Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (159)

Search Parameters:
Keywords = waste-printed circuit boards

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 550 KB  
Review
Recovery of Critical Metals from Waste-Printed Circuit Boards for Sustainable Energy Transition
by Lucian-Cristian Pop, Szabolcs Szima and Szabolcs Fogarasi
Crystals 2026, 16(1), 67; https://doi.org/10.3390/cryst16010067 - 20 Jan 2026
Viewed by 259
Abstract
It is undeniable that rapid population increase coupled with growing resource constraints are making the demand for smart and sustainable solutions more urgent than ever to secure future resources for the transition to sustainable energy production. To address these issues, it is necessary [...] Read more.
It is undeniable that rapid population increase coupled with growing resource constraints are making the demand for smart and sustainable solutions more urgent than ever to secure future resources for the transition to sustainable energy production. To address these issues, it is necessary to define innovative approaches that can exploit more efficiently and extensively the resources we have at our disposal. Consequently, this paper provides an overview of the potential benefits of processing waste-printed circuit boards (WPCBs) that are generated in large quantities and, due to their high metal content, can emerge as an adequate and profitable supply of critical metals, such as copper, aluminum, and nickel, which are essential for green energy transition. The review promotes the idea of industrial symbiosis as a concept that goes beyond circular economy and can integrate WPCB treatment and manufacturing processes related to sustainable energy transition, although they are different industrial sectors that can be even regionally separated. Major metal recovery processes from WPCBs are examined and discussed, with the primary focus on the performances of copper, aluminum, and nickel production, while additional metals relevant to the energy transition are also highlighted. Finally, the review paper argues and exemplifies that the recovered metals from WPCBs have the required properties to be supplied into the manufacturing processes of wind turbines, solar panels, and lithium-ion batteries. Full article
(This article belongs to the Special Issue Exploring New Materials for the Transition to Sustainable Energy)
Show Figures

Figure 1

16 pages, 5236 KB  
Article
Intelligent Disassembly System for PCB Components Integrating Multimodal Large Language Model and Multi-Agent Framework
by Li Wang, Liu Ouyang, Huiying Weng, Xiang Chen, Anna Wang and Kexin Zhang
Processes 2026, 14(2), 227; https://doi.org/10.3390/pr14020227 - 8 Jan 2026
Viewed by 251
Abstract
The escalating volume of waste electrical and electronic equipment (WEEE) poses a significant global environmental challenge. The disassembly of printed circuit boards (PCBs), a critical step for resource recovery, remains inefficient due to limitations in the adaptability and dexterity of existing automated systems. [...] Read more.
The escalating volume of waste electrical and electronic equipment (WEEE) poses a significant global environmental challenge. The disassembly of printed circuit boards (PCBs), a critical step for resource recovery, remains inefficient due to limitations in the adaptability and dexterity of existing automated systems. This paper proposes an intelligent disassembly system for PCB components that integrates a multimodal large language model (MLLM) with a multi-agent framework. The MLLM serves as the system’s cognitive core, enabling high-level visual-language understanding and task planning by converting images into semantic descriptions and generating disassembly strategies. A state-of-the-art object detection algorithm (YOLOv13) is incorporated to provide fine-grained component localization. This high-level intelligence is seamlessly connected to low-level execution through a multi-agent framework that orchestrates collaborative dual robotic arms. One arm controls a heater for precise solder melting, while the other performs fine “probing-grasping” actions guided by real-time force feedback. Experiments were conducted on 30 decommissioned smart electricity meter PCBs, evaluating the system on recognition rate, capture rate, melting rate, and time consumption for seven component types. Results demonstrate that the system achieved a 100% melting rate across all components and high recognition rates (90–100%), validating its strengths in perception and thermal control. However, the capture rate varied significantly, highlighting the grasping of small, low-profile components as the primary bottleneck. This research presents a significant step towards autonomous, non-destructive e-waste recycling by effectively combining high-level cognitive intelligence with low-level robotic control, while also clearly identifying key areas for future improvement. Full article
Show Figures

