Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = waste heat recovery systems (WHRS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11142 KiB  
Article
Enhanced Heat-Powered Batteryless IIoT Architecture with NB-IoT for Predictive Maintenance in the Oil and Gas Industry
by Raúl Aragonés, Joan Oliver and Carles Ferrer
Sensors 2025, 25(8), 2590; https://doi.org/10.3390/s25082590 - 19 Apr 2025
Cited by 2 | Viewed by 612
Abstract
The carbon footprint associated with human activity, particularly from energy-intensive industries such as iron and steel, aluminium, cement, oil and gas, and petrochemicals, contributes significantly to global warming. These industries face unique challenges in achieving Industry 4.0 goals due to the widespread adoption [...] Read more.
The carbon footprint associated with human activity, particularly from energy-intensive industries such as iron and steel, aluminium, cement, oil and gas, and petrochemicals, contributes significantly to global warming. These industries face unique challenges in achieving Industry 4.0 goals due to the widespread adoption of industrial Internet of Things (IIoT) technologies, which require reliable and efficient power solutions. Conventional wireless devices powered by lithium batteries have limitations, including a reduced lifespan in high-temperature environments, incompatibility with explosive atmospheres, and high maintenance costs. This paper proposes a novel approach to address these challenges by leveraging residual heat to power IIoT devices, eliminating the need for batteries and enabling autonomous operation. Based on the Seebeck effect, thermoelectric energy harvesters transduce waste heat from industrial surfaces, such as pipes or chimneys, into sufficient electrical energy to power IoT nodes for applications like the condition monitoring and predictive maintenance of rotating machinery. The methodology presented standardises the modelling and simulation of Waste Heat Recovery Systems (IoT-WHRSs), demonstrating their feasibility through statistical analysis of IoT-WHRS architectures. Furthermore, this technology has been successfully implemented in a petroleum refinery, where it benefits from the NB-IoT standard for long-range, robust, and secure communications, ensuring reliable data transmission in harsh industrial environments. The results highlight the potential of this solution to reduce costs, improve safety, and enhance efficiency in demanding industrial applications, making it a valuable tool for the energy transition. Full article
Show Figures

Figure 1

40 pages, 10424 KiB  
Article
Optimising the Design of a Hybrid Fuel Cell/Battery and Waste Heat Recovery System for Retrofitting Ship Power Generation
by Onur Yuksel, Eduardo Blanco-Davis, Andrew Spiteri, David Hitchmough, Viknash Shagar, Maria Carmela Di Piazza, Marcello Pucci, Nikolaos Tsoulakos, Milad Armin and Jin Wang
Energies 2025, 18(2), 288; https://doi.org/10.3390/en18020288 - 10 Jan 2025
Cited by 3 | Viewed by 1700
Abstract
This research aims to assess the integration of different fuel cell (FC) options with battery and waste heat recovery systems through a mathematical modelling process to determine the most feasible retrofit solutions for a marine electricity generation plant. This paper distinguishes itself from [...] Read more.
This research aims to assess the integration of different fuel cell (FC) options with battery and waste heat recovery systems through a mathematical modelling process to determine the most feasible retrofit solutions for a marine electricity generation plant. This paper distinguishes itself from existing literature by incorporating future cost projection scenarios involving variables such as carbon tax, fuel, and equipment prices. It assesses the environmental impact by including upstream emissions integrated with the Energy Efficiency Existing Ship Index (EEXI) and the Carbon Intensity Indicator (CII) calculations. Real-time data have been collected from a Kamsarmax vessel to build a hybrid marine power distribution plant model for simulating six system designs. A Multi-Criteria Decision Making (MCDM) methodology ranks the scenarios depending on environmental benefits, economic performance, and system space requirements. The findings demonstrate that the hybrid configurations, including solid oxide (SOFC) and proton exchange (PEMFC) FCs, achieve a deduction in equivalent CO2 of the plant up to 91.79% and decrease the EEXI and the average CII by 10.24% and 6.53%, respectively. Although SOFC-included configurations show slightly better economic performance and require less fuel capacity, the overall performance of PEMFC designs are ranked higher in MCDM analysis due to the higher power density. Full article
Show Figures

