where the chemical composition, particle size distribution, and carbonation rate of the fine powders were analyzed. The experimental results show that the properties of waste concrete fine powder vary significantly depending on the recycling process. Road construction aggregate production plants, which typically involve two to three crushing stages, produce fine powders with higher CaO content (28–31%) and consistent particle size distributions. In contrast, plants producing aggregates for concrete, which involve four to six crushing stages, produce powders with lower CaO content (around 20%) and greater variability in particle size. The average carbonation rate of 7.44% suggests that these fine powders can replace limestone in clinker production. It is estimated that substituting 5% of limestone with waste concrete fine powder could reduce CO2 emissions from limestone decarbonatization by approximately 952,560 tons in 2023, representing a 3.34% decrease in total emissions from clinker production. However, it is important to note that the CO2 emissions reduction calculation is not from a lifecycle perspective, without considering the energy-related emissions from recycling waste concrete fine powder. Nevertheless, this study highlights the potential for waste concrete fine powder to serve as a sustainable raw material for the cement industry, contributing to both CO2 reduction and efficient recycling of construction waste. Full article
Show Figures

Figure 1

22 pages, 2718 KiB  
Article
Closing the Loop of Biowaste Composting by Anaerobically Co-Digesting Leachate, a By-Product from Composting, with Glycerine
by Thi Cam Tu Le, Katarzyna Bernat, Tomasz Pokój and Dorota Kulikowska
Energies 2025, 18(3), 537; https://doi.org/10.3390/en18030537 - 24 Jan 2025
Viewed by 849
Abstract
To achieve the required recycling rates, organic recycling via composting should be widely introduced in Poland for selectively collected biowaste. However, this process not only produces compost but also leachate (LCB), a nitrogen- and organics-rich liquid by-product. So far there has [...] Read more.
To achieve the required recycling rates, organic recycling via composting should be widely introduced in Poland for selectively collected biowaste. However, this process not only produces compost but also leachate (LCB), a nitrogen- and organics-rich liquid by-product. So far there has been limited information on the application of anaerobic digestion (AD) for treating LCB, which has fermentative potential. However, for effective methane production (MP) via AD, the ratio of chemical oxygen demand to total Kjeldahl nitrogen (COD/TKN) and pH of LCB are too low; thus, it should be co-digested with other organics-rich waste, e.g., glycerine (G). The present study tested the effect of G content in feedstock (in the range of 3–5% (v/v)) on the effectiveness of co-digestion with LCB, based on MP and the removal of COD. MP was accessed by using an automatic methane potential test system (AMPTS). Regardless of the feedstock composition (LCB, or LCB with G), the efficiency of COD removal was over 91%. Co-digestion not only increased MP by 6–15%, but also the methane content in the biogas by 4–14% compared to LCB only (353 NL/kg CODadded, 55%). MP and COD removal proceeded in two phases. During co-digestion in the 1st phase, volatile fatty acids (VFA) accumulated up to 2800 mg/L and the pH decreased below 6.8. The presence of G altered the shares of individual VFA and promoted the accumulation of propionic acid in contrast to LCB only, where caproic acid predominated. An initial accumulation of propionic acid and acidification in the mixtures decreased the kinetic constants of MP (from 0.79 to 0.54 d−1) and the rate of COD removal (from 2193 to 1603 mg/(L·d)). In the 2nd phase, the pH recovered, VFA concentrations decreased, and MP was no longer limited by these factors. However, it should be noted that excessive amounts of G, especially in reactors with constant feeding, may cause VFA accumulation to a greater extent and create a toxic environment for methanogens, inhibiting biogas production. In contrast, digestion of LCB only may lead to ammonium buildup if the COD/TKN ratio of the feedstock is too low. Despite these limitations, the use of AD in the treatment of LCB as a sustainable “closed-loop nutrient” technology closes the loop in composting of biowaste. Full article
(This article belongs to the Special Issue New Challenges in Waste-to-Energy and Bioenergy Systems)
Show Figures

Figure 1

20 pages, 4777 KiB  
Article
The Application of Kitchen Waste Changed the Community Structure and Composition of AOA and AOB by Affecting the pH and Soil Organic Carbon of Red Soil
by Donghui Zhang, Wen Chen, Changtao Wen, Zheng Hou, Keqin Wang and Yali Song
Agronomy 2024, 14(12), 3053; https://doi.org/10.3390/agronomy14123053 - 20 Dec 2024
Viewed by 1064
Abstract
To investigate the effects of kitchen waste on the chemical properties of acidic red soil and the community structure of ammonia–oxidizing archaea (AOA) and ammonia–oxidizing bacteria (AOB), a study was conducted in the flue–cured tobacco farmland ecosystem of the Erlongtan small watershed in [...] Read more.
To investigate the effects of kitchen waste on the chemical properties of acidic red soil and the community structure of ammonia–oxidizing archaea (AOA) and ammonia–oxidizing bacteria (AOB), a study was conducted in the flue–cured tobacco farmland ecosystem of the Erlongtan small watershed in central Yunnan. Eight fertilization methods were applied: no fertilization control CK, single application of chemical fertilizer T1 (1 t·hm−2), kitchen waste combined with a chemical fertilizer (T2:12 t·hm−2 + 1 t·hm−2, T3:15 t·hm−2 + 1 t·hm−2, T4:18 t·hm−2 + 1 t·hm−2), and single application of kitchen waste (T5:12 t·hm−2, T6:15 t·hm−2, T7:18 t·hm−2). The numbers twelve, fifteen, and eighteen in brackets represent the amount of food waste applied, and one represents the amount of chemical fertilizer applied. The study evaluated the effects of kitchen waste on soil chemical properties, the community structure and composition of AOA and AOB, and the relationship between soil chemical properties and these microbial communities in acidic red soil. The results showed that: (1) single application of kitchen waste (T5, T6, T7) effectively improved soil nutrient status (SOC increased by 15.79–217.24%; TN increased by 1.53–92.99%; NH4+–N increased by 18.19–520.74%; NO3–N) increased by 15.54–750.61%), and alleviated acidification. (2) Temporal variations had a more significant effect on the community structure of AOA and AOB than different treatments. The dominant phyla of AOA were Thaumarchaeota, Crenarchaeot. The dominant phylum of AOB was Proteobacteria, and the dominant genera were Nitrosospira and norank_Bacteri. (3) The number of AOA co–occurrence network nodes were equivalent to that of AOB, but AOB had more connection edges, indicating a more complex interaction network. In contrast, AOA exhibited higher modularity, reflecting tighter internal connections and greater stability. The AOA co–occurrence network showed stronger performance during the maturity and fallow stages, while AOB interactions were most active during the topping stage. (4) AOA demonstrated a strong correlation with soil chemical properties during the topping and maturity stages, whereas AOB showed a stronger correlation at the rosette and fallow stages. Among soil chemical factors, pH and SOC were identified as the primary drivers influencing AOA and AOB community abundance and structural differentiation. In conclusion, kitchen waste application enhances the nutrient content of acidic red soil and influences the niche differentiation of AOA and AOB, thereby affecting nitrogen recycling. This approach represents an environmentally friendly and sustainable fertilization method. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

Back to TopTop