Figure 1

51 pages, 6076 KB  
Systematic Review
From Waste to Sustainable Pavements: A Systematic and Scientometric Assessment of E-Waste-Derived Materials in the Asphalt Industry
by Nura Shehu Aliyu Yaro, Luvuno Nkosinathi Jele, Jacob Adedayo Adedeji, Zesizwe Ngubane and Jacob Olumuyiwa Ikotun
Sustainability 2026, 18(1), 12; https://doi.org/10.3390/su18010012 - 19 Dec 2025
Viewed by 419
Abstract
The global production of electronic waste (e-waste) has increased due to the quick turnover of electronic devices, creating urgent problems for resource management and environmental sustainability. As a result, e-waste-derived materials (EWDMs) are being explored in pavement engineering research as sustainable substitutes in [...] Read more.
The global production of electronic waste (e-waste) has increased due to the quick turnover of electronic devices, creating urgent problems for resource management and environmental sustainability. As a result, e-waste-derived materials (EWDMs) are being explored in pavement engineering research as sustainable substitutes in line with Sustainable Development Goals (SDGs), specifically SDG 9 (Industry, Innovation, and Infrastructure), 11 (Sustainable Cities and Communities), 12 (Responsible Consumption and Production), and 13 (Climate Action). Therefore, to assess global research production and the effectiveness of EWDMs in asphalt applications, this review combines scientometric mapping and systematic evidence synthesis. A total of 276 relevant publications were identified via a thorough search of Web of Science, Scopus, and ScienceDirect (2010–2025). These were examined via coauthorship structures, keyword networks, and contributions at the national level. The review revealed that China, India, and the United States are prominent research hubs. Additionally, experimental studies have shown that EWDMs, such as printed circuit board powder, fluorescent lamp waste glass, high-impact polystyrene, and acrylonitrile–butadiene–styrene, improve the fatigue life, Marshall stability, rutting resistance (up to 35%), and stiffness (up to 28%). However, issues with long-term field durability, microplastic release, heavy metal leaching, and chemical compatibility still exist. These restrictions highlight the necessity for standardised toxicity testing, harmonised mixed-design frameworks, and performance standards unique to EWDMs. Overall, the review shows that e-waste valorisation can lower carbon emissions, landfill build-up, and virgin material extraction, highlighting its potential in the circular pavement industry and promoting sustainable paving practices in accordance with SDGs 9, 11, 12, and 13. This review suggests that further studies on large-scale field trials, life cycles, and technoeconomic assessments are needed to guarantee the safe, long-lasting integration of EWDMs in pavements. It also advocates for coordinated research, supportive policies, and standardised methods. Full article
Show Figures

Figure 1

22 pages, 4926 KB  
Article
Recycling Copper (Cu) from Waste Automotive Printed Circuit Boards (WPCBs) After Characterization and Liberation Study by Mineral Processing Techniques
by Mahsa Pourmohammad, Josep Oliva, Hernan Anticoi, Carlos Hoffmann Sampaio, Pura Alfonso, César Valderrama, Jose Luis Cortina and Percy Escalante
Minerals 2025, 15(12), 1259; https://doi.org/10.3390/min15121259 - 27 Nov 2025
Viewed by 1044
Abstract
Waste printed circuit boards (WPCBs) are one of the fastest-growing waste streams and pose a significant environmental challenge while also representing a valuable secondary resource due to their rich metal content, particularly copper (Cu). Since effective recovery of metals requires mechanical pre-treatment and [...] Read more.
Waste printed circuit boards (WPCBs) are one of the fastest-growing waste streams and pose a significant environmental challenge while also representing a valuable secondary resource due to their rich metal content, particularly copper (Cu). Since effective recovery of metals requires mechanical pre-treatment and advanced characterization, WPCB boards were subjected to size reduction and then characterized through X-ray fluorescence (XRF), inductively coupled plasma optical emission spectroscopy (ICP-OES), scanning electron microscopy (SEM-EDS), and mineral liberation analysis (MLA). Results indicated that copper is predominantly found in coarser particle sizes due to its ductility, while glass fibers and ceramics dominate finer fractions. Liberation studies revealed that Cu is essentially free in fine particles (<100 μm) but tends to remain locked in coarser fractions. Based on these results, gravity separation methods were employed to concentrate the copper: coarse particles (>300 μm) were treated on a shaking table, achieving a Cu recovery of 95%, while fine particles (<300 μm) were processed using a multi-gravity separator (MGS), with recoveries of 94% for 100 × 300 μm and 81.5% for <100 μm size fractions. This study presents a gravity-based separation strategy that combines shaking tables and MGS to optimize Cu recovery from automotive WPCBs. To the authors’ knowledge, the MGS application for WPCBs has received little attention, despite its strong potential for separating this type of waste. The proposed methodology enhances the concentration and purity of the metallic fraction (in this case, Cu), especially in fine particles, which are challenging to work with, while reducing environmental impacts through minimal chemical use, thereby contributing to sustainable e-waste recycling. Full article
Show Figures