Figure 1

29 pages, 1487 KiB  
Review
Waste Heat Utilization in Marine Energy Systems for Enhanced Efficiency
by Tymoteusz Miller, Irmina Durlik, Ewelina Kostecka, Polina Kozlovska, Andrzej Jakubowski and Adrianna Łobodzińska
Energies 2024, 17(22), 5653; https://doi.org/10.3390/en17225653 - 12 Nov 2024
Cited by 5 | Viewed by 2856
Abstract
The maritime industry, central to global trade, faces critical challenges related to energy efficiency and environmental sustainability due to significant energy loss from waste heat in marine engines. This review investigates the potential of waste heat recovery (WHR) technologies to enhance operational efficiency [...] Read more.
The maritime industry, central to global trade, faces critical challenges related to energy efficiency and environmental sustainability due to significant energy loss from waste heat in marine engines. This review investigates the potential of waste heat recovery (WHR) technologies to enhance operational efficiency and reduce emissions in marine systems. By analyzing major WHR methods, such as heat exchangers, Organic Rankine Cycle (ORC) systems, thermoelectric generators, and combined heat and power (CHP) systems, this work highlights the specific advantages, limitations, and practical considerations of each approach. Unique to this review is an examination of WHR performance in confined marine spaces and compatibility with existing ship components, providing essential insights for practical implementation. Findings emphasize WHR as a viable strategy to reduce fuel consumption and meet environmental regulations, contributing to a more sustainable maritime industry. Full article
Show Figures

Figure 1

7 pages, 665 KiB  
Proceeding Paper
Enhancing Sustainability and Energy Savings in Cement Production via Waste Heat Recovery
by Zafar Turakulov, Azizbek Kamolov, Adham Norkobilov, Miroslav Variny and Marcos Fallanza
Eng. Proc. 2024, 67(1), 11; https://doi.org/10.3390/engproc2024067011 - 13 Aug 2024
Cited by 1 | Viewed by 2438
Abstract
Cement production is one of the most energy-intensive industries. During the clinker formation and cooling processes, excess heat is lost to the atmosphere. For this reason, using waste heat to generate useful energy is considered the most promising approach to sustainable cement production. [...] Read more.
Cement production is one of the most energy-intensive industries. During the clinker formation and cooling processes, excess heat is lost to the atmosphere. For this reason, using waste heat to generate useful energy is considered the most promising approach to sustainable cement production. Many cement plants still face challenges in energy efficiency due to historically low energy prices and subsidies in Uzbekistan, which have deterred the adoption of waste heat recovery (WHR) technologies. This study conducts a techno-economic analysis of WHR technologies for a cement plant with an annual capacity of 1 million metric tons (Mt). It evaluates potential energy savings and economic benefits, identifying key waste heat sources, such as preheater flue gas and clinker cooling air, with a total recoverable waste heat of 60.52 MW. The implementation of WHR systems can significantly enhance energy efficiency and reduce operational costs. Results show that WHR can reduce clinker production costs by 3.81% and the levelized cost of clinkers by 7.49%, while cutting annual indirect CO2 emissions by 63.26%. Given the legislative support and recent energy price liberalization, the first WHR projects are expected to start in 2025 in Uzbekistan. This analysis offers valuable insights for adopting WHR technologies to improve sustainability and competitiveness in Uzbekistan’s cement industry. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Processes)
Show Figures