Figure 1

19 pages, 2786 KB  
Article
Research on Image Data Augmentation and Accurate Classification of Waste Electronic Components Utilizing Deep Learning Techniques
by Bolin Chen, Shuping Zhang, Shuangyi Liu, Yanlin Wu, Jie Guan, Xiaojiao Zhang, Yaoguang Guo, Qin Xu, Weiguo Dong and Weixing Gu
Processes 2025, 13(12), 3802; https://doi.org/10.3390/pr13123802 - 25 Nov 2025
Viewed by 477
Abstract
The escalating accumulation of waste printed circuit boards (WPCBs) underscores the urgent need for efficient recovery of valuable resources. Notably, WPCBs harbor a considerable number of intact electronic components that remain functional or could be repurposed. Nevertheless, the automated recognition and sorting of [...] Read more.
The escalating accumulation of waste printed circuit boards (WPCBs) underscores the urgent need for efficient recovery of valuable resources. Notably, WPCBs harbor a considerable number of intact electronic components that remain functional or could be repurposed. Nevertheless, the automated recognition and sorting of these components remain highly challenging, owing to their miniature dimensions, diverse model types, and the absence of publicly available, high-quality datasets. To address these challenges, this paper introduces a novel image dataset of discarded electronic components and proposes a deep learning-based data augmentation model that combines classical augmentation methods with DCGAN and SRGAN to achieve dataset size augmentation. This paper further conducts Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) evaluation on the generated images to ensure their suitability for downstream classification tasks. Experimental results demonstrate significant improvements in classification accuracy, with AlexNet, VGG19, ResNet18, ResNet101, and ResNet152 achieving increases of 6.6%, 9.7%, 4%, 5.4%, and 6.2%, respectively, compared to classical augmentation. This method enables precise identification to facilitate the downstream recovery of intact electronic components, thereby contributing to the conservation of natural resources and the effective mitigation of environmental pollution. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

18 pages, 1356 KB  
Article
Sustainable Recovery of Cu, Fe, Ni, and Zn from Multilayer Ceramic Capacitors Using a Ternary Deep Eutectic Solvent
by Jordy Masache-Romero, Katherine Moreno, Fernando Sánchez and Carlos F. Aragón-Tobar
Molecules 2025, 30(21), 4254; https://doi.org/10.3390/molecules30214254 - 31 Oct 2025
Viewed by 778
Abstract
The rapid growth in electronic waste (e-waste) generation highlights the urgent need for efficient and environmentally sustainable methods for metal recovery. This study focuses on the selective recovery of valuable metals from multilayer ceramic capacitors (MLCCs), commonly found in printed circuit boards (PCBs) [...] Read more.
The rapid growth in electronic waste (e-waste) generation highlights the urgent need for efficient and environmentally sustainable methods for metal recovery. This study focuses on the selective recovery of valuable metals from multilayer ceramic capacitors (MLCCs), commonly found in printed circuit boards (PCBs) of post-consumer electronics. MLCCs were manually recovered from dismantled computer PCBs, thermally treated, pulverized, and characterized using X-ray fluorescence and X-ray diffraction techniques. To evaluate green alternatives to traditional acid leaching, three deep eutectic solvents (DESs) based on choline chloride (ChCl) were prepared: citric acid (CA), glycerol (GLY), and a ternary (GLY-CA) mixture of both (GLY-CA). Leaching experiments were conducted over a 24 h period and analyzed using atomic absorption spectroscopy. The results showed complete recovery (100%) of copper using both CA and the GLY-CA mixture, while nickel recovery reached 100% with CA and moderate levels with GLY-CA. Zinc recovery was also high (99%) with both CA and GLY-CA. Iron showed a maximum recovery of 60%, potentially due to its occurrence in various chemical forms. The ternary DES (GLY-CA) demonstrated lower viscosity, improving handling and operational efficiency. These findings highlight the potential of citric-acid-based and ternary (GLY-CA) DESs as effective, low-toxicity leaching agents for the recovery of critical metals from MLCCs. Full article
Show Figures

Graphical abstract

16 pages, 3334 KB  
Article
Integrated Alkali Gradient pH Control Purification of Acidic Copper-Containing Etching Waste Solution and Cu2(OH)3Cl Conversion-Calcination Process for High-Purity CuO
by Dengliang He, Song Ren, Shuxin Liu and Shishan Xue
Processes 2025, 13(9), 2807; https://doi.org/10.3390/pr13092807 - 2 Sep 2025
Cited by 1 | Viewed by 1036
Abstract
With the rapid advances of the electronics industry, a large amount of acidic etching waste solutions (AEWS) for etching Printed Circuit Board (PCB) are generated, which require complete remediation and sustainable recycling to avoid environmental pollution and wasting of resources. Herein, the novel [...] Read more.
With the rapid advances of the electronics industry, a large amount of acidic etching waste solutions (AEWS) for etching Printed Circuit Board (PCB) are generated, which require complete remediation and sustainable recycling to avoid environmental pollution and wasting of resources. Herein, the novel purification technology for the acidic copper-containing etching waste solution was exploited via integrated alkali gradient pH control (3.0, 3.2, and 3.5). At pH 3.0, the system demonstrated selective metal removal with 94.02% efficiency for Fe and 82.60% for Mn. Elevating the pH to 3.2 enabled effective elimination of Zn (59.32%), Cr (59.46%), and Al (33.24%), while maintaining minimal copper loss (8.16%). Further pH adjustment to 3.5 achieved enhanced removal efficiencies of 97.86% (Fe), 91.30% (Mn), 59.38% (Zn), 62.10% (Cr), 21.66% (Ca), 34.05% (Al), and 26.66% (Co), with copper retention remaining high at 70.83% (29.17% loss). Furthermore, using the purified AEWS (pH 3.2) as precursor, high-purity nano-CuO was successfully synthesized through a Cu2(OH)3Cl conversion-calcination process, exhibiting 99.20% CuO purity with 0.0012% chlorine content and <0.1% metallic impurities. The development and application of the purification technology for AEWS containing copper, along with the production methodology for high-purity CuO, were significant to the fields of electronic information industry, environmental engineering, green industry and sustainable development of the ecological environment. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

42 pages, 2302 KB  
Article
The Role of E-Waste in Sustainable Mineral Resource Management
by Dina Mohamed, Adham Fayad, Abdel-Mohsen O. Mohamed and Moza T. Al Nahyan
Waste 2025, 3(3), 27; https://doi.org/10.3390/waste3030027 - 19 Aug 2025
Cited by 2 | Viewed by 7535
Abstract
This paper analyses the role of electronic waste (E-waste) as a secondary source of critical and precious minerals, addressing the challenges and opportunities in transitioning towards a circular economy (CE) for electronics. The surging global demand for these essential materials, driven by technological [...] Read more.
This paper analyses the role of electronic waste (E-waste) as a secondary source of critical and precious minerals, addressing the challenges and opportunities in transitioning towards a circular economy (CE) for electronics. The surging global demand for these essential materials, driven by technological advancements and renewable energy infrastructure, necessitates alternative supply strategies due to the depletion of natural reserves and the environmental degradation associated with primary mining. E-waste contains a rich concentration of valuable metals, such as gold, silver, and platinum, making its recovery a promising solution aligned with CE principles, which can mitigate environmental impacts and ensure long-term material availability. This paper examines the environmental, economic, and technological aspects of E-waste recovery, focusing on core processes such as physical and mechanical separation, pyrometallurgical, hydrometallurgical, bio-metallurgical, and electrochemical techniques. It explores innovative strategies to improve material recovery efficiency and sustainability, with consideration of evolving regulatory frameworks, technological advancements, and stakeholder engagement. The analysis highlights that e-waste, particularly printed circuit boards, can contain 40–800 times more gold than mined ore, with 1000–3000 g of gold per tonne compared to 5–10 g per tonne in traditional ores. Recovery costs using advanced E-waste recycling technologies range between $10,000–$20,000 USD per kilogram of gold, significantly lower than the $30,000–$50,000 USD per kilogram in primary mining. Globally, over 50 million tonnes of E-waste are generated annually, yet less than 20% is formally recycled. Efficient recycling methods can recover up to 95% of base and precious metals under optimized conditions. The paper argues that E-waste recycling presents a viable pathway to conserve critical raw materials, reduce environmental degradation, and enhance circular economic resilience. However, it also emphasizes persistent challenges—including high initial investment, technological limitations in developing regions, and regulatory fragmentation—that must be addressed for scalable adoption. Full article
Show Figures