Figure 1

27 pages, 2098 KiB  
Article
Complex Use of the Main Marine Diesel Engine High- and Low-Temperature Waste Heat in the Organic Rankine Cycle
by Sergejus Lebedevas and Tomas Čepaitis
J. Mar. Sci. Eng. 2024, 12(3), 521; https://doi.org/10.3390/jmse12030521 - 21 Mar 2024
Cited by 7 | Viewed by 5195
Abstract
The decarbonization problem of maritime transport and new restrictions on CO2 emissions (MARPOL Annex VI Chapter 4, COM (2021)562) have prompted the development and practical implementation of new decarbonization solutions. One of them, along with the use of renewable fuels, is the [...] Read more.
The decarbonization problem of maritime transport and new restrictions on CO2 emissions (MARPOL Annex VI Chapter 4, COM (2021)562) have prompted the development and practical implementation of new decarbonization solutions. One of them, along with the use of renewable fuels, is the waste heat recovery of secondary heat sources from a ship’s main engine, whose energy potential reaches 45–55%. The organic Rankine cycle (ORC), which uses low-boiling organic working fluids, is considered one of the most promising and energy-efficient solutions for ship conditions. However, there remains uncertainty when choosing a rational cycle configuration, taking into account the energy consumption efficiency indicators of various low-temperature (cylinder cooling jacket and scavenging air cooling) and high-temperature (exhaust gas) secondary heat source combinations while the engine operates within the operational load range. It is also rational, especially at the initial stage, to evaluate possible constraints of ship technological systems for ORC implementation on the ship. The numerical investigation of these practical aspects of ORC applicability was conducted with widely used marine medium-speed diesel engines, such as the Wartsila 12V46F. Comprehensive waste heat recovery of all secondary heat sources in ORC provides a potential increase in the energy efficiency of the main engine by 13.5% to 21% in the engine load range of 100% to 25% of nominal power, while individual heat sources only achieve 3% to 8%. The average increase in energy efficiency over the operating cycle according to test cycles for the type approval engines ranges from 8% to 15% compared to 3% to 6.5%. From a practical implementation perspective, the most attractive potential for energy recovery is from the scavenging air cooling system, which, both separately (5% compared to 6.5% during the engine’s operating cycle) and in conjunction with other WHR sources, approaches the highest level of exhaust gas potential. The choice of a rational ORC structure for WHR composition allowed for achieving a waste heat recovery system energy efficiency coefficient of 15%. Based on the studied experimental and analytical relationships between the ORC (generated mechanical energy) energy performance (Pturb) and the technological constraints of shipboard systems (Gw), ranges for the use of secondary heat sources in diesel operational characteristic modes have been identified according to technological limits. Full article
(This article belongs to the Special Issue Advanced Research on the Sustainable Maritime Transportation)
Show Figures

Figure 1

16 pages, 4645 KiB  
Article
Technoeconomic Analysis of Oxygen-Supported Combined Systems for Recovering Waste Heat in an Iron-Steel Facility
by Busra Besevli, Erhan Kayabasi, Abdulrazzak Akroot, Wadah Talal, Ali Alfaris, Younus Hamoudi Assaf, Mohammed Y. Nawaf, Mothana Bdaiwi and Jawad Khudhur
Appl. Sci. 2024, 14(6), 2563; https://doi.org/10.3390/app14062563 - 19 Mar 2024
Cited by 6 | Viewed by 1562
Abstract
In this study, it is proposed to generate electrical energy by recovering the waste heat of an annealing furnace (AF) in an iron and steel plant using combined cycles such as steam Rankine cycle (SRC), organic Rankine cycle (ORC), Kalina cycle (KC) and [...] Read more.
In this study, it is proposed to generate electrical energy by recovering the waste heat of an annealing furnace (AF) in an iron and steel plant using combined cycles such as steam Rankine cycle (SRC), organic Rankine cycle (ORC), Kalina cycle (KC) and transcritical CO2 cycle (t-CO2). Instead of releasing the waste heat into the atmosphere, the waste heat recovery system (WHRS) discharges the waste heat into the plant’s low-temperature oxygen line for the first time, achieving a lower temperature and pressure in the condenser than conventional systems. The waste heat of the flue gas (FG) with a temperature of 1093.15 K from the reheat furnace was evaluated using four different cycles. To maximize power generation, the SRC input temperature of the proposed system was studied parametrically. The cycles were analyzed based on thermal efficiency and net output power. The difference in SRC inlet temperature is 221.6 K for maximum power output. The proposed system currently has a thermal efficiency and total power output of 0.19 and 596.6 kW, respectively. As an environmental impact, an emission reduction potential of 23.16 tons/day was achieved. In addition, the minimum power generation cost of the proposed system is $0.1972 per kWh. Full article
Show Figures