Figure 1

21 pages, 19752 KB  
Article
Phase Characterisation for Recycling of Shredded Waste Printed Circuit Boards
by Laurance Donnelly, Duncan Pirrie, Matthew Power and Andrew Menzies
Recycling 2025, 10(4), 157; https://doi.org/10.3390/recycling10040157 - 6 Aug 2025
Cited by 2 | Viewed by 1364
Abstract
In this study, we adopt a geometallurgical analytical approach common in mineral processing in the characterization of samples of shredded waste printed circuit board (PCB) E-waste, originating from Europe. Conventionally, bulk chemical analysis provides a value for E-waste; however, chemical analysis alone does [...] Read more.
In this study, we adopt a geometallurgical analytical approach common in mineral processing in the characterization of samples of shredded waste printed circuit board (PCB) E-waste, originating from Europe. Conventionally, bulk chemical analysis provides a value for E-waste; however, chemical analysis alone does not provide information on the textural variability, phase complexity, grain size, particle morphology, phase liberation and associations. To address this, we have integrated analysis using binocular microscopy, manual scanning electron microscopy, phase, textural and compositional analyses by automated (SEM-EDS), phase analysis based on (Automated Material Identification and Classification System (AMICS) software, and elemental analysis using micro-XRF. All methods used have strengths and limitations, but an integration of these analytical tools allows the detailed characterization of the texture and composition of the E-waste feeds, ahead of waste reprocessing. These data can then be used to aid the design of optimized processing circuits for the recovery of the key payable components, and assist in the commercial trading of e-scrap. Full article
Show Figures

Figure 1

24 pages, 569 KB  
Systematic Review
Artificial Intelligence Approach for Waste-Printed Circuit Board Recycling: A Systematic Review
by Muhammad Mohsin, Stefano Rovetta, Francesco Masulli and Alberto Cabri
Computers 2025, 14(8), 304; https://doi.org/10.3390/computers14080304 - 27 Jul 2025
Cited by 1 | Viewed by 2118
Abstract
The rapid advancement of technology has led to a substantial increase in Waste Electrical and Electronic Equipment (WEEE), which poses significant environmental threats and increases pressure on the planet’s limited natural resources. In response, Artificial Intelligence (AI) has emerged as a key enabler [...] Read more.
The rapid advancement of technology has led to a substantial increase in Waste Electrical and Electronic Equipment (WEEE), which poses significant environmental threats and increases pressure on the planet’s limited natural resources. In response, Artificial Intelligence (AI) has emerged as a key enabler of the Circular Economy (CE), particularly in improving the speed and precision of waste sorting through machine learning and computer vision techniques. Despite this progress, to our knowledge, no comprehensive, systematic review has focused specifically on the role of AI in disassembling and recycling Waste-Printed Circuit Boards (WPCBs). This paper addresses this gap by systematically reviewing recent advancements in AI-driven disassembly and sorting approaches with a focus on machine learning and vision-based methodologies. The review is structured around three areas: (1) the availability and use of datasets for AI-based WPCB recycling; (2) state-of-the-art techniques for selective disassembly and component recognition to enable fast WPCB recycling; and (3) key challenges and possible solutions aimed at enhancing the recovery of critical raw materials (CRMs) from WPCBs. Full article
(This article belongs to the Special Issue Advanced Image Processing and Computer Vision (2nd Edition))
Show Figures