Figure 1

20 pages, 8151 KiB  
Article
Dynamic Modeling and Control of Supercritical Carbon Dioxide Power Cycle for Gas Turbine Waste Heat Recovery
by Bowen Ma, Fan Zhang, Kwang Y. Lee, Hemin Hu, Tao Wang and Bing Zhang
Energies 2024, 17(6), 1343; https://doi.org/10.3390/en17061343 - 11 Mar 2024
Cited by 2 | Viewed by 2001
Abstract
The gas turbine is a crucial piece of equipment in the energy and power industry. The exhaust gas has a sufficiently high temperature to be recovered for energy cascade use. The supercritical carbon dioxide (S-CO2) Brayton cycle is an advanced power [...] Read more.
The gas turbine is a crucial piece of equipment in the energy and power industry. The exhaust gas has a sufficiently high temperature to be recovered for energy cascade use. The supercritical carbon dioxide (S-CO2) Brayton cycle is an advanced power system that offers benefits in terms of efficiency, volume, and flexibility. It may be utilized for waste heat recovery (WHR) in gas turbines. This study involved the design of a 5 MW S-CO2 recompression cycle specifically for the purpose of operational control. The dynamic models for the printed circuit heat exchangers, compressors, and turbines were developed. The stability and dynamic behavior of the components were validated. The suggested control strategies entail utilizing the cooling water controller to maintain the compressor inlet temperature above the critical temperature of CO2 (304.13 K). Additionally, the circulating mass flow rate is regulated to modify the output power, while the exhaust gas flow rate is controlled to ensure that the turbine inlet temperature remains within safe limits. The simulations compare the performance of PI controllers tuned using the SIMC rule and ADRC controllers tuned using the bandwidth method. The findings demonstrated that both controllers are capable of adjusting operating conditions and effectively suppressing fluctuations in the exhaust gas. The ADRC controllers exhibit a superior control performance, resulting in a 55% reduction in settling time under the load-tracking scenario. Full article
(This article belongs to the Special Issue Waste Heat Recovery Optimization in Gas Turbines)
Show Figures

Figure 1

74 pages, 8424 KiB  
Review
Review of Organic Rankine Cycles for Internal Combustion Engine Waste Heat Recovery: Latest Decade in Review
by Charles E. Sprouse
Sustainability 2024, 16(5), 1924; https://doi.org/10.3390/su16051924 - 26 Feb 2024
Cited by 6 | Viewed by 7866
Abstract
The last decade (2013–2023) was the most prolific period of organic Rankine cycle (ORC) research in history in terms of both publications and citations. This article provides a detailed review of the broad and voluminous collection of recent internal combustion engine (ICE) waste [...] Read more.
The last decade (2013–2023) was the most prolific period of organic Rankine cycle (ORC) research in history in terms of both publications and citations. This article provides a detailed review of the broad and voluminous collection of recent internal combustion engine (ICE) waste heat recovery (WHR) studies, serving as a necessary follow-on to the author’s 2013 review. Research efforts have targeted diverse applications (e.g., vehicular, stationary, and building-based), and it spans the full gamut of engine sizes and fuels. Furthermore, cycle configurations extend far beyond basic ORC and regenerative ORC, particularly with supercritical, trilateral, and multi-loop ORCs. Significant attention has been garnered by fourth-generation refrigerants like HFOs (hydrofluoroolefins), HFEs (hydrofluoroethers), natural refrigerants, and zeotropic mixtures, as research has migrated away from the popular HFC-245fa (hydrofluorocarbon). Performance-wise, the period was marked by a growing recognition of the diminished performance of physical systems under dynamic source conditions, especially compared to steady-state simulations. Through advancements in system control, especially using improved model predictive controllers, dynamics-based losses have been significantly reduced. Regarding practically minded investigations, research efforts have ameliorated working fluid flammability risks, limited thermal degradation, and pursued cost savings. State-of-the-art system designs and operational targets have emerged through increasingly sophisticated optimization efforts, with some studies leveraging “big data” and artificial intelligence. Major programs like SuperTruck II have further established the ongoing challenges of simultaneously meeting cost, size, and performance goals; however, off-the-shelf organic Rankine cycle systems are available today for engine waste heat recovery, signaling initial market penetration. Continuing forward, next-generation engines can be designed specifically as topping cycles for an organic Rankine (bottoming) cycle, with both power sources integrated into advanced hybrid drivetrains. Full article
(This article belongs to the Topic Advanced Engines Technologies)
Show Figures