Figure 1

16 pages, 3829 KB  
Article
Process Development for Concentrating Valuable Metals Present in the Non-Valorized Solid Fractions from Urban Mining
by Nour-Eddine Menad and Alassane Traoré
Metals 2025, 15(8), 834; https://doi.org/10.3390/met15080834 - 26 Jul 2025
Viewed by 726
Abstract
Global resource consumption continues to grow each year, exerting increasing pressure on their availability. This trend could lead to a shortage of raw materials in the coming years. Aware of the risks associated with this situation, the European Union has implemented policies and [...] Read more.
Global resource consumption continues to grow each year, exerting increasing pressure on their availability. This trend could lead to a shortage of raw materials in the coming years. Aware of the risks associated with this situation, the European Union has implemented policies and strategies aimed at diversifying its supply sources, including waste recycling. In this context, the present study was conducted with the objective of developing innovative processes to concentrate valuable metals present in the non-recovered fractions of waste electrical and electronic equipment (WEEE). Three types of samples were studied: washing table residues (WTRs), printed circuit boards (PCBs), and powders from cathode-ray tube screens (CRT powders). Several separation techniques, based on the physical properties of the elements, were implemented, including electrostatic separation, magnetic separation, and density and gravity-based separations. The results obtained are promising. For WTRs and PCBs, the recovery rates of targeted metals (Cu, Al, Pb, Zn, Sn) reached approximately 91% and 80%, respectively. In addition to these metals, other valuable metals, present in significant quantities, deserve further exploration. Regarding CRT powders, the performances are also encouraging, with recovery rates of 54.7% for zinc, 57.1% for yttrium, and approximately 71% for europium. Although these results are satisfactory, optimizations are possible to maximize the recovery of these critical elements. The techniques implemented have demonstrated their effectiveness in concentrating target metals in the treated fractions. These results confirm that recycling constitutes a viable alternative to address resource shortages and secure part of the supplies needed for the European Union’s industry. Full article
Show Figures

Figure 1

15 pages, 734 KB  
Article
The Influence of Electrostatic Separation Parameters on the Recovery of Metals from Pre-Crushed PCBs
by Antonio Manuel Lopez-Paneque, Victoria Humildad Gallardo García-Orta, Jose Maria Gallardo, Ranier Enrique Sepúlveda-Ferrer and Ernesto Chicardi
Metals 2025, 15(8), 826; https://doi.org/10.3390/met15080826 - 23 Jul 2025
Cited by 1 | Viewed by 1893
Abstract
Electrostatic separation is a promising technology for the recovery of valuable metals from electronic waste, particularly from printed circuit boards (PCBs). This study explores the application of electrostatic separation for the selective recovery of metallic and non-metallic fractions from crushed PCBs (PCBs). The [...] Read more.
Electrostatic separation is a promising technology for the recovery of valuable metals from electronic waste, particularly from printed circuit boards (PCBs). This study explores the application of electrostatic separation for the selective recovery of metallic and non-metallic fractions from crushed PCBs (PCBs). The process exploits the differences in electrical properties between conductive metals and non-conductive polymers and ceramics, facilitating their separation through applied electric fields. The raw materials were pre-treated via mechanical comminution using shredders and hammer mills to achieve an optimal particle size distribution (<3 mm), which enhances separation efficiency. Ferrous materials were removed prior to electrostatic separation to improve process selectivity. Key operational parameters, including particle size, charge accumulation, environmental conditions, and separation efficiency, were systematically analysed. The results demonstrate that electrostatic separation effectively recovers high-value metals such as copper and gold while minimizing material losses. Additionally, the process contributes to the sustainability of e-waste recycling by enabling the recovery of non-metallic fractions for potential secondary applications. This work underscores the significance of electrostatic separation as a viable technique for e-waste management and highlights optimization strategies for enhancing its performance in large-scale recycling operations. Full article
Show Figures