Figure 1

26 pages, 24489 KiB  
Article
Steam Storage Rankine Cycle for Unutilized Applications in Distributed High-Temperature Waste Heat Recovery
by Florian Raab, Lennart Böse, Harald Klein and Frank Opferkuch
Energies 2024, 17(4), 920; https://doi.org/10.3390/en17040920 - 16 Feb 2024
Viewed by 1317
Abstract
In the light of increasingly valuable resources and a trend towards more efficient processes pushed by climate change, distributed Waste Heat Recovery (WHR) is an important element in the transformation of the energy supply. In recent years, however, WHR systems have often been [...] Read more.
In the light of increasingly valuable resources and a trend towards more efficient processes pushed by climate change, distributed Waste Heat Recovery (WHR) is an important element in the transformation of the energy supply. In recent years, however, WHR systems have often been optimized and implemented for steady-state applications. In this paper, dynamic system modeling and a Steam Rankine Cycle (SRC) pilot plant with 40 kWel are used to investigate applications unutilized thus far for the conversion of high-temperature waste heat into electricity using a shell boiler with 1.27 m3 of liquid water for short-term energy storage. In addition to experimental investigations of the storage system as an Uninterruptible Power Supply (UPS) and the input and output of +/−100% electrical power peaks for grid-assistive operation, a control concept for the use of volatile waste heat is developed from a model-based controller design up to a Model Predictive Control (MPC) with the help of a dynamic system simulation. Based on the validated model and experimental measurement data, outlooks for concrete applications with higher storage capacity and power are provided. Full article
(This article belongs to the Section F2: Distributed Energy System)
Show Figures

Figure 1

31 pages, 10613 KiB  
Article
A New Generation of Hydrogen-Fueled Hybrid Propulsion Systems for the Urban Mobility of the Future
by Ivan Arsie, Michele Battistoni, Pier Paolo Brancaleoni, Roberto Cipollone, Enrico Corti, Davide Di Battista, Federico Millo, Alessio Occhicone, Benedetta Peiretti Paradisi, Luciano Rolando and Jacopo Zembi
Energies 2024, 17(1), 34; https://doi.org/10.3390/en17010034 - 20 Dec 2023
Cited by 20 | Viewed by 2840
Abstract
The H2-ICE project aims at developing, through numerical simulation, a new generation of hybrid powertrains featuring a hydrogen-fueled Internal Combustion Engine (ICE) suitable for 12 m urban buses in order to provide a reliable and cost-effective solution for the abatement of both CO [...] Read more.
The H2-ICE project aims at developing, through numerical simulation, a new generation of hybrid powertrains featuring a hydrogen-fueled Internal Combustion Engine (ICE) suitable for 12 m urban buses in order to provide a reliable and cost-effective solution for the abatement of both CO2 and criteria pollutant emissions. The full exploitation of the potential of such a traction system requires a substantial enhancement of the state of the art since several issues have to be addressed. In particular, the choice of a more suitable fuel injection system and the control of the combustion process are extremely challenging. Firstly, a high-fidelity 3D-CFD model will be exploited to analyze the in-cylinder H2 fuel injection through supersonic flows. Then, after the optimization of the injection and combustion process, a 1D model of the whole engine system will be built and calibrated, allowing the identification of a “sweet spot” in the ultra-lean combustion region, characterized by extremely low NOx emissions and, at the same time, high combustion efficiencies. Moreover, to further enhance the engine efficiency well above 40%, different Waste Heat Recovery (WHR) systems will be carefully scrutinized, including both Organic Rankine Cycle (ORC)-based recovery units as well as electric turbo-compounding. A Selective Catalytic Reduction (SCR) aftertreatment system will be developed to further reduce NOx emissions to near-zero levels. Finally, a dedicated torque-based control strategy for the ICE coupled with the Energy Management Systems (EMSs) of the hybrid powertrain, both optimized by exploiting Vehicle-To-Everything (V2X) connection, allows targeting H2 consumption of 0.1 kg/km. Technologies developed in the H2-ICE project will enhance the know-how necessary to design and build engines and aftertreatment systems for the efficient exploitation of H2 as a fuel, as well as for their integration into hybrid powertrains. Full article
Show Figures

Figure 1

17 pages, 3216 KiB  
Article
Design of the Organic Rankine Cycle for High-Efficiency Diesel Engines in Marine Applications
by Apostolos Pesyridis, Muhammad Suleman Asif, Sadegh Mehranfar, Amin Mahmoudzadeh Andwari, Ayat Gharehghani and Thanos Megaritis
Energies 2023, 16(11), 4374; https://doi.org/10.3390/en16114374 - 27 May 2023
Cited by 11 | Viewed by 2559
Abstract
Over the past few years, fuel prices have increased dramatically, and emissions regulations have become stricter in maritime applications. In order to take these factors into consideration, improvements in fuel consumption have become a mandatory factor and a main task of research and [...] Read more.
Over the past few years, fuel prices have increased dramatically, and emissions regulations have become stricter in maritime applications. In order to take these factors into consideration, improvements in fuel consumption have become a mandatory factor and a main task of research and development departments in this area. Internal combustion engines (ICEs) can exploit only about 15–40% of chemical energy to produce work effectively, while most of the fuel energy is wasted through exhaust gases and coolant. Although there is a significant amount of wasted energy in thermal processes, the quality of that energy is low owing to its low temperature and provides limited potential for power generation consequently. Waste heat recovery (WHR) systems take advantage of the available waste heat for producing power by utilizing heat energy lost to the surroundings at no additional fuel costs. Among all available waste heat sources in the engine, exhaust gas is the most potent candidate for WHR due to its high level of exergy. Regarding WHR technologies, the well-known Rankine cycles are considered the most promising candidate for improving ICE thermal efficiency. This study is carried out for a six-cylinder marine diesel engine model operating with a WHR organic Rankine cycle (ORC) model that utilizes engine exhaust energy as input. Using expander inlet conditions in the ORC model, preliminary turbine design characteristics are calculated. For this mean-line model, a MATLAB code has been developed. In off-design expander analysis, performance maps are created for different speed and pressure ratios. Results are produced by integrating the polynomial correlations between all of these parameters into the ORC model. ORC efficiency varies in design and off-design conditions which are due to changes in expander input conditions and, consequently, net power output. In this study, ORC efficiency varies from a minimum of 6% to a maximum of 12.7%. ORC efficiency performance is also affected by certain variables such as the coolant flow rate, heat exchanger’s performance etc. It is calculated that with the increase of coolant flow rate, ORC efficiency increases due to the higher turbine work output that is made possible, and the condensing pressure decreases. It is calculated that ORC can improve engine Brake Specific Fuel Consumption (BSFC) from a minimum of 2.9% to a maximum of 5.1%, corresponding to different engine operating points. Thus, decreasing overall fuel consumption shows a positive effect on engine performance. It can also increase engine power output by up to 5.42% if so required for applications where this may be deemed necessary and where an appropriate mechanical connection is made between the engine shaft and the expander shaft. The ORC analysis uses a bespoke expander design methodology and couples it to an ORC design architecture method to provide an important methodology for high-efficiency marine diesel engine systems that can extend well beyond the marine sector and into the broader ORC WHR field and are applicable to many industries (as detailed in the Introduction section of this paper). Full article
Show Figures