Figure 1

16 pages, 4284 KB  
Article
Monitoring of Corrosion in Reinforced E-Waste Concrete Subjected to Chloride-Laden Environment Using Embedded Piezo Sensor
by Gaurav Kumar, Tushar Bansal and Dayanand Sharma
Constr. Mater. 2025, 5(3), 46; https://doi.org/10.3390/constrmater5030046 - 16 Jul 2025
Cited by 1 | Viewed by 1399
Abstract
This study explores the use of embedded piezo sensor (EPS) employing the Electro-Mechanical Impedance (EMI) technique for real-time corrosion monitoring in reinforced E-waste concrete exposed to chloride-laden environments. With the growing environmental concerns over electronic waste (E-waste) and the demand for sustainable construction [...] Read more.
This study explores the use of embedded piezo sensor (EPS) employing the Electro-Mechanical Impedance (EMI) technique for real-time corrosion monitoring in reinforced E-waste concrete exposed to chloride-laden environments. With the growing environmental concerns over electronic waste (E-waste) and the demand for sustainable construction practices, printed circuit board (PCB) materials were incorporated as partial replacements for coarse aggregates in concrete. The experiment utilized M30-grade concrete mixes, substituting 15% of natural coarse aggregates with E-waste, aiming to assess both sustainability and structural performance without compromising durability. EPS configured with Lead Zirconate Titanate (PZT) patches were embedded into both conventional and E-waste concrete specimens. The EPS monitored the changes in the form of conductance and susceptance signatures across a 100–400 kHz frequency range during accelerated corrosion exposure over a 60-day period in a 3.5% NaCl solution. The corrosion progression was evaluated qualitatively through electrical impedance signatures, visually via rust formation and cracking, and quantitatively using the Root Mean Square Deviation (RMSD) of EMI signatures. The results showed that the EMI technique effectively captured the initiation and propagation stages of corrosion. E-waste concrete exhibited earlier and more severe signs of corrosion compared to conventional concrete, indicated by faster increases and subsequent declines in conductance and susceptance and higher RMSD values during the initiation phase. The EMI-based system demonstrated its capability to detect microstructural changes at early stages, making it a promising method for Structural Health Monitoring (SHM) of sustainable concretes. The study concludes that while the use of E-waste in concrete contributes positively to sustainability, it may compromise long-term durability in aggressive environments. However, the integration of EPS and EMI offers a reliable, non-destructive, and sensitive technique for real-time corrosion monitoring, supporting preventive maintenance and improved infrastructure longevity. Full article
Show Figures

Figure 1

21 pages, 7071 KB  
Article
An Experimental Investigation into the Performance of Concrete and Mortar with Partial Replacement of Fine Aggregate by Printed Circuit Board (PCB) E-Waste
by Srinivasan Krishnan, Sai Gopal Krishna Bhagavatula, Jayanarayanan Karingamanna and Mini K. Madhavan
Recycling 2025, 10(4), 138; https://doi.org/10.3390/recycling10040138 - 12 Jul 2025
Cited by 1 | Viewed by 1347
Abstract
The increasing accumulation of E-waste presents significant environmental challenges, particularly its disposal and resource management. The present study investigates the potential of printed circuit boards (PCBs) as a partial replacement for fine aggregates in cement mortar and concrete. The replacement levels of PCBs [...] Read more.
The increasing accumulation of E-waste presents significant environmental challenges, particularly its disposal and resource management. The present study investigates the potential of printed circuit boards (PCBs) as a partial replacement for fine aggregates in cement mortar and concrete. The replacement levels of PCBs ranged from 0 to 35 wt% in cement mortar and from 0 to 30 wt% in concrete, aiming to improve the qualities of both mixes. The specimens were cured for 7 and 28 days, respectively, followed by tests to evaluate the flowability and static mechanical properties. The performance of the developed mortar/concrete was analyzed under aggressive environmental conditions by conducting various durability tests. Properties such as acoustic and thermal conductivity were also evaluated to check the suitability of the developed material for its multifunctionality. Test results revealed that the optimal replacement percentages of fine aggregate by PCBs in mortar and concrete mixes were 25 wt% and 20 wt%, respectively. A decline in mechanical properties was observed after a further increase in replacement level. The results demonstrate the feasibility of E-waste integration in cement and mortar as a sustainable waste management solution. Full article
Show Figures

Figure 1

11 pages, 2330 KB  
Article
Separations of Strategic Metals from Spent Electronic Waste Using “Green Methods”
by Urszula Domańska, Anna Wiśniewska and Zbigniew Dąbrowski
Separations 2025, 12(6), 167; https://doi.org/10.3390/separations12060167 - 18 Jun 2025
Viewed by 1093
Abstract
Next-generation recycling technologies must be urgently innovated to tackle huge volumes of spent batteries, photovoltaic panels or printed circuit boards (WPCBs). Current e-waste recycling industrial technology is dominated by traditional recycling technologies. Herein, ionic liquids (ILs), deep eutectic solvents (DESs) and promising oxidizing [...] Read more.
Next-generation recycling technologies must be urgently innovated to tackle huge volumes of spent batteries, photovoltaic panels or printed circuit boards (WPCBs). Current e-waste recycling industrial technology is dominated by traditional recycling technologies. Herein, ionic liquids (ILs), deep eutectic solvents (DESs) and promising oxidizing additives that can overcome some traditional recycling methods of metal ions from e-waste, used in our works from last year, are presented. The unique chemical environments of ILs and DESs, with the application of low-temperature extraction procedures, are important environmental aspects known as “Green Methods”. A closed-loop system for recycling zinc and manganese from the “black mass” (BM) of waste, Zn-MnO2 batteries, is presented. The leaching process achieves a high efficiency and distribution ratio using the composition of two solvents (Cyanex 272 + diethyl phosphite (DPh)) for Zn(II) extraction. High extraction efficiency with 100% zinc and manganese recovery is also achieved using DESs (cholinum chloride/lactic acid, 1:2, DES 1, and cholinum chloride/malonic acid, 1:1, DES 2). New, greener recycling approaches to metal extraction from the BM of spent Li-ion batteries are presented with ILs ([N8,8,8,1][Cl], (Aliquat 336), [P6,6,6,14][Cl], [P6,6,6,14][SCN] and [Benzet][TCM]) eight DESs, Cyanex 272 and D2EHPA. A high extraction efficiency of Li(I) (41–92 wt%) and Ni(II) (37–52 wt%) using (Cyanex 272 + DPh) is obtained. The recovery of Ni(II) and Cd(II) from the BM of spent Ni-Cd batteries is also demonstrated. The extraction efficiency of DES 1 and DES 2, contrary to ILs ([P6,6,6,14][Cl] and [P6,6,6,14][SCN]), is at the level of 30 wt% for Ni(II) and 100 wt% for Cd(II). In this mini-review, the option to use ILs, DESs and Cyanex 272 for the recovery of valuable metals from end-of-life WPCBs is presented. Next-generation recycling technologies, in contrast to the extraction of metals from acidic leachate preceded by thermal pre-treatment or from solid material only after thermal pre-treatment, have been developed with ILs and DESs using the ABS method, as well as Cyanex 272 (only after the thermal pre-treatment of WPCBs), with a process efficiency of 60–100 wt%. In this process, four new ILs are used: didecyldimethylammonium propionate, [N10,10,1,1][C2H5COO], didecylmethylammonium hydrogen sulphate, [N10,10,1,H][HSO4], didecyldimethylammonium dihydrogen phosphate, [N10,10,1,1][H2PO4], and tetrabutylphosphonium dihydrogen phosphate, [P4,4,4,4][H2PO4]. The extraction of Cu(II), Ag(I) and other metals such as Al(III), Fe(II) and Zn(II) from solid WPCBs is demonstrated. Various additives are used during the extraction processes. The Analyst 800 atomic absorption spectrometer (FAAS) is used for the determination of metal content in the solid BM. The ICP-OES method is used for metal analysis. The obtained results describe the possible application of ILs and DESs as environmental media for upcycling spent electronic wastes. Full article
(This article belongs to the Section Materials in Separation Science)
Show Figures

Graphical abstract

Back to TopTop