Figure 1

21 pages, 5927 KiB  
Article
Comparative Assessment of sCO2 Cycles, Optimal ORC, and Thermoelectric Generators for Exhaust Waste Heat Recovery Applications from Heavy-Duty Diesel Engines
by Menaz Ahamed, Apostolos Pesyridis, Jabraeil Ahbabi Saray, Amin Mahmoudzadeh Andwari, Ayat Gharehghani and Srithar Rajoo
Energies 2023, 16(11), 4339; https://doi.org/10.3390/en16114339 - 25 May 2023
Cited by 9 | Viewed by 2588
Abstract
This study aimed to investigate the potential of supercritical carbon dioxide (sCO2), organic Rankine cycle (ORC), and thermoelectric generator (TEG) systems for application in automotive exhaust waste heat recovery (WHR) applications. More specifically, this paper focuses on heavy-duty diesel engines applications such as [...] Read more.
This study aimed to investigate the potential of supercritical carbon dioxide (sCO2), organic Rankine cycle (ORC), and thermoelectric generator (TEG) systems for application in automotive exhaust waste heat recovery (WHR) applications. More specifically, this paper focuses on heavy-duty diesel engines applications such as marine, trucks, and locomotives. The results of the simulations show that sCO2 systems are capable of recovering the highest amount of power from exhaust gases, followed by ORC systems. The sCO2 system recovered 19.5 kW at the point of maximum brake power and 10.1 kW at the point of maximum torque. Similarly, the ORC system recovered 14.7 kW at the point of maximum brake power and 7.9 kW at the point of maximum torque. Furthermore, at a point of low power and torque, the sCO2 system recovered 4.2 kW of power and the ORC system recovered 3.3 kW. The TEG system produced significantly less power (533 W at maximum brake power, 126 W at maximum torque, and 7 W at low power and torque) at all three points of interest due to the low system efficiency in comparison to sCO2 and ORC systems. From the results, it can be concluded that sCO2 and ORC systems have the biggest potential impact in exhaust WHR applications provided the availability of heat and that their level of complexity does not become prohibitive. Full article
(This article belongs to the Special Issue Internal Combustion Engine Performance 2022)
Show Figures

Figure 1

19 pages, 5297 KiB  
Article
Performance Analysis of WHR Systems for Marine Applications Based on sCO2 Gas Turbine and ORC
by Fabrizio Reale, Raffaela Calabria and Patrizio Massoli
Energies 2023, 16(11), 4320; https://doi.org/10.3390/en16114320 - 25 May 2023
Cited by 4 | Viewed by 1829
Abstract
Waste heat recovery (WHR) can represent a solution to improve the efficiency of ships’ propulsion, helping to exceed stringent greenhouse gas emission limits. This is particularly suitable in the case of propulsion based on gas turbines due to their medium-high temperature level of [...] Read more.
Waste heat recovery (WHR) can represent a solution to improve the efficiency of ships’ propulsion, helping to exceed stringent greenhouse gas emission limits. This is particularly suitable in the case of propulsion based on gas turbines due to their medium-high temperature level of the exhaust gases. This study analyzes the performance of a hybrid energy grid, in which the heat is recovered by the exhaust gases of an aeroderivative gas turbine, a GE LM2500+, when the bottoming system is a supercritical CO2 gas turbine. Given the issues and peculiarities related to the onboard installation, where size and weight are fundamental concerns, six WHR schemes have been analyzed. They span from the simple cycle to partial preheated and regenerative, to a cascade layout in which an ORC system receives thermal power by the sCO2 GT. The influence of the seawater temperature on the performance of the hybrid energy system has been also considered. The energetic and exergetic performance comparison of the different schemes has been carried out by using the commercial software Thermoflex. The results showed that an increase in overall performance by up to 29% can be obtained and that the increase in seawater temperature can lead to a decrease in the overall performance. Full article
(This article belongs to the Special Issue Mathematical Modelling of Energy Systems and Fluid Machinery 2022)
Show Figures

Figure 1

18 pages, 8245 KiB  
Article
Comprehensive Experimental and Numerical Optimization of Diesel Engine Thermal Management Strategy for Emission Clarification and Carbon Dioxide Control
by Da Li, Sipeng Zhu, Guodong Zhang, Ke Sun, Shuzhan Bai, Guoxiang Li and Hao Cheng
Processes 2023, 11(4), 1252; https://doi.org/10.3390/pr11041252 - 18 Apr 2023
Cited by 2 | Viewed by 1884
Abstract
Improving the thermal efficiency of truck diesel engines requires comprehensive optimization of the engine, exhaust aftertreatment (EAT), and possible waste heat recovery (WHR). Lower exhaust temperature at mid and low working points has caused difficulty in both emission clarification and heat recovery, which [...] Read more.
Improving the thermal efficiency of truck diesel engines requires comprehensive optimization of the engine, exhaust aftertreatment (EAT), and possible waste heat recovery (WHR). Lower exhaust temperature at mid and low working points has caused difficulty in both emission clarification and heat recovery, which requires thermal management. Based on the diesel engine bench test and separate bench tests, this paper focuses on the thermal management strategy optimization, to increase the exhaust temperature at lower working points and optimize the thermal efficiency of the whole system. The test and numerical analysis showed that as exhaust temperature increased from 200~250 °C to 300~350 °C, soot passive regeneration reactions were enhanced, nitrogen oxide emission decreased, and energy recovery was improved. Moderate throttle valve adjustment coupled with early post injection could effectively achieve the required temperature increase. The optimized thermal management strategy increased the fuel consumption rate by no more than 1%. Meanwhile, the WHR system output increased significantly, by 62.55% at a certain mid–low working point. System CO2 emission decreased by an average of 5.4% at selected working points. Full article
(This article belongs to the Special Issue Application of Heat Recovery Systems in Energy)
Show Figures

Figure 1

28 pages, 2251 KiB  
Article
Design and Performance Evaluation of Integrating the Waste Heat Recovery System (WHRS) for a Silicon Arc Furnace with Plasma Gasification for Medical Waste
by Yuehong Dong, Lai Wei, Sheng Wang, Peiyuan Pan and Heng Chen
Entropy 2023, 25(4), 595; https://doi.org/10.3390/e25040595 - 31 Mar 2023
Cited by 8 | Viewed by 3137
Abstract
A hybrid scheme integrating the current waste heat recovery system (WHRS) for a silicon arc furnace with plasma gasification for medical waste is proposed. Combustible syngas converted from medical waste is used to drive the gas turbine for power generation, and waste heat [...] Read more.
A hybrid scheme integrating the current waste heat recovery system (WHRS) for a silicon arc furnace with plasma gasification for medical waste is proposed. Combustible syngas converted from medical waste is used to drive the gas turbine for power generation, and waste heat is recovered from the raw syngas and exhaust gas from the gas turbine for auxiliary heating of steam and feed water in the WHRS. Meanwhile, the plasma gasifier can also achieve a harmless disposal of the hazardous fine silica particles generated in polysilicon production. The performance of the proposed design is investigated by energy, exergy, and economic analysis. The results indicate that after the integration, medical waste gave rise to 4.17 MW net power at an efficiency of up to 33.99%. Meanwhile, 4320 t of the silica powder can be disposed conveniently by the plasma gasifier every year, as well as 23,040 t of medical waste. The proposed design of upgrading the current WHRS to the hybrid system requires an initial investment of 18,843.65 K$ and has a short dynamic payback period of 3.94 years. Therefore, the hybrid scheme is feasible and promising for commercial application. Full article
(This article belongs to the Special Issue Thermodynamic Optimization of Industrial Energy Systems)
Show Figures

Figure 1

Back to TopTop